SAS

THE POWER TO KNOW,;

SAS’ Certified Specialist
Prep Guide

Base Programming Using

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. SAS® Certified Specialist Prep Guide: Base Programming
Using SAS® 9.4. Cary, NC: SAS Institute Inc.

SAS® Certified Specialist Prep Guide: Base Programming Using SAS® 9.4
Copyright © 2019, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-64295-179-0 (Hard copy)
ISBN 978-1-64295-176-9 (Epub)
ISBN 978-1-64295-177-6 (Mobsi)
ISBN 978-1-64295-178-3 (PDF)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
February 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Pl:certsppg

Contents

How to Prepare for the EXam vii
Accessibility Features of the Prep Guide, Xi

PART 1 SAS Certified Specialist Prep Guide 1

Chapter 1 « Setting Up Practice Data i, 3
Accessing Your Practice Data 3
Chapter 2« Basic CONCEPLS e 5
Getting Startedo 6
The Basics of the SAS Languaget i 6
SAS LADTATIES . . . o o vttt ettt e e e e e 11
Referencing SAS Files ot 13
SAS Data Setsot e 17
Chapter QUIZottt e e 22
Chapter 3+ Accessing YourData i 25
SAS LADIATIES . . . o o ettt e e et e 25
Viewing SAS Librarieso oottt e 28
Chapter QUIZottt e e e 31
Chapter 4 « Creating SAS Data Sets e 33
Referencing an External Data File i, 34
The IMPORT Procedureot e e e 35
Reading and Verifying Data. 42
Using the Imported Dataina DATA Step 44
Reading a Single SAS Data Set to Create Another. 45
Reading Microsoft Excel Data with the XLSX Engine 47
Creating Excel Worksheets i 53
Writing Observations Explicitly 54
Chapter QUIZottt e e e 55
Chapter 5 * Identifying and Correcting SAS Language Errors 59
EIror MeSSages « . . o oottt et e e e 59
Correcting Common Errors 61
Chapter QUIZottt e e e 72
Chapter 6 » Creating Reports e 75
Creating a Basic Report 76
Selecting Variables o 77
Identifying ObServationsov ittt ettt 78
Sorting Data 86
Generating Column Totals 88
Specifying Titles and Footnotes in Procedure Output 95
Assigning Descriptive Labels 100
Using Permanently Assigned Labels oo, 103

Chapter QUIZottt e e 103

iv Contents

Chapter 7 » Understanding DATA Step Processing 109
How SAS Processes Programs i 109
Compilation Phase 112
Execution Phase 115
Debugging a DATA Stepo vttt 120
Testing Your Programs o 125
Chapter QUIZottt e e e e 126
Chapter 8 « BY-Group Processing e 129
Definitions oot 129
Preprocessing Data 130
FIRST. and LAST. DATA Step Variables, 131
Chapter QUIZottt 137
Chapter 9 » Creating and Managing Variables 141
Creating Variablesot 142
Modifying Variablest 146
Specifying Lengths for Variables i i 149
Subsetting Data 151
Transposing Variables into Observations 158
Using SAS Macro Variables i 164
Chapter QUIZottt e 170
Chapter 10 - Combining SAS Data Sets 175
How to Prepare Your DataSets i i 176
Methods of Combining SAS Data Sets: The Basics 177
One-to-One Reading: Details i i 178
Concatenating: Details 182
Match-Merging: Details 184
Match-Merge Processingooui i e 188
Renaming Variables i 194
Excluding Unmatched Observationso, 196
Chapter QUIZot eeeeeeee 198
Chapter 11 » Processing Data with DO LOOPS i 207
The Basics of DO LOOPS . .« .o v et e 207
Constructing DO LoOpS . . . o oottt 212
Nesting DO Loopso oo 215
Iteratively Processing Observations fromaDataSet................. 217
Conditionally Executing DO LoOpSot v it 218
Chapter QUIZottt e 220
Chapter 12 « SAS Formats and Informats 225
Applying SAS Formats and Informats i 225
The FORMAT Procedureovu ittt e e e 229
Defininga Unique Format i 231
Associating User-Defined Formats with Variables 233
Chapter QUIZot 238
Chapter 13 - SAS Date, Time, and Datetime Values 241
SAS Dateand Time Valuest e 241
Reading Dates and Times with Informats 243
Example: Using Dates and Times in Calculations 247
Displaying Date and Time Values with Formats 248

Chapter QUIZottt e e e 251

Contents v

Chapter 14 « Using Functions to Manipulate Data 253
The Basics of SASFunctions i 254
SAS Functions Syntaxttt 255
Converting Data with Functions i 256
Manipulating SAS Date Values with Functions 263
Modifying Character Values with Functions 277
Modifying Numeric Values with Functions 300
Nesting SAS Functions vttt e 303
Chapter QUIZ oottt e e 304
Chapter 15 » Producing Descriptive Statistics 307
The MEANS Procedureot e e 307
The FREQ Procedure o e 317
Chapter QUIZottt 331
Chapter 16 « Creating Output e 335
The Output Delivery System (ODS) i 336
Creating HTML Output with ODS e 338
Creating PDF Output with ODS e 347
Creating RTF Output withODS 352
Creating EXCEL Output withODS i 354
The EXPORT Procedure e 356
Chapter QUIZ oottt 359

PART 2 Workbook 363

Chapter 17 * Practice Programming Scenariost iiiinnnnn.. 365
Scenario 1 e 366
SCenario 2 366
Scenario 3 e 367
Scenario 4 e 368
ScCenario S 368
SCenario 6 e 369
SCenario 7 370
Scenario 8 e 371
Scenario O 372
Scenario 10 e 373

PART3 Quiz Answer Keys and Scenario Solutions 375

Appendix 1 » Chapter Quiz Answer Keys e 377
Chapter 2: Basic CONCePLS . . .ot v vttt et e e ettt e 377
Chapter 3: Accessing YourData, 378
Chapter 4: Creating SASDataSetsttt 379
Chapter 5: Identifying and Correcting SAS Language Errors 380
Chapter 6: Creating Reports i 381
Chapter 7: Understanding DATA Step Processingccouuiin... 383
Chapter 8: BY-Group Processingouiinininnii e 384
Chapter 9: Creating and Managing Variables 384
Chapter 10: Combining SASData Setsttt 386

Chapter 11: Processing Data with DOLoops, 387

vi Contents
Chapter 12: SAS Formats and Informats 388
Chapter 13: SAS Date, Time, and Datetime Values 389
Chapter 14: Using Functions to Manipulate Data 390
Chapter 15: Producing Descriptive Statistics 390
Chapter 16: Creating Outputottt e 391

Appendix 2 « Programming Scenario Solutions 393
Scenario 1 394
SCENATIO 2 . o .ottt 395
SCeNAIIO 3 . . .o 396
SCENATIO 4 . . . o 398
SCeNAIo 5 . . .o e 401
SCENATIO 6 . . . ottt e 402
SCENAIIO 7 . o .ottt et 404
SCeNArio 8 405
Scenario 9 407
Scenario 10o 408

vii

How to Prepare for the Exam

Requirements and Details

Requirements

To complete examples in this book, you must have access to SAS windowing
environment, SAS Enterprise Guide, or SAS Studio.

Exam Objectives and Updates to This Book

The current exam objectives and a list of any updates to this book are available at
www.sas.com/certify. Exam objectives are subject to change.

Take a Practice Exam

Practice exams are available for purchase through SAS and Pearson VUE. For more
information about practice exams, see www.sas.com/base_programmer_cert.

Registering for the Exam

To register for the SAS 9.4 Base Programming — Performance-Based Exam, see the SAS
Global Certification website at www.sas.com/certify.

Additional Resources for Learning SAS Programming

From SAS Software

Help * SAS®™9: Select Help = SAS Help and Documentation.

* SAS Enterprise Guide: Select Help = SAS Enterprise
Guide Help.

* SAS Studio: Select the Help icon ®:

Documentation * SAS®™9: Select Help = SAS Help and Documentation.

* SAS Enterprise Guide: Access online documentation on the
web.

» SAS Studio: Select the Help icon ® and then click Help.

https://www.sas.com/en_us/certification.html
https://www.sas.com/en_us/certification/credentials/foundation-tools/base-programmer.html
https://www.sas.com/en_us/certification.html

How to Prepare for the Exam

On the Web

Base SAS Glossary
Bookstore
Certification
Communities
Knowledge Base

Learning Center

SAS Documentation

SAS Global Academic Program

SAS OnDemand

Syntax Quick Reference Guide

Training

Technical Support

support.sas.com/baseglossary

www.sas.com/books

www.sas.com/certify

communities.sas.com

support.sas.com/notes

www.sas.com and click Learn. Then select
Get Started with SAS.

support.sas.com/documentation

documentation.sas.com

www.sas.com and click Learn. Then select
For Students and Educators.

support.sas.com/ondemand/

support.sas.com/content/dam/SAS/support/en/

books/data/base-syntax-ref.pdf

WWWw.sas.com/training

support.sas.com. Then select Technical
Support.

Syntax Conventions

In this book, SAS syntax looks like this example:

DATA output-SAS-data-set

(DROP=variables(s) | KEEP=variables(s));,

SET SAS-data-set <options>;

BY variable(s),
RUN;

Here are the conventions that are used in the example:

+ DATA, DROP=, KEEP=, SET, BY, and RUN are in uppercase bold because they

must be spelled as shown.

* output-SAS-data-set, variable(s), SAS-data-set, and options are in italics because

each represents a value that you supply.

» <options> is enclosed in angle brackets because it is optional syntax.

http://support.sas.com/baseglossary
http://www.sas.com/sas/books.html
http://www.sas.com/certify
http://communities.sas.com
http://support.sas.com/notes/index.html
http://www.sas.com
http://support.sas.com/documentation/
http://documentation.sas.com
http://www.sas.com/en_us/learn.html
http://support.sas.com/ondemand/
http://support.sas.com/content/dam/SAS/support/en/books/data/base-syntax-ref.pdf
http://support.sas.com/content/dam/SAS/support/en/books/data/base-syntax-ref.pdf
http://www.sas.com/training
http://support.sas.com/en/technical-support.html

Syntax Conventions ix

* DROP=and KEEP= are separated by a vertical bar (|) to indicate that they are
mutually exclusive.

The example syntax that is shown in this book includes only what you need to know in

order to prepare for the certification exam. For complete syntax, see the appropriate SAS

reference guide.

X How to Prepare for the Exam

Xi

Accessibility Features of the
Prep Guide

Overview

The SAS Certified Specialist Prep Guide: Base Programming Using SAS 9.4 is a test
preparation document that uses the following environments and products:

* SAS windowing environment
* SAS Enterprise Guide
* SAS Studio or SAS University Edition

Accessibility Documentation Help

The following table contains accessibility information for the listed products:

Accessibility Documentation Links

Where to Find Accessibility
Product or Environment Documentation

Base SAS (Microsoft Windows, UNIX, and support.sas.com/baseaccess

z/0S)

SAS Enterprise Guide support.sas.com/documentation/onlinedoc/
guide/index.html

SAS Studio support.sas.com/studioaccess

Documentation Format

Contact accessibility@sas.com if you need this document in an alternative digital
format.

http://support.sas.com/baseaccess
http://support.sas.com/documentation/onlinedoc/guide/index.html
http://support.sas.com/documentation/onlinedoc/guide/index.html
http://support.sas.com/studioaccess

xii Accessibility Features of the Prep Guide

Part 1

SAS Certified Specialist Prep
Guide

Chapter 1

Setting Up PracticeData 3
Chapter 2

Basic Concepts 5
Chapter 3

Accessing YourData 25
Chapter 4

Creating SAS Data Sets 33
Chapter 5

Identifying and Correcting SAS Language Errors 59
Chapter 6

Creating Reports 75
Chapter 7

Understanding DATA Step Processing 109
Chapter 8

BY-Group Processing 129
Chapter 9

Creating and Managing Variables 141
Chapter 10

Combining SAS Data Sets 175
Chapter 11

Processing Data withDO LooOpsSccccvvunnn.. 207
Chapter 12

SAS Formats and Informats 225

Chapter 13

SAS Date, Time, and Datetime Values 241
Chapter 14

Using Functions to Manipulate Data 253
Chapter 15

Producing Descriptive Statistics

Chapter 16
Creating Output 335

Chapter 1

Setting Up Practice Data

Accessing Your Practice Data 3
Requirementst e 3
Practice Data ZIP File i e 3
INStIUCHIONS . . . vttt e e 3

Accessing Your Practice Data

Requirements
To complete examples in this book, you must have access to SAS Studio, SAS
Enterprise Guide, or the SAS windowing environment.

Practice Data ZIP File
The ZIP file includes SAS data sets, Microsoft Excel workbooks (.x1sx), CSV files
(-csv), and TXT files (.txt) that are used in examples in this book. To access these files
and create your practice data, follow the instructions below.

Instructions

1. Navigate to support.sas.com/content/dam/SAS/support/en/books/data/base-guide-
practice-data.zip, download and save the practice data ZIP file.

2. Unzip the file and save it to a location that is accessible to SAS.
3. Open the cre8data. sas program in the SAS environment of your choice.

* SAS Studio: In the Navigation pane, expand Files and Folders and then navigate
to the Cert folder within the practice-data folder.

* SAS Enterprise Guide: In the Servers list, expand Servers = Local = Files, and
then navigate to the Cert folder in the practice-data folder.

* SAS windowing environment: Click File = Open Program, and then navigate
to the Cert folder in the practice-data folder.

