Course Description: This course covers sequences, series, power series, and ; differential and integrals calculus of function of several variables and their applications, and multiple integral, ordinary differential equation and Laplace transforms

Course objective: to equip students with mathematical tools of developing mathematical models of physical problems

Course Contents

Chapter 1: Sequence ,Series and power series

Chapter I: part I: Sequence and Series

                                             1.1.         Definition and Types of sequence

                                             1.2.         Convergence properties of sequences

                                             1.3.         Subsequence and limit points

                                             1.4.         Definition of infinite series

                                             1.5.         Convergence and divergence properties of  serieses

                                             1.6.         Non negative term series

                                             1.7.         Test of convergence (integral, comparison, ratio and root tests)

                                             1.8.         Alternating series and alternating series test

                                             1.9.         Absolute and conditional convergence

                                           1.10.       Generalized convergence tests

Chapter 1: part II:Power Series

                                        1.2.1    Definition of power series at any  and

                                        1.2.2    Convergence and divergence, radius and interval of convergence

                                        1.2.3    Algebraic operations on convergent power series

                                        1.2.4    Differentiation and integration of power series

                                        1.2.5    Taylor series; Taylor polynomial and application

 

Chapter 2: Differential Calculus of Function of Several Variables

                                2.1.     Notations, examples, level curves and graphs

                                2.2.      Limit and continuity

                                2.3.     Partial derivatives; tangent lines, higher order partial derivatives.

                                2.4.     Directional derivatives and gradients

                                2.5.     Total differential and tangent planes

                                2.6.     Applications: tangent plane approximation of values of a function

                                2.7.     The chain rule, implicit differentiation

                                2.8.      Relative extrema of functions of two variables

                                2.9.     Largest and smallest values of a function on a given set

                              2.10.    Extreme values under constraint conditions: Lagrange’s multiplier

Chapter 3: Multiple Integrals

                                3.1.     Double integrals and their evaluation by iterated integrals

                                3.2.      Double integrals in polar coordinates

                                3.3.     Application: Area, center of mass of plane region, surface area

                                3.4.      Triple integrals in cylindrical and spherical coordinates

                                3.5.     Application: Volume, center of mass of solid region

Chapter 4: ordinary differential equations

part I: ordinary differential equations of first order

4.1.1 Definition of ODE  and  examples

4.1.2 Method of separable of variables

4.1.3 Homogenous equations

4.1.4 Exact non exact  equation s and integrating factor

     4.1.5 Linear equations

Part II: Ordinary linear differential equation of second order

       4.2.1 Definition of  SOODE

       4.2.2 Constant coefficient  SOODE

     4.2.3 Homogenous and non-homogenous  SOODE

      4.2.4 Method of solving homogenous and non-homogenous SOODE

Chapter 5: Laplace  T transformation

                            5.1        Definition  of Laplace transformation and some examples

                            5.2       Existences’ of the Laplace transformation

                            5.3       Laplace transformation of derivatives and integrals

                            5.4        Solving ODE by using Laplace transform