4. In the Path macro variable, replace /folders/myfolders with the path to the
Cert folder and run the program.

%$let path=/folders/myfolders/cert;

http://support.sas.com/content/dam/SAS/support/en/books/data/base-guide-practice-data.zip
http://support.sas.com/content/dam/SAS/support/en/books/data/base-guide-practice-data.zip

4 Chapter1 - Setting Up Practice Data

Important: The location that you specify for the Path macro variable and the
location of your downloaded SAS programs should be the same location.
Otherwise, the cre8data. sas program cannot create the practice data.

Your practice data is now created and ready for you to use.

When you end your SAS session, the Path macro variable in the
cre8data.sas program is reset. To avoid having to rerun cre8data. sas every
time, run the 1ibname. sas program from the Cert folder to restore the libraries.

Chapter 2

Basic Concepts

Getting Started 6
The Basics of the SAS Language it .. 6
SAS Statementso 6
Global Statementsttt e 6
DA T A St . o ettt e e 6
PROC S oD . o oot 7
SAS Program StruCtureottt e e 7
Processing SAS Programsouit it e 8
L0g MSSageS . . vt ottt et 9
Results 0f Processingottt et e 9
SAS Libraries 11
Definitiono 11
Predefined SAS Librarieso ot 11
Defining Librariesot 11
How SAS Files Are Stored ot e 12
Storing Files Temporarily or Permanently 12
Referencing SAS Files 13
Referencing Permanent SAS DataSets.............. 13
Referencing Temporary SASFiles 13
Rules for SASNamMeso ov ittt e e e 14
VALIDVARNAME=System Optionottt 14
VALIDMEMNAME=System Optionouutiririnininnanenennn. 16
When to Use VALIDMEMNAME=System Option 17
SASData Sets 17
Overview of Data Setso 17
Descriptor Portionot e 17
SAS Variable Atributesot 18
Data POrtiont 20
SAS INACXES . . vttt 21
Extended Attributes e 21

Chapter QUIZ 22

6 Chapter2 - Basic Concepts

Getting Started

In the SAS 9.4 Base Programming — Performance-Based exam, you are not tested on the
details of running SAS software in the various environments. However, you might find
such information useful when working with the practice data.

You can access a brief overview of the windows and menus in the SAS windowing
environment, SAS Enterprise Guide, and SAS Studio at http://video.sas.com/. From
Categories select How To Tutorials = Programming. Select the video for your SAS
environment. Other tutorials are available from the SAS website.

The Basics of the SAS Language

SAS Statements

A SAS statement is a type of SAS language element that is used to perform a particular
operation in a SAS program or to provide information to a SAS program. SAS
statements are free-format. This means that they can begin and end anywhere on a line,
that one statement can continue over several lines, and that several statements can be on
the same line. Blank or special characters separate words in a SAS statement.

You can specify SAS statements in uppercase or lowercase. In most situations,
text that is enclosed in quotation marks is case sensitive.

Here are two important rules for writing SAS programs:
» A SAS statement ends with a semicolon.

» A statement usually begins with a SAS keyword.
There are two types of SAS statements:

» statements that are used in DATA and PROC steps

+ statements that are global in scope and can be used anywhere in a SAS program

Global Statements

DATA Step

Global statements are used anywhere in a SAS program and stay in effect until changed
or canceled, or until the SAS session ends. Here are some common global statements:
TITLE, LIBNAME, OPTIONS, and FOOTNOTE.

The DATA step creates or modifies data. Input for a DATA can include raw data or a
SAS data set. Output from a DATA step can include a SAS data set or a report. A SAS
data set is a data file that is formatted in a way that SAS can understand.

For example, you can use DATA steps to do the following:
* put your data into a SAS data set

* compute values

https://video.sas.com//#category/videos/programming

PROC Step

The Basics of the SAS Language 7

check for and correct errors in your data

produce new SAS data sets by subsetting, supersetting, merging, and updating
existing data sets

The PROC step analyzes data, produces output, or manages SAS files. The input for a
PROC (procedure) step is usually a SAS data set. Output from a PROC step can include
a report or an updated SAS data set.

For example, you can use PROC steps to do the following:

create a report that lists the data
analyze data
create a summary report

produce plots and charts

SAS Program Structure

A SAS program consists of a sequence of steps. A program can be any combination of
DATA or PROC steps. A step is a sequence of SAS statements.

Here is an example of a simple SAS program.

Example Code 1 A Simple SAS Program

titlel 'June Billing'; /**/
data work.junefee; /B /

set cert.admitjune;

where age>39;
run; /R /
proc print data=work.junefee; /*m*/
run;

The TITLE statement is a global statement. Global statements are typically outside
steps and do not require a RUN statement.

The DATA step creates a new SAS data set named Work.JuneFee. The SET
statement reads in the data from Cert. AdmitJune. The new data set contains only
those observations whose value for Age is greater than 39.

If a RUN or QUIT statement is not used at the end of a step, SAS assumes that the
beginning of a new step implies the end of the previous step. If a RUN or QUIT
statement is not used at the end of the last step in a program, SAS Studio and SAS
Enterprise Guide automatically submit a RUN and QUIT statement after the
submitted code.

The PROC PRINT step prints a listing of the new SAS data set. A PROC step begins
with a PROC statement, which begins with the keyword PROC.

8 Chapter 2 - Basic Concepts

Output 2.1 PRINT Procedure Output

June Billing
Obs | ID Name Sex Age Date Height Weight | ActlLevel Fee
1| 2575 Quigley, M F 40 | 06/06/10 69 163 | HIGH 124 80
2| 2589 Wilcox, E F 41 061710 67 141 | HIGH 149.75
3| 2523 Johnson, R F 43 061710 63 137 MOD 149.75
4| 2584 Takahashi, ¥ F 43 | 061810 65 123 MOD 12480
5 2571 Munnelly, A F 44 1 06/19/10 66 140 | HIGH 149.75
6 2578 Cameron,L M 47 | 06720110 72 173 MOD 12480
7| 2568 Eberhardt, 5 F 49 | 06/2110 64 172 LOW 12480
82539 LaMance, Kk M 51 06722110 7 158 LOW 124 80
92595 Warren, C i 54 061510 Ik 183 MOD 149.75
10 | 2579 Underwood, K| M 60 06/11/10 71 191 LOW 149.75

Processing SAS Programs

When a SAS program is submitted for execution, SAS first validates the syntax and then
compiles the statements. DATA and PROC statements signal the beginning of a new
step. The beginning of a new step also implies the end of the previous step. At a step
boundary, SAS executes any statement that has not been previously executed and ends
the step.

Example Code 2 Processing SAS Programs

data work.admit2; /R /
set cert.admit;
where age>39;

proc print data=work.admit2; /B /
run; VA 3

1 The DATA step creates a new SAS data set named Work.Admit2 by reading
Cert.Admit. The DATA statement is the beginning of the new step. The SET
statement is used to read data. The WHERE statement conditionally reads only the
observations where the value of the variable Age is greater than 39.

2 The PROC PRINT step prints the new SAS data set named Work.Admit2. The
PROC PRINT statement serves as a step boundary in this example because a RUN
statement was not used at the end of the DATA step. The PROC step also implies the
end of the DATA step.

3 The RUN statement ends the PROC step.

The RUN statement is not required between steps in a SAS program. However, it
is a best practice to use a RUN statement because it can make the SAS program
easier to read and the SAS log easier to understand when debugging.

The Basics of the SAS Language 9

Log Messages

The SAS log collects messages about the processing of SAS programs and about any
errors that occur. Each time a step is executed, SAS generates a log of the processing
activities and the results of the processing.

When SAS processes the sample program, it produces the log messages shown below.
Notice that you get separate sets of messages for each step in the program.

Log 2.1 SAS Log Messages for Each Program Step

data work.admit2;
set cert.admit;
where age>39;
run;

NOTE: There were 10 observations read from the data set CERT.ADMIT.
WHERE age>39;

NOTE: The data set WORK.ADMIT2 has 10 observations and 9 variables.

NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds
9 proc print data=work.admit2;
NOTE: Writing HTML Body file: sashtml.htm
10 run;

NOTE: There were 10 observations read from the data set WORK.ADMIT2.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.35 seconds

cpu time 0.24 seconds

Results of Processing

The DATA Step

Suppose you submit the sample program below:

data work.admit2;
set cert.admit;
where age>39;

run;

When the program is processed, it creates a new SAS data set, Work.Admit2, containing
only those observations with age values greater than 39. The DATA step creates a new
data set and produces messages in the SAS log, but it does not create a report or other
output.

The PROC Step
If you add a PROC PRINT step to this same example, the program produces the same
new data set as before, but it also creates the following report:

data work.admit2;
set cert.admit;
where age>39;

run;

10 Chapter 2

Basic Concepts

proc print data=work.admit2;

run;

Figure 2.1 PRINT Procedure Output

The SAS System

Obs | ID Name Sex Age Date Height Weight ActlLevel Fee
1 2523 | Johnson, R F 43 kY| 63 137 MOD 149.75
2 2539 LaMance, K M 51 4 71 158 LOW 124.80
3 | 2568 | Eberhardt, 5 F 49 27 64 172 LOW 124.80
4 2571 | Nunnelly, A F 44 19 66 140 HIGH 149.75
5 2575 | Quigley, M F 40 8 69 163 HIGH 124.80
6 2578 | Cameron, L M 47 b T2 173 MOD 124.80
7 2579 Underwood, K M &0 22 71 191 LOW 149.75
8 2584 | Takahashi, ¥ F 43 29 65 123 MOD 124.80
9 2589 Wilcox, E F 41 16 67 141 HIGH 149.75

10 | 2595 Warren, C M 54 T 71 183 MOD 149.75

Other Procedures
SAS programs often invoke procedures that create output in the form of a report, as is
the case with the FREQ procedure:

proc freq data=sashelp.cars;
table origin*DriveTrain;

run;

Figure 2.2 FREQ Procedure Output

The FREQ Procedure

Frequency Table of Origin by DriveTrain

Eﬁfﬁeﬁgt DriveTrain

Col Pct Origin All | Front | Rear | Total
Asia 34 99 25 158

794 2313 584 3692
2152 bB2.66 1582
3696 4381 2273

Europe 36 T 50 123
341 864 1168 2874

2927 3008 4065

39.13 | 16.37 | 4545

USA 22 a0 35 147
514 2103 818 3435

14.97 B61.22 23.81

2391 3882 | 3182

Total 92 226 110 428
2150 5280 2570 100.00

Other SAS programs perform tasks such as sorting and managing data, which have no
visible results except for messages in the log. (All SAS programs produce log messages,
but some SAS programs produce only log messages.)

proc sort data=cert.admit;
by sex;

run;

SAS Libraries 11

Log 2.2 SAS Log: COPY Procedure Output

11 proc sort data=cert.admit;
12 by sex;
13 run;

NOTE: There were 21 observations read from the data set

CERT.ADMIT.
NOTE: The data set CERT.ADMIT has 21 observations and 9
variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds

SAS Libraries

Definition

A SAS library contains one or more files that are defined, recognized, and accessible by
SAS, and that are referenced and stored as a unit. One special type of file is called a
catalog. In SAS libraries, catalogs function much like subfolders for grouping other
members.

Predefined SAS Libraries

By default, SAS defines several libraries for you:

Sashelp
a permanent library that contains sample data and other files that control how SAS
works at your site. This is a Read-Only library.

Sasuser
a permanent library that contains SAS files in the Profile catalog and that stores your
personal settings. This is also a convenient place to store your own files.

Work
a temporary library for files that do not need to be saved from session to session.

You can also define additional libraries. When you define a library, you indicate the
location of your SAS files to SAS. After you define a library, you can manage SAS files
within it.

Note: If you are using SAS Studio, you might encounter the Webwork library. Webwork

is the default output library in interactive mode. For more information about the
Webwork library, see SAS Studio: User's Guide.

Defining Libraries

To define a library, you assign a library name to it and specify the location of the files,
such as a directory path.

You can also specify an engine, which is a set of internal instructions that SAS uses for
writing to and reading from files in a library.

12 Chapter 2 - Basic Concepts

You can define SAS libraries using programming statements. For information about how
to write LIBNAME statements to define SAS libraries, see Assigning Librefs on page
25.

Depending on your operating environment and the SAS/ACCESS products that
you license, you can create libraries with various engines. Each engine enables you
to read a different file format, including file formats from other software vendors.

When you delete a SAS library, the pointer to the library is deleted, and SAS no longer
has access to the library. However, the contents of the library still exist in your operating
environment.

How SAS Files Are Stored

A SAS library is the highest level of organization for information within SAS.

For example, in the Windows and UNIX environments, a library is typically a group of
SAS files in the same folder or directory.

The table below summarizes the implementation of SAS libraries in various operating
environments.

Table 2.1 Environments and SAS Libraries

Environment Library Definition

Windows, UNIX a group of SAS files that are stored in the
same directory. Other files can be stored in the
directory, but only the files that have SAS file
extensions are recognized as part of the SAS
library.

z/OS a specially formatted host data set in which
only SAS files are stored.

Storing Files Temporarily or Permanently

Depending on the library name that you use when you create a file, you can store SAS
files temporarily or permanently.

Table 2.2 Temporary and Permanent SAS Libraries

Temporary SAS libraries last only for the If you do not specify a library name when you

current SAS session. create a file, the file is stored in the temporary
SAS library, Work. If you specify the library
name Work, then the file is stored in the
temporary SAS library. When you end the
session, the temporary library and all of its
files are deleted.

Referencing SAS Files 13

Permanent SAS libraries are available to you To store files permanently in a SAS library,
during subsequent SAS sessions. specify a library name other than the default
library name Work.

In the example, when you specify the library
name Cert when you create a file, you are
specifying that the file is to be stored in a
permanent SAS library.

Referencing SAS Files

Referencing Permanent SAS Data Sets

To reference a permanent SAS data set in your SAS programs, use a two-level name
consisting of the library name and the data set name:

libref.dataset
In the two-level name, /ibref'is the name of the SAS library that contains the data set,

and data set is the name of the SAS data set. A period separates the libref and data
set name.

Figure 2.3 Two-Level Permanent SAS Name

library name
(liref)
Contents of Cert
dataset -1 Admit m Profile
(dataseat)

[|§CinEls (i Profile2
Finanr_:e Records
Insure Strtest

data work|. admilt2; @ Therapy
set cert.admit; stiew
welght=round(weight};

run;

Referencing Temporary SAS Files

To reference temporary SAS files, you can specify the default libref Work, a period, and
the data set name. For example, the two-level name, Work.Test, references the SAS data
set named Test that is stored in the temporary SAS library Work.

14 Chapter 2 - Basic Concepts

Figure 2.4 Two-Level Temporary SAS Library Name

LIBREF. FILENAME
Temparary l l

SAS File
Work. Test

Alternatively, you can use a one-level name (the data set name only) to reference a file in
a temporary SAS library. When you specify a one-level name, the default libref Work is
assumed. For example, the one-level name Test references the SAS data set named Test
that is stored in the temporary SAS library Work.

Figure 2.5 One-Level Temporary SAS Library Name

FILENAME
Temporary SAS File,
One-Level Name
Test

Rules for SAS Names
By default, the following rules apply to the names of SAS data sets, variables, and
libraries:

* They must begin with a letter (A-Z, either uppercase or lowercase) or an underscore

Q.
» They can continue with any combination of numbers, letters, or underscores.
* They can be 1 to 32 characters long.
* SAS library names (librefs) can be 1 to 8 characters long.
These are examples of valid data set names and variable names:
» Payroll
+ LABDATA2015 2018

» EstimatedTaxPayments3

VALIDVARNAME=System Option

SAS has various rules for variable names. You set these rules using the
VALIDVARNAME-= system option. VALIDVARNAME specifies the rules for valid
SAS variable names that can be created and processed during a SAS session.

Referencing SAS Files 15

Syntax, VALIDVARNAME=

VALIDVARNAME= V7\UPCASE|ANY

V7 specifies that variable names must follow these rules:
* SAS variable names can be up to 32 characters long.

» The first character must begin with a letter of the Latin alphabet (A - Z, either uppercase or
lowercase) or an underscore (_). Subsequent characters can be letters of the Latin alphabet,
numerals, or underscores.

* Trailing blanks are ignored. The variable name alignment is left-justified.
* A variable name cannot contain blanks or special characters except for an underscore.

* A variable name can contain mixed-case letters. SAS stores and writes the variable name in
the same case that is used in the first reference to the variable. However, when SAS
processes a variable name, SAS internally converts it to uppercase. Therefore, you cannot
use the same variable name with a different combination of uppercase and lowercase letters
to represent different variables. For example, cat, Cat, and CAT all represent the same
variable.

* Do not assign variables the names of special SAS automatic variables (suchas N_and
_ERROR) or variable list names (such as NUMERIC , CHARACTER ,and ALL)to
variables.

UPCASE specifies that the variable name follows the same rules as V7, except that the variable
name is uppercase, as in earlier versions of SAS.

ANY specifies that SAS variable names must follow these rules:

» The name can begin with or contain any characters, including blanks, national characters,
special characters, and multi-byte characters.

* The name can be up to 32 bytes long.

* The name cannot contain any null bytes.

* Leading blanks are preserved, but trailing blanks are ignored.

* The name must contain at least one character. A name with all blanks is not permitted.

* A variable name can contain mixed-case letters. SAS stores and writes the variable name in
the same case that is used in the first reference to the variable. However, when SAS
processes a variable name, SAS internally converts it to uppercase. Therefore, you cannot
use the same variable name with a different combination of uppercase and lowercase letters
to represent different variables. For example, cat, Cat, and CAT all represent the same
variable.

Note: If you use characters other than the ones that are valid when
VALIDVARNAME=V7, then you must express the variable name as a name literal
and set VALIDVARNAME=ANY. If the name includes either a percent sign (%) or
an ampersand (&), then use single quotation marks in the name literal to avoid
interaction with the SAS macro facility.

CAUTION:
Throughout SAS, using the name literal syntax with SAS member names that
exceed the 32-byte limit or have excessive embedded quotation marks might
cause unexpected results. The VALIDVARNAME=ANY system option enables
compatibility with other DBMS variable (column) naming conventions, such as
allowing embedded blanks and national characters.

16 Chapter 2 -+ Basic Concepts

VALIDMEMNAME=System Option

You can use the VALIDMEMNAME-= system option to specify rules for naming SAS
data sets.

Syntax, VALIDMEMNAME=
VALIDMEMNAME= COMPATIBLE | EXTEND
Important: COMPATIBLE is the default system option for VALIDMEMNAME-=.

COMPATIBLE specifies that a SAS data set name must follow these rules:

The length of the names can be up to 32 characters long.

Names must begin with a letter of the Latin alphabet (A- Z, a - z) or an underscore.
Subsequent characters can be letters of the Latin alphabet, numerals, or underscores.

Names cannot contain blanks or special characters except for an underscore

Names can contain mixed-case letters. SAS internally converts the member name to
uppercase. Therefore, you cannot use the same member name with a different combination
of uppercase and lowercase letters to represent different variables. For example,
customer, Customer, and CUSTOMER all represent the same member name. How the
name is saved on disk is determined by the operating environment.

EXTEND specifies that the data set name must follow these rules:

Names can include national characters.

The name can include special characters, except for the /\ * ? " <> |: - characters.
The name must contain at least one character.

The length of the name can be up to 32 bytes.

Null bytes are not allowed.

Names cannot begin with a blank or a *.” (period).

Leading and trailing blanks are deleted when the member is created.

Names can contain mixed-case letters. SAS internally converts the member name to
uppercase. Therefore, you cannot use the same member name with a different combination
of uppercase and lowercase letters to represent different variables. For example,
customer, Customer, and CUSTOMER all represent the same member name. How the
name appears is determined by the operating environment.

Note: If VALIDMEMNAME=EXTEND, SAS data set names must be written as a SAS

name literal. If you use either a percent sign (%) or an ampersand (&), then you must
use single quotation marks in the name literal in order to avoid interaction with the
SAS macro facility.

CAUTION:

Throughout SAS, using the name literal syntax with SAS member names that
exceed the 32-byte limit or that have excessive embedded quotation marks
might cause unexpected results. The intent of the VALIDMEMNAME=EXTEND
system option is to enable compatibility with other DBMS member naming
conventions, such as allowing embedded blanks and national characters.

SAS Data Sets 17

When to Use VALIDMEMNAME=System Option

Use VALIDMEMNAME= EXTEND system option when the characters in a SAS data
set name contain one of the following:

* international characters
» characters supported by third-party databases

» characters that are commonly used in a filename

SAS Data Sets

Overview of Data Sets

A SAS data set is a file that consists of two parts: a descriptor portion and a data portion.
Sometimes a SAS data set also points to one or more indexes, which enable SAS to
locate rows in the data set more efficiently. (The data sets that are shown in this chapter
do not contain indexes.) Extended attributes are user-defined attributes that further
define a SAS data set.

Figure 2.6 Parts of a SAS Data Set

descriptor portion{ data set properties
variable properties

variables (column)

data portion observations (row) —

——
}

indexes

extended

Al

attributes

Descriptor Portion

The descriptor portion of a SAS data set contains information about the data set,
including the following:

« the name of the data set
» the date and time that the data set was created
* the number of observations

e the number of variables

18 Chapter 2

Basic Concepts

The table below lists part of the descriptor portion of the data set Cert.Insure, which
contains insurance information for patients who are admitted to a wellness clinic.

Table 2.3 Descriptor Portion of Attributes in a SAS Data Set

Data Set Name: CERT.INSURE
Member Type: DATA

Engine: V9

Created: 07/03/2018 10:53:05
Observations: 21

Variables: 7

Indexes: 0

Observation Length: 64

SAS Variable Attributes

The descriptor portion of a SAS data set contains information about the properties of
each variable in the data set. The properties information includes the variable's name,
type, length, format, informat, and label.

When you write SAS programs, it is important to understand the attributes of the
variables that you use. For example, you might need to combine SAS data sets that
contain same-named variables. In this case, the variables must be the same type
(character or numeric). If the same-named variables are both character variables, you
still need to check that the variable lengths are the same. Otherwise, some values might
be truncated.

The following table uses Cert.Insure data and the VALIDVARNAME=ANY system
option. The SAS variable has several attributes that are listed here:

Table 2.4 \Variable Attributes

Variable Attribute

Name

Definition Example Possible Values
identifies a variable. A Policy Any valid SAS name.
variable name must

. Total
conform to SAS naming
rules. Name

See “Rules for SAS Names”
for SAS names rules.

Variable Attribute

Type

Length

Format

Informat

Label

Definition

identifies a variable as
numeric or character.
Character variables can
contain any values.
Numeric variables can
contain only numeric values
(the numerals 0 through 9,
+, -, ., and E for scientific
notation).

refers to the number of
bytes used to store each of
the variable's values in a
SAS data set. Character
variables can be up to
32,767 bytes long. All
numeric variables have a
default length of 8 bytes.
Numeric values are stored
as floating-point numbers in
8 bytes of storage.

affects how data values are
written. Formats do not
change the stored value in
any way; they merely
control how that value is
displayed. SAS offers a
variety of character,
numeric, and date and time
formats.

reads data values in certain
forms into standard SAS
values. Informats determine
how data values are read
into a SAS data set. You
must use informats to read
numeric values that contain
letters or other special
characters.

refers to a descriptive label
up to 256 characters long. A
variable label, which can be
printed by some SAS
procedures, is useful in
report writing.

Example

Char
Num

Char

14

$98.64

99

Policy Number
Total Balance

Patient Name

The following output is the descriptor portion of Cert.Insure.

SAS Data Sets 19

Possible Values

Numeric and character

2 to 8 bytes

1 to 32,767 bytes for
character

Any SAS format

If no format is specified, the
default format is BEST12.
for a numeric variable, and
$w. for a character
variable.

Any SAS informat

The default informat for
numeric is w. d and for
character is $w.

Up to 256 characters

20 Chapter2 -

Data Portion

Basic Concepts

Output 2.2 Descriptor Portion

of Cert.Insure

Alphabetic List of Variables and Attributes

Label

Patient Name

Policy Number

Variable Type Len Format Informat

7 | BalanceDue | Num g 6.2

4 | Company Char 11

1/1D Char 4

2 Mame Char 14

3 | Pctlnsured | Num 8

3 | Policy Char 5

6 | Total MNum 3 DOLLARS.2 | COMMAAI0. Total Balance

Data Portion Overview

The data portion of a SAS data set is a collection of data values that are arranged in a
rectangular table. In the example below, the company MUTUALITY is a data value,

Policy 32668 is a data value,

Figure 2.7 Parts of a SAS Data Set: Data Portion

D Patient Name
2458 | Murray, W
2462 | Almers, C
2501 | Bonaventure, T

2523 Johnson, R

Policy Number | Company

32668 MUTUALITY
95824 RELIABLE
87795 A&R

39022 ACME

Observations (Rows)

and so on.

Pctinsured | Total Balance | BalanceDue

100 95.64
a0 780.23
80 47.38
50 122.07

0.00
156.05
9.48
61.04

Observations (also called rows) in the data set are collections of data values that usually
relate to a single object. The values 2458, Murray W, 32668, MUTALITY, 100,
98.64, and 0.00 are comprised in a single observation in the data set shown below.

Figure 2.8 Parts of a SAS Data Set: Observations

1D Patient Name Policy Number | Company

Pctinsured | Total Balance | BalanceDue

Observation | 2458 Murray, W 32668 MUTUALITY 100 95.64 0.00
2462 | Almers, C 95824 RELIABLE a0 780.23 166.05
2501 | Bonaventure, T 87795 A&R 80 47.38 9.48
2523 | Johnson, R 39022 ACME 50 122.07 61.04

This data set has 21 observations, each containing information about an individual. To
view the full descriptor portion of this data set, see Table 2.3 on page 18. A SAS data set
can store any number of observations.

SAS Data Sets 21

Variables (Columns)

Variables (also called columns) in the data set are collections of values that describe a
particular characteristic. The values 2458, 2462, 2501, and 2523 are comprised in the
variable ID in the data set shown below.

Figure 2.9 Parts of a SAS Data Set: Variables

Variables
ID

2458
2462
2501
2523

Patient Name
Murray, W
Almers, C

Bonaventure, T

Johnson, R

Figure 2.10 Parts of a

Policy Number | Company Pctinsured | Total Balance BalanceDue

32663 MUTUALITY 100 95.64 0.00
95524 RELIABLE a0 780.23 156.05
87795 A&R 80 47.38 9.48
39022 ACME 50 122.07 61.04

This data set contains seven variables: ID, Name, Policy, Company, Pctlnsured, Total,
and BalanceDue. A SAS data set can store thousands of variables.

Missing Values

Every variable and observation in a SAS data set must have a value. If a data value is
unknown for a particular observation, a missing value is recorded in the SAS data set. A
period (.) is the default value for a missing numeric value, and a blank space is the
default value for a missing character value.

SAS Data Set: Missing Data Values

D Patient Name Policy Number | Company Pctinsured | Total Balance BalanceDue
2458 | Murray, W 32668 MUTUALITY 100 98.64 0.00
2462 Almers, C 95824 RELIABLE 80 780.23 156.05
2501 | Bonaventure, T 87795 AER 47.38 9.48
2523 | Johnson, R 39022 ACME 50 122.07 61.04
Missing Value
SAS Indexes
An index is a separate file that you can create for a SAS data file in order to provide
direct access to a specific observation. The index file has the same name as its data file
and a member type of INDEX. Indexes can provide faster access to specific
observations, particularly when you have a large data set. The purpose of SAS indexes is
to optimize WHERE expressions and to facilitate BY-group processing. For more
information, see “Specifying WHERE Expressions” and see Chapter 8, “BY-Group
Processing,”.
Extended Attributes

Extended attributes are user-defined metadata that is defined for a data set or for a
variable (column). Extended attributes are represented as name-value pairs.

22 Chapter2 - Basic Concepts

You can use PROC CONTENTS to display data set and variable extended
attributes.

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. How many observations and variables does the data set below contain?

Name | Sex Age
Picker M 32
Fletcher 28
Romano F

Chai M 42

a. 3 observations, 4 variables
b. 3 observations, 3 variables
c. 4 observations, 3 variables
d. cannot tell because some values are missing
2. How many program steps are executed when the program below is processed?

data user.tables;
set work.jobs;run;

proc sort data=user.tables;
by name; run;

proc print data=user.tables;

run;

a. three
b. four
c. five
d. six

3. What type of variable is the variable AcctNum in the data set below?

AcctNum | Gender

3456 1 M
2451 2
Romano | F
Choi M
a. numeric

b. character
c. can be either character or numeric

d. cannot tell from the data shown

Chapter Quiz 23

. What type of variable is the variable Wear based on the justification of the text in the
data set below?

Brand | Wear

Acme 43

Ajax 34

Atlas

a. numeric

b. character

¢. can be either character or numeric
d. cannot tell from the data shown

. With the system option VALIDVARNAME=ANY, which of the following variable
names is valid?

a. 4BirthDate

b. $Cost

c. Tax-Rate

d. all of the above

. Which of the following files is a permanent SAS file?
a. Work.PrdSale

b. Cert.MySales

c. Certxl.Quarterl

d. bandconly

e. a,b,andc

. In a DATA step, how can you reference a temporary SAS data set named Forecast?
a. Forecast

b. Work.Forecast

c. Sales.Forecast (after assigning the libref Sales)

d. aandb only

. What is the default length for the numeric variable Balance?

Name Balance

Adams 106.73

Geller 107.89
Martinez 97.45
Noble 182.50
5
b. 6
c. 7

24 Chapter 2 - Basic Concepts

9. How many statements does the following SAS program contain?

proc print data=cert.admit label double;
var ID Name Sex Age; where Sex=F;
label Sex='Gender'; run;

a. three
b. four
c. five
d. six

10. What is a SAS library?
a. acollection of SAS files, such as SAS data sets and catalogs
b. in some operating environments, a physical collection of SAS files

c. agroup of SAS files in the same folder or directory
d. all of the above

25

Chapter 3
Accessing Your Data

SAS Libraries 25
Assigning Librefs 25
Verifying Librefs o e 27
How Long Librefs Remainin Effect.................................... 27
Specifying Two-Level Namesot 27
Referencing Third-Party Data 27
Accessing Stored Data e 28

Viewing SAS Libraries 28
Viewing Librariesot 28
Viewing Libraries Using PROC CONTENTS 28
Example: View the Contents of an Entire Library 29
Example: View Descriptor Information 29
Example: View Descriptor Information Using the Varnum Option 31

Chapter QUIZ 31

SAS Libraries

A SAS library is a collection of one or more SAS files, including SAS data sets, that are
referenced and stored as a unit. In a directory-based operating environment, a SAS
library is a group of SAS files that are stored in the same directory. In z/OS, a SAS
library is a group of SAS files that are stored in an operating environment file.

Assigning Librefs

Often the first step in setting up your SAS session is to define the libraries. You can use
programming statements to assign library names.

To reference a permanent SAS file:
1. Assign a name (/ibref) to the SAS library in which the file is stored.

2. Use the libref as the first part of the two-level name (libref.filename) to reference the
file within the library.

26 Chapter 3

Accessing Your Data

Figure 3.1 Defining Libraries

This example shows the two- LIBREF.FILENAME
level name for a SAS data set,

Admit, which is stored in a l
SAS library to which the libref

Cert has been assigned. Cert . Admit

library name
(libref)

Contents of 'Cert'

file name
{filename)

L] Admit i Profile
[|j CEnEIS | Profile2

Zl Records

Vsview

A logical name (libref) can be assigned to a SAS library using the LIBNAME statement.
You can include the LIBNAME statement with any SAS program so that the SAS library
is assigned each time the program is submitted. Using the user interface, you can set up
LIBNAME statements to be automatically assigned when SAS starts.

Syntax, LIBNAME statement:
LIBNAME libref engine 'SAS-data-library";

» libref'is 1 to 8 characters long, begins with a letter or underscore, and contains only letters,
numbers, or underscores.

* engine is the name of a library engine that is supported in your operating environment.
Note: For SAS®9, the default engine is V9, which works in all operating environments.

» SAS-data-library is the name of a SAS library in which SAS data files are stored. The
specification of the physical name of the library differs by operating environment.

The LIBNAME statement below assigns the libref Cert to the SAS library C: \Users
\Studentl\Cert in the Windows environment. When the default engine is used, you
do not have to specify it in the LIBNAME statement.

libname cert 'C:\Users\Studentl\Cert';

The table below gives examples of physical names for SAS libraries in various operating
environments.

Verifying Librefs

SAS Libraries 27

Table 3.1 Sample Physical Names for SAS Libraries

Environment Sample Physical Name
Windows c:\fitness\data

UNIX /users/april/fitness/sasdata
z/OS) april.fitness.sasdata

You can use multiple LIBNAME statements to assign as many librefs as needed.

After assigning a libref, it is a good idea to check the log to verify that the libref has
been assigned successfully.

Log 3.1 Output for Cert Libref

1 libname cert 'C:\Users\Studentl\Cert';
NOTE: Libref CERT was successfully assigned as follows:
Engine: v9

Physical Name: C:\Users\Studentl\Cert

How Long Librefs Remain in Effect

The LIBNAME statement is global, which means that the librefs remain in effect until
changed or canceled, or until the SAS session ends.

By default, the LIBNAME statement assigns the libref for the current SAS session only.
Each time you begin a SAS session, you must assign a libref to each permanent SAS
library that contains files that you want to access in that session. (Remember that Work
is the default libref for a temporary SAS library.)

Specifying Two-Level Names

After you assign a libref, you specify it as the first element in the two-level name for a
SAS file.

In order for the PRINT procedure to read cert.admit, you specify the two-level name of
the file as follows:

proc print data=cert.admit;

run;

Referencing Third-Party Data

You can use the LIBNAME statement to reference not only SAS files but also files that
were created with other software products, such as database management systems.

28 Chapter3 -

Accessing Your Data

A SAS engine is a set of internal instructions that SAS uses for writing to and reading
from files in a SAS library or a third-party database. SAS can read or write these files by
using the appropriate engine for that file type. For some file types, you need to tell SAS
which engine to use. For others, SAS automatically chooses the appropriate engine.

An example of an engine that accesses third-party data is the XLSX engine, which
processes Microsoft Excel workbooks.

Accessing Stored Data

If your site licenses SAS/ACCESS software, you can use the LIBNAME statement to
access data that is stored in a database management system (DBMS) file. The types of
data you can access depend on your operating environment and on which SAS/ACCESS
products you have licensed. For more information about SAS/ACCESS engines, see the
SAS documentation for your DBMS.

Viewing SAS Libraries

Viewing Libraries

Besides accessing library details with librefs, you can also see libraries in other
environments. You can access a brief overview on the windows and menus for your
environment at http://video.sas.com/. From Categories select How To Tutorials =
Programming. Select the video for your SAS environment. Other tutorials are available
from the SAS website.

Viewing Libraries Using PROC CONTENTS

You can use the CONTENTS procedure to create SAS output that describes either of the
following:

+ the contents of a library
* the descriptor information for an individual SAS data set

The default library is either Work or User depending on your SAS solution or
environment.

Syntax, PROC CONTENTS step:
PROC CONTENTS DATA=SAS-file-specification NODS;
RUN;

o SAS-file-specification specifies an entire library or a specific SAS data set within a library.
SAS-file-specification can take one of the following forms:

» <libref>SAS-data-set names one SAS data set to process.

o <libref> ALL _requests a listing of all files in the library. (Use a period (.) to append
_ALL to the libref.)

* NODS suppresses the printing of detailed information about each file when you specify
_ALL . (You can specify NODS only when you specify ALL .)

https://video.sas.com//#category/videos/programming

Viewing SAS Libraries 29

Example: View the Contents of an Entire Library

To view the contents of an entire library, specify the ALL and NODS options in the
PROC CONTENTS step. The ALL option lists all files in the Cert library, and the
NODS option suppresses the printing of detailed information about each specific file.

proc contents data=cert. all nods;

run;
The following output displays a partial output of the contents of the Cert library. The

_ALL option lists all files including indexes, views, and catalogs.

Output 3.1 PROC CONTENTS Output: the SAS Library Cert (partial output)

The CONTENTS Procedure

Directory
Libref CERT
Engine V3
Physical Mame | C:\Users\Student\cert
Filename C\Users\StudentTicert
Owner Hame Student
File Size 32KB
File Size (bytes) | 32768

| Name Member Type File Size Last Modified

1| ADMIT DATA 128KB 12/03/2018 14:31:49
2 | ADMITJUNE DATA 128KB | 11/26/2018 11:34:05
3 | AGENCYEMP | DATA 128KB 11/26/2018 11:34:05
4 AMOUNTS DATA 128KB | 11/26/2018 11:34:05
5| APRBILLS DATA 128KB | 11/26/2018 11:34:05
6 | BEFORE DATA 128KB 11/26/2018 11:34:05
T | BOOKCASE DATA 128KB | 11/26/2018 11:34:05
8 | CARS DATA 128KB | 11/26/2018 11:34:05
9 CHOICES DATA 128KB 11/26/2018 11:34:06
10 | CLASS DATA 128KB | 11/26/2018 11:34:06

Example: View Descriptor Information

To view the descriptor information for only a specific data set, use the PROC
CONTENTS step. The following example lists the descriptor information for
Cert.Amounts including an alphabetic list of the variables in the data set.

proc contents data=cert.amounts;
run;

30 Chapter3 + Accessing Your Data

The following output is the result from submitting the PROC CONTENTS step.

Output 3.2 PROC CONTENTS Output

Data Set Name CERT.AMOUNTS Observations 7
Member Type DATA, Variables 4
Engine V9 Indexes 0
Created 11/26/2018 11:34:05 Observation Length | 40
Last Modified 11/26/2018 11:34:05 Deleted Observations | 0
Protection Compressed MO
Data Set Type Sorted MO
Label

Data Representation WINDOWS_64

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 65536
Number of Data Set Pages | 1
First Data Page 1
Max Obs per Page 1632
Obs in First Data Page 7

Number of Data Set Repairs | 0

ExtendObsCounter YES

Filename C:A\Users\Student T\cert\amounts_sas7bdat
Release Created 9.0401M4

Host Created ¥64_10PRO

Owner Name Student

File Size 128KB

File Size (bytes) 131072

Alphabetic List of Variables and Attributes

| Variable Type Len Format

4 | Amount Mum a
3| Date Murm 8 | DATES.
2 EmplD Mum 8

1 Mame Char 13

Chapter Quiz 31

Example: View Descriptor Information Using the Varnum Option

By default, PROC CONTENTS lists variables alphabetically. To list variable names in
the order of their logical position (or creation order) in the data set, specify the
VARNUM option in PROC CONTENTS.

proc contents data=cert.amounts varnum;
run;

Output 3.3 View Descriptor Information for Cert. Amounts Using the VARNUM Option

Variables in Creation Order

Variable | Type Len

1 MName Char 13
2 | EmplD Mum 3
3 | Date Mum 3
4 | Amount Mum 8

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. How long do librefs remain in effect?
a. until the LIBNAME statement is changed
b. until the LIBNAME statement is cleared
c. until the SAS session ends
d. all of the above

2. Which of the following statements are true?

a. When using the default engine, you do not have to specify the libref in the
LIBNAME statement.

b. When using the default engine, you do not have to specify the engine name in the
LIBNAME statement.

¢. When using the default engine, you do not have to specify the SAS library in the
LIBNAME statement.

d. When using the default engine, you have to specify the libref, engine name, and
the SAS library in the LIBNAME statement.

3. When you specify an engine for a library, what are you specifying?
a. the file format for files that are stored in the library
b. the version of SAS that you are using
c. permission to access to other software vendors' files

d. instructions for creating temporary SAS files

32 Chapter3 + Accessing Your Data

4. Which statement prints a summary of all the files stored in the library named
Area51?

a. proc contents data=area5l._all_ nods;
b. proc contents data=area51 _all nods;
C. proc contents data=area5l1 _all_ noobs;
d. proc contents data=area5l1 _all .nods;

5. Which of the following programs correctly references a SAS data set named
SalesAnalysis that is stored in a permanent SAS library?

a. data saleslibrary.salesanalysis;
set mydata.quarterlsales;
if sales>100000;
run;

b. data mysales.totals;
set sales 2017.salesanalysis;
if totalsales>50000;
run;

C. proc print data=salesanalysis.quarterl;
var sales salesrep month;
run;

d. proc freqg data=20l17data.salesanalysis;
tables quarter*sales;
run;

e. none of the above
6. What type of information does the CONTENTS procedure create?
a. the contents of a library
b. descriptor information for an individual SAS data set
c. aandb only
d. none of the above
7. Assuming you are using SAS code, which one of the following statements is false?

a. LIBNAME statements can be stored with a SAS program to reference the SAS
library automatically when you submit the program.

b. When you delete a libref, SAS no longer has access to the files in the library.
However, the contents of the library still exist on your operating system.

c. Librefs can last from one SAS session to another.

d. You can access files that were created with other vendors' software by submitting
a LIBNAME statement.

8. What does the following statement do?
libname states 'c:\myfiles\sasdata\popstats';
a. defines a library called States using the Popstats engine
b. defines a library called Popstats using the States engine
c. defines the default library using the default engines

d. defines a library called States using the default engine

Chapter 4

33

Creating SAS Data Sets

Referencing an External Data File 34
Using a FILENAME Statementttt 34
Defining a Fully Qualified Filename 34
Referencing a Fully Qualified Filename 34

The IMPORT Procedure i 35
The Basics of PROCIMPORT 35
PROC IMPORT Syntaxottt ittt e e e e e e e e e e e 35
Example: Importing an Excel File with an XLSX Extension 37
Example: Importing a Delimited File with a TXT Extension................. 38
Example: Importing a Space-Delimited File with a TXT Extension............ 39
Example: Importing a Comma-Delimited File with a CSV Extension.......... 40
Example: Importing a Tab-Delimited File 41

Reading and VerifyingData 42
Verifying the Code That Readsthe Data 42
Checking DATA Step Processingt 42
Printingthe Data Setot e 43
Reading the Entire External File ioun.. 44

Using the Imported Dataina DATA Step 44
Naming the Data Set with the DATA Statement 44
Specifying the Imported Data with the SET Statement 44

Reading a Single SAS Data Set to Create Another 45
Example: Readinga SASDataSet......... 0., 45
Specifying DROP= and KEEP=Data SetOptions 46

Reading Microsoft Excel Data with the XLSX Engine 47
Running SAS with Microsoft Excel ioo... 47
Steps for Reading Excel Data, 47
The LIBNAME Statementt e 48
Referencing an Excel Workbook 49
Referencing an Excel Workbook ina DATA Step 51
Printing an Excel Worksheetasa SASDataSet........................... 52

Creating Excel Worksheets i 53

Writing Observations Explicitly 54

Chapter QUIZ 55

34 Chapter4 <+ Creating SAS Data Sets

Referencing an External Data File

Using a FILENAME Statement

Use the FILENAME statement to point to the location of the external file that contains
the data.

Filerefs perform the same function as librefs: they temporarily point to a storage location

for data. However, librefs reference SAS libraries, whereas filerefs reference external
files.

Syntax, FILENAME statement:
FILENAME fileref 'filename's

fileref'is a name that you associate with an external file. The name must be one to eight

characters long, begin with a letter or underscore, and contain only letters, numbers, or
underscores.

» 'filename'is the fully qualified name or location of the file.

Defining a Fully Qualified Filename

The following FILENAME statement temporarily associates the fileref Exercise with the
external file that contains the data from the exercise stress tests. The complete filename

is specified as C: \Users\Studentl\cert\exercise. txt in the Windows
operating environment.

filename exercise 'C:\Users\Studentl\cert\exercise.txt';

Referencing a Fully Qualified Filename

When you associate a fileref with an individual external file, you specify the fileref in
subsequent SAS statements and commands.

Figure 4.1 Referencing a Fully Qualified Filename

|

filename |exercise| 'C:\Users\Studentl\cert\exercise.txt’;

single
proc import [datafile=exercise] > eﬂima
dbms=dlm file
out=exstress
replace;

getnames=no;
run;
proc print data=exstress;
run;

The IMPORT Procedure 35

The IMPORT Procedure

The Basics of PROC IMPORT

The IMPORT procedure reads data from an external data source and writes it to a SAS
data set. You can import structured and unstructured data using PROC IMPORT. You
can import delimited files (blank, comma, or tab) along with Microsoft Excel files. If
you are using SAS 9.4, then you can import JMP 7 or later files as well.

When you run the IMPORT procedure, it reads the input file and writes the data to the
specified SAS data set. By default, the IMPORT procedure expects the variable names to
appear in the first row. The procedure scans the first 20 rows to count the variables, and
it attempts to determine the correct informat and format for each variable. You can use
the IMPORT procedure statements to do the following:

* indicate how many rows SAS scans for variables to determine the type and length
(GUESSINGROWS=)

» modify whether SAS extracts the variable names from the first row of the data set
(GETNAMES=)

* indicate at which row SAS begins to read the data (DATAROW=)

When the IMPORT procedure reads a delimited file, it generates a DATA step to import
the data. You control the results with options and statements that are specific to the input
data source.

The IMPORT procedure generates the specified output SAS data set and writes
information about the import to the SAS log. The log displays the DATA step code that
is generated by the IMPORT procedure.

PROC IMPORT Syntax
Syntax, PROC IMPORT statement:

PROC IMPORT

DATAFILE= “filename” | TABLE= “tablename”
OUT=<Ilibref. SAS-data-set><SAS-data-set-options>
<DBMS=identifier><REPLACE>;

DATAFILE= “filename” | “fileref”
specifies the complete path and filename or fileref for the input PC file, spreadsheet,
or delimited external file. A fileref is a SAS name that is associated with the physical
location of the output file. To assign a fileref, use the FILENAME statement.

If you specify a fileref, complete path, and filename does not include special
characters, then you can omit the quotation marks.

Restrictions The IMPORT procedure does not support device types or access
methods for the FILENAME statement except for DISK. For
example, the IMPORT procedure does not support the TEMP device
type, which creates a temporary external file.

The IMPORT procedure can import data only if SAS supports the data
type. SAS supports numeric and character types of data but not (for
example) binary objects. If the data that you want to import is a type

36 Chapter4

Creating SAS Data Sets

that SAS does not support, the IMPORT procedure might not be able
to import it correctly. In many cases, the procedure attempts to convert
the data to the best of its ability. However, conversion is not possible
for some types.

Interactions By default, the IMPORT procedure reads delimited files as varying
record-length files. If your external file has a fixed-length format, use
the FILENAME statement prior to PROC IMPORT to specify the
input filename using the RECFM=F and LRECL= options.

When you use a fileref to specify a delimited file to import, the logical
record length (LRECL) defaults to 256, unless you specify the
LRECL~= option in the FILENAME statement. The maximum LRECL
value that the IMPORT procedure supports is 32,767.

For delimited files, the first 20 rows are scanned to determine the
variable attributes. You can increase the number of rows that are
scanned by using the GUESSINGROWS= statement. All values are
read in as character strings. If a Date and Time format or a numeric
informat can be applied to the data value, the type is declared as
numeric. Otherwise, the type remains character.

OUT= <libref.> SAS-data-set

identifies the output SAS data set with either a one or two-level SAS name (library
and member name). If the specified SAS data set does not exist, the IMPORT
procedure creates it. If you specify a one-level name, by default the IMPORT
procedure uses either the USER library (if assigned) or the WORK library (if USER
is not assigned).

A SAS data set name can contain a single quotation mark when the
VALIDMEMNAME=EXTEND system option is also specified. Using
VALIDMEMNAME-= expands the rules for the names of certain SAS members, such
as a SAS data set name.

If a SAS data set name contains national characters or special characters, use
VALIDMEMNAME=EXTEND system option. The exceptions for special characters
are: /\ * ? “<>|:—. Using VALIDMEMNAME-= expands the rules for the name of
certain SAS members, such as a SAS data set name. For more information, see
“VALIDMEMNAME=System Option” on page 16.

TABLE= “tablename”

specifies the name of the input DBMS table. If the name does not include special
characters (such as question marks), lowercase characters, or spaces, you can omit
the quotation marks. Note that the DBMS table name might be case sensitive.

Requirement When you import a DBMS table, you must specify the DBMS=
option.

<DBMS=identifier>

specifies the type of data to import.
Here are the common DBMS identifiers that are included with Base SAS:

* CSV — comma-separated values. For a comma-separated file with a .CSV
extension, DBMS= is optional.

* JMP — JMP files. Use JMP 7 or later. Use DBMS=JMP to specify importing
JMP files. JMP variable names can be up to 255 characters long. SAS supports
importing JMP files that have more than 32,767 variables.

The IMPORT Procedure 37

TAB — tab-delimited values. Specify DBMS=DLM to import any other
delimited file that does not end in .CSV.

<REPLACE>
overwrites an existing SAS data set. If you omit REPLACE, the IMPORT procedure
does not overwrite an existing data set.

Instead, use a SAS DATA step with the REPLACE= data set option to replace a
permanent SAS data set.

<SAS-data-set-options>
specifies SAS data set options. For example, to assign a password to the resulting
SAS data set, you can use the ALTER=, PW=, READ=, or WRITE= data set options.
To import only data that meets a specified condition, you can use the WHERE= data
set option.

Restriction You cannot specify data set options when importing delimited, comma-
separated, or tab-delimited external files.

Example: Importing an Excel File with an XLSX Extension

This example imports an Excel file and creates a temporary SAS data set,

Work.BootSales.
options validvarname=v7; /*E*/
proc import datafile='C:\Users\Studentl\cert\boots.xlsx' /+*EB*/

dbms=x1sx

out=work.bootsales

replace;

sheet=boot ; /*E*/

getnames=yes; /2 /
run;
proc contents data=bootsales; A 5 Wl
run;

proc print data=bootsales;

run;

1 The VALIDVARNAME=V7 statement forces SAS to convert spaces to underscores
when it converts column names to variable names. In SAS Studio, the _ (underscore)
in Total_Sale would not be added without the VALIDVARNAME=V7 statement.

2 Specify the input file. DATAFILE= specifies the path for the input file. The DBMS=
option specifies the type of data to import. When importing an Excel workbook,
specify DBMS=XLSX. The REPLACE option overwrites an existing SAS data set.
The OUT= option identifies the output SAS data set.

3 Use the SHEET option to import specific worksheets from an Excel workbook.

4 Set the GETNAMES= statement to YES to generate variable names from the first
row of data.

5 Use the CONTENTS procedure to display the descriptor portion of the
Work.BootSales data set.

The following is printed to the SAS log. The SAS log notes that the import was
successful. It also notes that there is a variable name change from Total Sale (with a
space between the two words) to Total Sale. SAS converted the space to an underscore

()

38 Chapter4 <+ Creating SAS Data Sets

Log 4.1 SAS Log

75 options validvarname=v7;
76 proc import datafile='C:\Users\Studentl\cert\boots.xlsx'

77 dbms=x1sx

78 out=work.bootsales replace;

79 sheet=boot;

80 getnames=yes;

81 run;

NOTE: Variable Name Change. Total Sale -> Total Sale

NOTE: The import data set has 10 observations and 3 variables.
NOTE: WORK.BOOTSALES data set was successfully created.

Output 4.1 PROC CONTENTS Descriptor Portion (partial output)

Alphabetic List of Variables and Attributes

| Variable |Type Len Format Informat | Label

2 | City Char | 11 $11. $11. City

1| Region Char = 25 525. 525. Region
3 | Total_Sale | Mum 8 DOLLAR152 Total Sale

Output 4.2 PROC PRINT Output of the Work.BootSales Data Set

Obs Region City Total Sale
1| Africa Addis Ababa $191.821.00
2 | Asia Bangkok $9.576.00
3 Canada Calgary $63,280.00
4 | Central America/Carribean | Kingston $393,376.00
5 Eastern Europe Budapest $317.515.00
6 | Middle East Al-Khobar 344 ,658.00
T | Pacific Auckland $97.919.00
8 | South America Bogota 535,805.00
9 | United States Chicago $305,061.00
10 Western Europe Copenhagen 54.657.00

For an alternate method of reading Microsoft Excel files in SAS, see “Reading Microsoft
Excel Data with the XLSX Engine” on page 47.

Example: Importing a Delimited File with a TXT Extension

This example imports a delimited external file and creates a temporary SAS data set,
Work.MyData. The delimiter is an ampersand (&).

options validvarname=v7;

proc import datafile='C:\Users\Studentl\cert\delimiter.txt' /**/
dbms=dlm B/
out=mydata
replace;

The IMPORT Procedure 39

delimiter='&'; VA 3
getnames=yes; /E0y*/
run;

proc print data=mydata;
run;

1 Specify the input file. DATAFILE= specifies the path for the input file. The DBMS=
option specifies the type of data to import.

2 If the delimiter is a character other than TAB or CSV, then the DBMS= option is
DLM. The REPLACE option overwrites an existing SAS data set. The OUT= option
identifies the output SAS data set.

3 Specify an ampersand (&) for the DELIMITER statement.

4 Set the GETNAMES= statement to YES to generate variable names from the first
row of data.

Output 4.3 PROC PRINT Output: Work.MyData Data Set

Obs Region | State lMonth | Expenses | Revenue
1| Southern | GA JAMZ2001 2000 a000
2 | Southern | GA FEB2001 1200 6000
3 | Southern | FL FEB2001 8500 11000
4 | Morthern | MY FEB2001 3000 4000
5 | Morthern | WY MAR2001 6000 5000
6 | Southern | FL MAR2001 9300 13500
T | Morthern | MA | MAR2001 1500 1000

Example: Importing a Space-Delimited File with a TXT Extension

This example imports a space-delimited file and creates a temporary SAS data set named
Work.States.

The following input data illustrates enclosing values in quotation marks when you want
to avoid separating their values by the space between the words.

Region State Capital Bird

South Georgia Atlanta 'Brown Thrasher'
South 'North Carolina' Raleigh Cardinal
North Connecticut Hartford Robin

West Washington Olympia 'American Goldfinch'
Midwest Illinois Springfield Cardinal

You can submit the following code to import the file.

options validvarname=v7;
filename stdata 'C:\Users\Studentl\cert\state_data.txt' lrecl=100; /*|*/

proc import datafile=stdata A 2
dbms=dlm
out=states
replace;
delimiter=' '; B/

getnames=yes;

run;

40 Chapter 4

Creating SAS Data Sets

proc print data=states;
run;

1 Specify the fileref and the location of the file. Specify the LRECL= system option if
the file has a fixed-length format. The LRECL= system option specifies the default
logical record length to use when reading external files.

2 Specify the input file and specify that it is a delimited file. The DBMS= option
specifies the type of data to import. If the delimiter type is a character other than
TAB or CSV, then the DBMS= option is DLM. The REPLACE option overwrites an
existing SAS data set. The OUT= option identifies the output SAS data set.

3 Specify a blank value for the DELIMITER statement. Set the GETNAMES=
statement to YES to generate variable names from the first row of data.

Output 4.4 PROC PRINT Output: Work.States Data Set

Obs | Region | State Capital Bird
1 South Georgia Atlanta Brown Thrasher
2 | South Morth Carolina | Raleigh Cardinal
3 | North Connecticut Hartford Robin
4 | West Washington Olympia | American Goldfinch
3 Midwest | lllinois Springfield | Cardinal

Example: Importing a Comma-Delimited File with a CSV Extension

This example imports a comma-delimited file and creates a temporary SAS data set
Work.Shoes. The input file Boot.csv is a comma-separated value file that is a delimited-
text file and that uses a comma to separate values.

options validvarname=v7;
proc import datafile='C:\Users\Studentl\cert\boot.csv' /**/
dbms=csv
out=shoes
replace;
getnames=no; VA 2
run;
proc print data=work.shoes;
run;

1 Specify the input file. DATAFILE= specifies the input data file, and OUT= specifies
the output data set. The DBMS= specifies the type of data to import. If the file type
is CSV, then the DBMS= option is CSV. The REPLACE option overwrites an
existing SAS data set.

2 Set the GETNAMES= statement to NO to not use the first row of data as variable
names.

The IMPORT Procedure 41

Output 4.5 PROC PRINT Output: Work.Shoes Data Set

Obs | VAR1 VAR2 | VAR3 VAR4 VAR5| VARG VARY
1| Africa Boot | Addis Ababa 12 29761 | 191821 769
2 Asia Boot | Bangkok 1 1996 9576 80
3 Canada Boot | Calgary 8 17720 63280 472
4 | Central Amernca/Caribbean Boot | Kingston 33 102372 | 393376 4454
5 | Eastern Europe Boot | Budapest 22 TH102 3175150 331
6 | Middle East Boot | Al-Khobar 10 15062 | 44658 765
T | Pacific Boot | Auckland 12 20141 | 97919 962
8 | South America Boot | Bogota 19 15312 35805 | 1229
9 | United States Boot | Chicago 16 82483 305061 3735
10 | Western Europe Boot | Copenhagen 2 1663 4657 129

Example: Importing a Tab-Delimited File

This example imports a tab-delimited file and creates a temporary SAS data set
Work.Class.

proc import datafile='C:\Users\Studentl\cert\class.txt' /**/
dbms=tab
out=class
replace;
delimiter='09'x; /A /
run;
proc print data=class;
run;

1 Specify the input file. DATAFILE= specifies the input data file, and OUT= specifies
the output data set. DBMS= specifies the type of data to import. If the file type is
TXT, then the DBMS= option is TAB. The REPLACE option overwrites an existing
SAS data set. GETNAMES= statement defaults to YES.

2 Specify the delimiter. On an ASCII platform, the hexadecimal representation of a tab
is '09'x. On an EBCDIC platform, the hexadecimal representation of a tab is a '05'x.

42 Chapter 4

Creating SAS Data Sets

Output 4.6 PROC PRINT Output of Work.Class

Obs Mame | Gender | Age

1 Louise F 12
2|James M 12
3 | John i 12
4 | Robert M 12
5| Alice F 13
6 Barbara F 13
T Jeffery M 13
& | Caral F 14
9 | Judy F 14
10 | Alfred M 14
11 Henry M 14
12 | Jenet F 15
13 | Mary F 15
14 | Ronald M 15
15 | William M 15
16 | Philip M 16

Reading and Verifying Data

Verifying the Code That Reads the Data

Before you read a complete external file, you can verify the code that reads the data by
limiting the number of observations that SAS reads. You can use the OPTIONS
statement with the OBS= option before the IMPORT procedure to limit the number of
observations that SAS reads from your external file.

The program below reads the first five records in the external data file that is referenced
by PROC IMPORT.

options obs=5;
proc import datafile="C:\Users\Studentl\cert\boot.csv"
dbms=csv
out=shoes
replace;
getnames=no;

run;

Checking DATA Step Processing

After PROC IMPORT runs the DATA step to read the data, messages in the log verify
that the data was read correctly. The notes in the log indicate the following:

Reading and Verifying Data 43

* Five records were read from the infile ‘C: \Users\Studentl\cert\boot.csv’

« The SAS data set work.shoes was created with five observations and seven variables.

Log 4.2 SAS Log

NOTE: The infile 'C:\Users\Studentl\cert\boot.csv' is:
Filename=C:\Users\Studentl\cert\boot.csv,
RECFM=V, LRECL=32767,File Size (bytes)=657,

Last Modified=25Jun2018:13:37:49,
Create Time=25Jun2018:13:37:49

NOTE: 5 records were read from the infile
'C:\Users\Studentl\cert\boot.csv'.
The minimum record length was 51.
The maximum record length was 81.

NOTE: The data set WORK.SHOES has 5 observations and 7

variables.

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds

5 rows created in WORK.SHOES from
C:\Users\Studentl\cert\boot.csv.

NOTE: WORK.SHOES data set was successfully created.
NOTE: The data set WORK.SHOES has 5 observations and 7

variables.

NOTE: PROCEDURE IMPORT used (Total process time):
real time 0.05 seconds
cpu time 0.04 seconds

Printing the Data Set

The messages in the log indicate that the PROC IMPORT step correctly accessed the
external data file. But it is a good idea to look at the five observations in the new data set
before reading the entire external data file. The system option OBS=5 is still in effect, so
you do not have to specify it again. You can submit a PROC PRINT step to view the
data.

Data sets are assigned to the default Work library when the library reference is omitted.
The example stored the Shoes data set in the temporary library, Work.

The following PROC PRINT step prints the Work.Shoes data set.

proc print data=work.shoes;
run;

The PROC PRINT output indicates that the variables in the Work.Shoes data set were
read correctly for the first five records.

44 Chapter4 - Creating SAS Data Sets

Figure 4.2 PROC Print Output

Obs | VAR1 VARZ | VAR3 VAR4 | VAR5| VARG6 VARTY
1| Africa Boot | Addis Ababa 12 29761 191821 769
2 | Asia Boot | Bangkok 1 1996 9576 80
3 Canada Boot | Calgary 8 17720 63280 472
4 | Central America/Caribbean Boot | Kingston 33 102372 393376 4454
5 Eastern Europe Boot | Budapest 22 T4102 3175150 334

Reading the Entire External File

To modify the PROC step to read the entire external file, restore the default value to the
OBS= system option. To do this, set OBS=MAX and then resubmit the program.

options obs=max;
proc import datafile="C:\Users\Studentl\cert\boot.csv"
dbms=csv
out=shoes
replace;
getnames=no;
run;

Note: SAS Studio sets OBS=MAX before each code submission.

Using the Imported Data in a DATA Step

Naming the Data Set with the DATA Statement

The DATA statement indicates the beginning of the DATA step and names the SAS data
set to be created.

Syntax, DATA statement:
DATA SAS-data-set-1 <...SAS-data-set-n>;

SAS-data-set names (in the format libref.filename) the data set or data sets to be created.

Remember that a permanent SAS data set name is a two-level name. For example, the
two-level name Clinic. Admit specifies that the data set Admit is stored in the permanent
SAS library to which the libref Clinic has been assigned.

Specifying the Imported Data with the SET Statement

The SET statement specifies the SAS data set that you want to use as input data for your
DATA step. When you import your external data using PROC IMPORT, you specify the
name of the output data set using the OUT= option. Use the libref and data set name that
you specified using the OUT= option as the SAS data set value for the SET statement.

Reading a Single SAS Data Set to Create Another 45

SET Statement Syntax
Syntax, DATA step for reading a single data set:

DATA SAS-data-set;
SET SAS-data-set;
<...more SAS statements...>
RUN;
* SAS-data-set in the DATA statement is the name of the SAS data set to be created.

e SAS-data-set in the SET statement is the name of the SAS data set to be read.

Example: Using the SET Statement to Specify Imported Data

In this example, the DATA statement tells SAS to name the new data set, Boots, and
store it in the temporary library Work. The SET statement in the DATA step specifies the
output data set from the IMPORT procedure. You can use several statements in the
DATA step to subset your data as needed. In this example, the WHERE statement is used
with VARI to include only the observations where VAR is either South America or
Canada.

proc import datafile="C:\certdata\boot.csv"
out=shoes
dbms=csv
replace;
getnames=no;
run;
data boots;
set shoes;
where varl='South America' OR varl='Canada';

run;

Output 4.7 Results from the DATA Step Using the SET Statement

Obs | VAR1 VARZ VAR3 |VAR4 | VAR5 VARG VART
1 Canada Boot Calgary 8 17720 63280 472
2 | South America Boot | Bogota 19 15312 35805 1229

Reading a Single SAS Data Set to Create Another

Example: Reading a SAS Data Set

The data set Cert. Admit contains health information about patients in a clinic, their
activity level, height, and weight. Suppose you want to create a subset of the data.
Specifically, you want to create a small data set containing data about all the men in the
group who are older than 50.

To create the data set, you must first reference the library in which Cert.Admit is stored.
Then you must specify the name of the library in which you want to store the Males data
set. Finally, you add statements to the DATA step to read your data and create a new data
set.

46 Chapter4 - Creating SAS Data Sets

The DATA step below reads all observations and variables from the existing data set
Cert.Admit into the new data set Males. The DATA statement creates the permanent
SAS data set Males, which is stored in the SAS library Men50. The SET statement reads
the permanent SAS data set Cert. Admit and subsets the data using a WHERE statement.
The new data set, Males, contains all males in Cert. Admit who are older than 50.

libname cert 'C:\Users\Studentl\cert\';
libname Men50 'C:\Users\Studentl\cert\Men50';

data Men50.males;

set cert.admit;

where sex='M' and age>50;
run;

When you submit this DATA step, the following messages appear in the log, confirming

that the new data set was created:

Log 4.3 SAS Log Output

69205 data Men50.males;

69206 set cert.admit;

69207 where sex='M' and age>50;

69208 run;

NOTE: There were 3 observations read from the data set
CERT.ADMIT.
WHERE (sex='M') and (age>50);

NOTE: The data set MEN50.MALES has 3 observations and 9
variables.

You can add a PROC PRINT statement to this same example to see the output of

Men50.Males.

proc print data=Men50.males;
title 'Men Over 50';

run;

Output 4.8 PROC PRINT Output for the Data Set Males

Men Over 50
Obs | ID Name Sex Age Date Height Weight | ActLevel Fee
1/2539 LaMance, Kk M 81 081417 7 168 LOW 124.80
2| 2579 Underwood, K M 60 | 081417 [l 191 LOW 149.75
3|2595 Warren, C I 84 08177 7 183 MOD 149.75

Specifying DROP= and KEEP= Data Set Options

You can specify the DROP=and KEEP=

data set options anywhere you name a SAS

data set. You can specify DROP= and KEEP= in either the DATA statement or the SET
statement. It depends on whether you want to drop variables from either the output data

set or the source data set:

Reading Microsoft Excel Data with the XLSX Engine 47

» If you never reference certain variables and you do not want them to appear in the
new data set, use a DROP= option in the SET statement.

In the DATA step shown below, the DROP= or KEEP= option in the SET statement
prevents the variables 7riglyc and Uric from being read. These variables do not
appear in the Cert.Druglh data set and are not available to be used by the DATA
step.

» Ifyou do need to reference a variable in the original data set (in a subsetting IF
statement, for example), you can specify the variable in the DROP= or KEEP=
option in the DATA statement. Otherwise, the statement that references the variable
uses a missing value for that variable.

This DATA step uses the variable Placebo to select observations. To drop Placebo
from the new data set, the DROP= option must appear in the DATA statement.

When used in the DATA statement, the DROP= option simply drops the variables
from the new data set. However, they are still read from the original data set and are
available within the DATA step.

data cert.druglh(drop=placebo) ;
set cert.cltrials(drop=triglyc uric);
if placebo='YES';

run;

proc print data=cert.druglh;

run;

Output 4.9 PROC PRINT Output of Cert.Drugth

Obs TestDate Name Sex | Cholesterol
1| 09AUG2000 Johnson, R F 200
2 | 01AUG2000 LaMance, K M 250
3| 22MAY2000 Munnelly, A F 210
4 22MAY2000 Cameron, L | M 198

Reading Microsoft Excel Data with the XLSX
Engine

Running SAS with Microsoft Excel

The examples in this section are based on SAS 9.4 64-bit running with Microsoft Office
2016 64-bit on Microsoft Windows 10 64-bit.

This configuration does not require the SAS/ACCESS PC Files Server. If SAS runs in a
UNIX environment and needs to access Excel files on Microsoft Windows, you must
license the SAS/ACCESS PC Files Server.

Steps for Reading Excel Data

To read the Excel workbook file, SAS must receive the following information in the
DATA step:

48 Chapter4 - Creating SAS Data Sets

» alibref to reference the Excel workbook to be read

» the name of the Excel worksheet that is to be read

The table below outlines the basic statements that are used in a program that reads Excel
data and creates a SAS data set from an Excel worksheet. The PROC CONTENTS and
PROC PRINT statements are not requirements for reading Excel data and creating a
SAS data set. However, these statements are useful for confirming that your Excel data
has successfully been read into SAS.

Table 4.1 Basic Steps for Reading Excel Data into a SAS Data Set

Task

Reference an Excel workbook file

Write out the contents of the SAS Library

Execute the PROC CONTENTS
statement

Name and create a new SAS data set

Read in an Excel worksheet (as the input
data for the new SAS data set)

Execute the DATA step

View the contents of a particular data set

Execute the PROC PRINT statement

Statement

SAS/ACCESS LIBNAME

statement

PROC CONTENTS

RUN statement

DATA statement

SET statement

RUN statement

PROC PRINT

RUN statement

Example

LIBNAME cert

libname cert xlsx
'C:\Users\Studentl\cert\exercise.xlsx';

proc contents data=cert. all_;

run;

data work.stress;

set cert.ActLevel;

run;

proc print data=stress;

run;

Here is the syntax for assigning a libref to an Excel workbook.

The LIBNAME Statement

To assign a libref to a database, use the LIBNAME statement. The SAS/ACCESS
LIBNAME statement associates a SAS libref with a database, schema, server, or a group
of tables and views.

Reading Microsoft Excel Data with the XLSX Engine 49

Syntax, SAS/ACCESS LIBNAME statement:
LIBNAME </ibref>XLSX <'physical-path-and-filename.xlsx"><options>;
+ libref'is a name that you associate with an Excel workbook.

* XLSXis the SAS LIBNAME engine name for an XLSX file format. The SAS/ACCESS
LIBNAME statement associates a libref with an XLSX engine that supports the connections
to Microsoft Excel 2007, 2010, and later files.

Important: The engine name XLSX is required.

When reading XLSX data, the XLSX engine reads mixed data (columns containing numeric
and character values) and converts it to character data values.

The XLSX engine allows sequential reading of data only. It does not support random access.
Therefore, it does not support certain tasks that require random access such as the RANK
procedure, which requires the reading of rows in a random order.

* physical-path-and-filename.xlsx' is the physical location of the Excel workbook.
Example:

libname results XLSX 'C:\Users\Studentl\cert\exercise.xlsx"';

Note: The XLSX engine requires quotation marks for physical-path-and-filename.xlsx.

Referencing an Excel Workbook

Overview

This example uses data similar to the scenario used for the raw data in the previous
section. The data shows the readings from exercise stress tests that have been performed
on patients at a health clinic.

The stress test data is located in an Excel workbook named exercise.xlsx (shown below),
which is stored in the location C: \Users\Studentl\cert\.

50 Chapter4 <+ Creating SAS Data Sets
Figure 4.3 Excel Workbook

exercise - Bxcel

Page Layout | Formulas: Data | Review | View Developer | ACROBAT ";:' Tell me

.n..:l X | = = o, [z Conditional Formatting = &l P
Pa-;.:te B BT U-IAA Alignrment Number L-i'Furmatas skl Cells Editing
W B DA 2 - [Cell Styles ~ - -

Clipboard Font [Styles ~

112 v F= v
A B |_C D E F G H | [=

i, ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance TestDate

2 2458 Murray, W 72 185 128 12 38 D 8/25/2008

3 | 2482 Almers, C 68 171 133 10 5 I B/26/2008

4 | 2501 Bonaventure, T 78 177 129 11 13 I 6/26/2008

5 | 2523 Johnson R 69 162 114 9 42 S Ti4/2008

6 | 25389 laMance R 75 168 141 11 46 D 8/25/2008

7 | 2544 Jones, M 79 187 136 12 26 N Ti14/2008

8 | 2552 Reberson, P 69 158 139 15 41 D 8/25/2008

g | 2555 King, E 70 167 122 13 13 | Ti14/2008

10| 2563 Pitts, D 71 159 116 10 22 8 8/25/2008

11| 2568 Eberhardt, S 72 182 122 16 49 N 6/28/2008

12| 2671 Numnelly, A 65 181 141 15 2 1 8/9/2008

13 2572 Oberon, M 74 177 138 12 11 D 8/8/2008

14| 2574 | Peterson, V 80 164 137 14 8 D 121/2008

15| 2575 | Quigley, M 74 152 1" 26 I 7132008 |

16, 2578 Cameron, L 75 158 108 14 27 I 8/16/2008

17| 2579 | Underwood, K 12 165 127 13 19] 6/27/2008

18 2584 Takahashi, Y 76 163 135 16 T D 8/16/2008

19 2686 Derber, B G8 176 119 17 35 N 8M17/2008

20 2588 van, H 70 182 126 15 41 N 6/18/2008

21| 2589 Wilcox, E 18 189 138 14 af | 711972008 ||

22_._ 2585 Warren, C 7 170 136 12 10 5 1120/2008

>3 . , i b

tests | adv (*) a T
Reaty 88 L i} M - i + (oo

|
Worksheets

Cells formatted as dates

In the sample worksheet above, the date column is defined in Excel as dates. If you
right-click the cells and select Format Cells, the cells have a category of Date. SAS
reads this data just as it is stored in Excel. If the date had been stored as text in Excel,
then SAS would have read it as a character string.

To read in this workbook, create a libref to point to the workbook's location:
libname certxl XLSX 'C:\Users\Studentl\cert\exercise.xlsx';

The SAS/ACCESS LIBNAME statement creates the libref Certxl, which points to the
Excel workbook exercise.xlsx. The workbook contains two worksheets, Tests and Adyv,
which are now available in the new SAS library (Results) as data sets.

Reading Microsoft Excel Data with the XLSX Engine 51

Referencing an Excel Workbook in a DATA Step

SET Statement

Use the SET statement to indicate which worksheet in the Excel file you want to read.

data work.stress;
set certxl.ActivityLevels;
run;

In this example, the DATA statement tells SAS to name the new data set, Stress, and
store it in the temporary library Work. The SET statement specifies the libref (the
reference to the Excel file) and the worksheet name as the input data.

You can use several statements in the DATA step to subset your data as needed. Here, the
WHERE statement is used with a variable to include only those participants whose
activity level is HIGH.

data work.stress;
set certxl.ActivityLevels;
where ActLevel='HIGH';
run;

The figure below shows the output for this DATA step in table format.

Figure 4.4 DATA Step Output

Label changes
column heading

1D Name Sex | Age | Height | Weight Actlevel
1| 2458 Murray, W M 27 7o 168 HIGH
2 | 2462 Almers, C F 34 66 152 HIGH
3| 2544 Jones, M M 29 76 193 HIGH
4 | 2571 | Nunnelly, A | F 44 66 140 HIGH
5| 2575 | Quigley, M F 40 69 163 HIGH
6 | 2586 Derber, M M 25 75 188 HIGH
7 | 2589 Wilcox, E F 41 67 141 HIGH
WHERE
statement

subsets data

to only HIGH

Name Literals

The SAS/ACCESS LIBNAME statement created a permanent library, Certxl, which is
the libref for the workbook file and its location. The new library contains two SAS data
sets, which access the data from the Excel worksheets.

52 Chapter 4

Creating SAS Data Sets

Name literals are required with the XLSX engine only when the worksheet name
contains a special character or spaces. By default, SAS does not allow special characters
in SAS data set names. A SAS name literal is a name token that is expressed as a string
within quotation marks, followed by the uppercase or lowercase letter #n. The name
literal tells SAS to allow the special character ($) in the data set name.

The following example illustrates reading an Excel worksheet using a name literal.
Specify the name of the worksheet in quotation marks with an n following the name.
This syntax tells SAS that there are special characters or spaces in the data set name.

libname certxl xlsx 'C:\Users\Studentl\cert\stock.xlsx';
data work.bstock;
set certxl.'boots stock'n;

run;

Printing an Excel Worksheet as a SAS Data Set

After using the DATA step to read in the Excel data and create a SAS data set, you can
use PROC PRINT to produce a report that displays the data set values. In the following
example, the PROC PRINT statement displays all the data values for the new data set,
Work.Bstock.

libname certxl xlsx 'C:\Users\Studentl\cert\stock.xlsx';
data work.bstock;
set certxl.'boots stock'n;
run;
proc print data=work.bstock;

run;

Output 4.10 PROC PRINT Output of Work.Bstock

Item Stock

City
Budapest 22
Al-Khobar 10

Auckland 12

Obs | Region
1 | Eastern Europe Boot
2 | Middle East Boot

3 | Pacific Boot

In the following example, the PROC PRINT statement refers to the worksheet Boot
Sales and prints the contents of the Excel worksheet that was referenced by the
SAS/ACCESS LIBNAME statement.

libname certxl xlsx 'C:\Users\Studentl\cert\stock.xlsx';
proc print data=cerxl.'boots stock'n;

run;

Output 4.11 PROC PRINT Output Using Name Literals

Item Stock

City
Budapest 22
Al-Khobar 10

Auckland 12

Obs | Region
1 | Eastern Europe Boot
2 | Middle East
3 | Pacific

Boot
Boot

Creating Excel Worksheets 53

Creating Excel Worksheets

In addition to reading Microsoft Excel data, SAS can also create Excel worksheets from
SAS data sets.

» If the Excel workbook does not exist, SAS creates it.
« If the Excel worksheet within the workbook does not exist, SAS creates it.

+ If the Excel workbook and the worksheet already exist, then SAS overwrites the
existing Excel workbook and worksheet.

In the following example, you use the SAS/ACCESS LIBNAME statement and the
DATA step to create an Excel worksheet. The SAS/ACCESS LIBNAME statement
specifies the name of the new Excel file as newExcel.xlsx. The DATA step reads in
Cert.Stress and then creates the Excel worksheet HighStress in the newExcel.xlsx
workbook.

libname excelout xlsx 'C:\Users\Studentl\Cert\newExcel.xlsx';
data excelout.HighStress;
set cert.stress;

run;

54 Chapter4 -+ Creating SAS Data Sets

Output 4.12 Excelout.HighStress Worksheet

newExcel - Excel = = O
Home QLES | Page L: Forr‘nul| Data | Revimr| View ‘ Develo Q Tell me
&D X ﬁ = 9% E[% Conditional Formatting - lil !
Paste Fa - Fant Alignment Mumber GFormat as Table - Cells Editing
.o . - - | [Cell Styles ~ - -

Clipboard = Styles E
124 - I A

A [B [€ | D | E | F | G [H -
11D MName RestHR MaxHR RecHR TimeMin TimeSec Tolerance
2 _5458 Murray, W 72 185 128 12 38D
3 _:"2452 Almers, C 63 171 133 10 51
4 _"2501 Bonaventure, T 78 177 139 11 131
3 _'2523 Johnson, R 69 162 114 9 42 5
6 _r2539 LaMance, K 75 168 141 11 46 0
7 _5544 Jones, M 79 187 136 12 26 M
B8 _r2552 Reberson, P 69 158 139 15 M0
9 _r2555 King, E 70 167 122 13 131
10_'2553 Pitts, D 7 159 116 10 225
11_'2558 Eberhardt, 5 72 182 122 16 49 M
12_’2571 Munnelly, A 65 181 141 15 21
13_'25?2 Oberon, M 74 177 138 12 1D
14_55?4 Peterson, V 80 164 137 14 9D
15_'é5T5 Quigley, M 74 152 113 11 26 |
16_'25?8 Cameron, L 75 158 108 14 271
1?_'2579 Underwood, K 72 165 127 13 19 8
18_'2584 Takahashi, ¥ 76 163 135 16 7D
19_5585 Derber, B 63 176 119 17 35 N
20_'2588 lvan, H 70 182 126 15 41N
21_5589 Wilcox, E 78 189 138 14 a7 |l
22_’2595 Warren, C [170 136 12 105 -

| Sheet1 I highstress I) 4 3

Ready 24 FH B - i + 100%

Writing Observations Explicitly

To override the default way in which the DATA step writes observations to output, you
can use an OUTPUT statement in the DATA step. Placing an explicit OUTPUT
statement in a DATA step overrides the implicit output at the end of the DATA step. The
observations are added to a data set only when the explicit OUTPUT statement is
executed.

Chapter Quiz 55

Syntax, OUTPUT statement:
OUTPUT <SAS-data-set(s)>;

SAS-data-set(s) names the data set or data sets to which the observation is written. All data set
names that are specified in the OUTPUT statement must also appear in the DATA statement.

Using an OUTPUT statement without a following data set name causes the current observation
to be written to all data sets that are specified in the DATA statement.

With an OUTPUT statement, your program now writes a single observation to output—
observation 5. For more information on subsetting IF statements, see “Using a
Subsetting IF Statement” on page 151.

data work.usa5;
set cert.usa(keep=manager wagerate) ;
if n =5 then output;

run;

proc print data=work.usa5;

run;

Figure 4.5 Single Observation

Obs WageRate Manager
1 45225 | Coxe

Suppose your DATA statement contains two data set names, and you include an
OUTPUT statement that references only one of the data sets. The DATA step creates
both data sets, but only the data set that is specified in the OUTPUT statement contains
output. For example, the program below creates two temporary data sets, Empty and
Full. The result of this DATA step is that the data set Empty is created but contains no
observations, and the data set Full contains all of the observations from Cert.Usa.

data empty full;
set cert.usa;
output full;

run;

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Which SAS statement associates the fileref Crime with the raw data file C: \States
\Data\crime.dat?

filename crime 'c:\states\data\crime.dat';

®

b. filename crime c:\states\data\crime.dat;
¢. fileref crime 'c:\states\data\crime.dat';
d. filename 'c:\states\data\crime' crime.dat;

2. Which type of delimited file does PROC IMPORT read by default?

56 Chapter4 <+ Creating SAS Data Sets

a. logical record-length files
b. varying record-length files
c. fixed record-length files

d. illogical record-length files

3. Which program correctly imports only the first seven lines from the external file that
is delimited by a period (.) ? Hint: the first line in the external file contains variable
names that you want to read in.

a. options obs=7;

proc import data="C:\users\test.txt"
out=exam
dbms=dlm
replace;
getnames=yes;

run;

proc print data=exam;

run;

b. options obs=7;

proc import datafile="c:\users\test.txt"
out=exam
dbms=dlm
replace;
delimiter='.";
getnames=yes;

run;

proc print data=exam;

run;

C. proc import datafile="c:\users\test.txt"

out=exam
dbms=dlm
replace;
delimiter="' "';
getnames=no;

run;

proc print data=exam (obs=7);

run;

d. proc import datafile="c:\users\test.txt"

out=exam
dbms=csv
replace;
delimiter="',"';
getnames=no;

run;

proc print data=exam;
options obs=7;

run;

4. Which of the following pieces of information does SAS need in the DATA step in
order to read an Excel workbook file and write it out to a SAS data set?

a. a libref to reference the Excel workbook to be read
b. the name and location (using another libref) of the new SAS data set

c. the name of the Excel worksheet that is to be read

Chapter Quiz 57

d. all of the above

5. Which statement should you use if you want PROC IMPORT to generate SAS
variable names from the values in the first row of an input file?

a. getnames=no;
b. datarow=1;
C. guessingrows=1;
d. getnames=yes;
6. Which SAS program correctly imports data from an external file?

a. filename workbook 'C:\certdata\classl.csv';
proc import datafile=workbook.class
dbms=csv
out=classl
replace;
getnames=yes;

run;
b. filename workbook 'C:\certdata\workbook.txt';
proc import datafile=workbook
dbms=dlm

out=workbook
replace;
getnames=yes;

run;

C. filename workbook 'C:\certdata\workbook.txt"';
proc import datafile=class0l
dbms=dlm
out=class0lwork
replace;
getnames=yes;

run;
d. all of the above.
7. Which delimited input file can be imported using PROC IMPORT?

a

Region&State&Month&Expenses&Revenue
Southern&GA&JAN2001&2000&8000
Southern&GA&FEB2001&1200&6000
Southern&FL&FEB2001&8500&11000
Northern&NY&FEB2001&3000&4000
Northern&NY&MAR2001&6000&5000
Southern&FL&MAR2001&9800&13500
Northern&MA&MAR2001&1500&1000

"Africa", "Boot", "Addis Ababa","12","$29,761","$191,821","$769"
"Asia","Boot", "Bangkok","1",6"$1,996","$9,576","$80"

"Canada", "Boot", "Calgary","8","$17,720","$63,280", "$472"

"Eastern Europe", "Boot", "Budapest","22","$74,102","$317,515","$3,341"
"Middle East","Boot","Al-Khobar","10","$15,062","$44,658","$765"
"Pacific", "Boot", "Auckland","12","$20,141","$97,919","$962"

"South America", "Boot", "Bogota","19","$15,312","$35,805","$1,229"
"United States","Boot","Chicago","16",6"$82,483","$305,061","$3,735"
"Western Europe","Boot", "Copenhagen","2","$1,663","$4,657","$129"

58 Chapter4 <+ Creating SAS Data Sets

Region State Capital Bird

South Georgia Atlanta 'Brown Thrasher'

South 'North Carolina' Raleigh Cardinal
North Connecticut Hartford Robin

West Washington Olympia 'American Goldfinch'
Midwest Illinois Springfield Cardinal

d. all of the above

8. To override the DATA step default behavior that writes observations to output, what
should you use in a DATA step?

a. DROP= and KEEP= data set options
b. an OUTPUT statement

c. an OUT= option

d. aBY statement

Chapter 5

|dentifying and Correcting
SAS Language Errors

59

Error Messagest e
Types Of BIrors . ..o oo e
Syntax Brrorso e
Example: Syntax Error Messageso v vt in i

Correcting Common Errors
The Basics of Error Correctionoooti i
Resubmitting a Revised Program i,
The Basics of LOZIC Errorsottt
PUT Statementot e e e
Missing RUN Statementot vttt et et e i
Missing Semicolont e
Correcting the Error: Missing Semicolon.................. ...,
Unbalanced Quotation Marks i
Correcting the Error in the Windows Operating Environment
Correcting the Error in the UNIX Environment
Correcting the Error in the z/OS Operating Environment
Semantic Error: Invalid Option
Correcting the Error: Invalid Option

Chapter QUIZ

Error Messages

Types of Errors

Syntax Errors

SAS can detect several types of errors. Here are two common ones:

+ syntax errors that occur when program statements do not conform to the rules of the

SAS language

* semantic errors that occur when you specify a language element that is not valid for a

particular usage

When you submit a program, SAS scans each statement for syntax errors, and then
executes the step (if no syntax errors are found). SAS then goes to the next step and

60 Chapter 5 < Identifying and Correcting SAS Language Errors

repeats the process. Syntax errors, such as misspelled keywords, generally prevent SAS
from executing the step in which the error occurred.

Notes are written to the SAS log when the program finishes executing. When a program
that contains an error is submitted, messages about the error appear in the SAS log. Here
is what SAS does:

» displays the word ERROR
» identifies the possible location of the error

» gives an explanation of the error

Example: Syntax Error Messages

The following program contains a syntax error:

data work.admitfee; /R /
set cert.admit;

run;

proc prin data=work.admitfee; /+[BJ*/
var id name actlevel fee; /R /

run;

1 The DATA step creates a new SAS data set named Work.Admitfee from the
Cert.Admit data set.

2 The SAS keyword PRINT in PROC PRINT is spelled incorrectly. As a result, the
PROC step fails.

3 The VAR statement prints the values for the following variables only: ID, Name,
ActLevel, and Fee.

When the program is submitted, messages in the SAS log indicate that the procedure
PRIN was not found and that SAS stopped processing the PROC step because of errors.
No output is produced by the PRINT procedure, because the second step fails to execute.

Here is an explanation of the following log.
* The ERROR keyword is the notification of the error.

* The PRIN keyword in the SAS log is the possible location of the error in the
statement.

* The error explanation is not found.

Log 5.1 SAS Log

265 proc prin data=work.admitfee;

ERROR: Procedure PRIN not found.

268 var id name actlevel fee;

267 run;

NOTE: The SAS System stopped processing this step because of errors.

Errors in your statements or data might not be evident when you look at results
in the Results viewer. Review the messages in the SAS log each time you submit a
SAS program.

In addition to correcting spelling mistakes, you might need to resolve other common
syntax errors such as these:

» missing RUN statement

Correcting Common Errors 61

* missing semicolon
* unbalanced quotation mark
You might also need to correct a semantic error such as this:

* invalid option

Correcting Common Errors

The Basics of Error Correction

To correct simple errors, such as the spelling error here, type over the incorrect text,
delete text, or insert text. In the following program, the incorrect spelling of PRINT in
the PROC step is corrected.

data work.admitfee;
set cert.admit;

run;

proc print data=work.admitfee;
var id name actlevel fee;

run;

Resubmitting a Revised Program

After correcting your program, you can resubmit it.

62 Chapter 5 < Identifying and Correcting SAS Language Errors

Figure 5.1 Correct PRINT Procedure Output

The SAS System

Obs | ID Name ActlLevel Fee
1| 2458 | Murray, W HIGH 85.20
2| 2462 Almers, C HIGH 124.380
3 | 2501 Bonaventure, T LOW 149.75
4 | 2523 Johnson, R MOD 149.75
5 253% LaMance, K LOW 12480
6 | 2544 Jones, M HIGH 12430
7 | 2552 Reberson, P MOD 149.75
8 2555 King, E MOD 149.75
9 | 2563 Pitts, D LOW 12430

10 | 2568 Eberhardt, 5 LOW 12480
11 | 2571 Nunnelly, A HIGH 149.75
12 | 2572 Qberon, M LOW 85.20
13 | 2574 Peterson, V MOD 149.75
14 | 2575 Quiglay, M HIGH 12430
15 | 2578 Cameron, L MOD 12480
16 | 2579 Underwood, K | LOW 149.75
17 | 2584 Takahashi, ¥ MOD 124.30
18 2586 Derber, B HIGH 85.20
19 | 2588 | Ilvan, H LOW 85.20
20 | 2589 Wilcox, E HIGH 149.75
21 | 2595 Warren, C MOD 149.75

Remember to check the SAS log again to verify that your program ran correctly.

Log 5.2 SAS Log: No Error Messages

9231 data work.admitfee;
9232 set cert.admit;
9233 run;

NOTE: There were 21 observations read from the data set CERT.ADMIT.
NOTE: The data set WORK.ADMITFEE has 21 observations and 9 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds

cpu time 0.00 seconds

9234 proc print data=work.admitfee;
9235 var id name actlevel fee;
9236 run;

NOTE: There were 21 observations read from the data set WORK.ADMITFEE.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

Correcting Common Errors 63

The Basics of Logic Errors

The PUTLOG Statement

A logic error occurs when the program statements execute, but produce incorrect results.
Because no notes are written to the log, logic errors are often difficult to detect. Use the
PUTLOG statement in the DATA step to write messages to the SAS log to help identify
logic errors.

Syntax, PUTLOG statement
PUTLOG 'message';

message specifies the message that you want to write to the SAS log. It can include character
literals, variable names, formats, and pointer controls.

Note: You can precede your message text with WARNING, MESSAGE, or NOTE to better
identify the output in the log.

The PUTLOG statement can be used to write to the SAS log in both batch and
interactive modes. If an external file is open for output, use this statement to ensure that
debugging messages are written to the SAS log and not to the external file.

Temporary Variables
The temporary variables N _and ERROR can be helpful when you debug a DATA

step.
Variable Description Debugging Use
N The number of times the Displays debugging messages
DATA step iterated for a specified number of
iterations of the DATA step
_ERROR Initialized to 0, set to 1 when Displays debugging messages

an error occurs when an error occurs

Example: The DATA Step Produces Wrong Results but There Are No

Error Messages

The data set contains three test scores and homework grades for four students. The
program below is designed to select students whose average score is below 70. Although
the program produces incorrect results, there are no error messages in the log.

data work.grades;
set cert.class;
Homework=Homework*2;
AverageScore=MEAN (Scorel + Score2 + Score3 + Homework) ;
if AverageScore<70;

run;

64 Chapter 5 < Identifying and Correcting SAS Language Errors

A glance at the data set shows that there should be students whose mean scores are
below 70. However, the data set Work.Grades has zero observations and six

variables.

NOTE: There were 4 observations read from the data set
CERT.CLASS.

NOTE: The data set WORK.GRADES has 0 observations and 6
variables.

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

Use the PUTLOG statement to determine where the DATA step received incorrect
instructions. Place the PUTLOG statement before the subsetting IF.

PUTLOG Name= Scorel= Score2= Score3= Homework= AverageScore=;

29457 data work.grades;

29458 set cert.class;

29459 Homework=Homework*2;

29460 AverageScore=MEAN (Scorel + Score2 + Score3 +
29460! Homework) ;

29461 putlog Name= Scorel= Score2= Score3= Homework=
29461! AverageScore=;

29462 if AverageScore<70;

29463 run;

Name=LINDA Scorel=53 Score2=60 Score3=66 Homework=84
AverageScore=263

Name=DEREK Scorel=72 Score2=64 Score3=56 Homework=64
AverageScore=256

Name=KATHY Scorel=98 Score2=82 Score3=100 Homework=96
AverageScore=376

Name=MICHAEL Scorel=80 Score2=55 Score3=95 Homework=100
AverageScore=330

NOTE: There were 4 observations read from the data set

CERT.CLASS.
NOTE: The data set WORK.GRADES has 0 observations and 6
variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

Looking at the log, you can see the result of the PUTLOG statement. The data that is
listed in the middle of the log shows that the variables were read in properly, and the
variable Homework was adjusted to be weighted the same as Scores1-3. However, the
values of AverageScore are incorrect. They are above the available maximum grade.

There is a syntax error in the line that computes AverageScore: Instead of commas
separating the three score variables in the MEAN function, there are plus signs. Since
functions can contain arithmetic expressions, SAS simply added the four variables
together, as instructed, and computed the mean of a single number. That is why no
observations had values of AverageScore below 70.

To fix the error, replace the plus signs in the MEAN function with commas. You can
remove the PUTLOG statement and use a PROC PRINT statement to view your results.

data work.grades;
set cert.class;

PUT Statement

Correcting Common Errors 65

Homework=Homework*2;
AverageScore = MEAN (Scorel, Score2, Score3, Homework) ;
if AverageScore < 70;
run;
proc print data=work.grades;

run;

The figure below lists the names of students whose average score is below 70.

Figure 5.2 Corrected Program Output

Name | Scorel Score2 Score3 Homework AverageScore

LINDA 953 60 66 84 65.75
DEREK 72 64 56 64 64.00
Syntax

When the source of program errors is not apparent, you can use the PUT statement to
examine variable values and to print your own message in the log. For diagnostic
purposes, you can use IF-THEN/ELSE statements to conditionally check for values. For
more information about IF-THEN/ELSE statements, see “Using a Subsetting IF
Statement” on page 151.

Syntax, PUT statement:

PUT specification(s);

specification specifies what is written, how it is written, and where it is written. Here are
examples:

+ acharacter string

* one or more data set variables

+ the automatic variables N_and ERROR_

+ the automatic variable ALL

Example: Using the PUT Statement
The following example illustrates how to use the PUT statement to write messages to the
SAS log.

data work.test;
set cert.loan01;
if code='1l' then type='variable'; /**/
else if code='2' then type='fixed';
else type='unknown';
if type='unknown' then put 'MY NOTE: invalid value: ' code=; /*E&*/

run;

1 If the value of the variable Code equals 1, then the program returns the value for
Type as variable. If the value equals 2, then the return value for Type is £ixed.
Otherwise, the value of Type is returned as unknown.

66 Chapter 5 < Identifying and Correcting SAS Language Errors

2 If Type contains the value unknown, then the PUT statement writes a message to the
log.

Log 5.3 SAS Log

NOTE: Character values have been converted to numeric
values at the places given by: (Line): (Column) .
148173:11 148174:18

MY NOTE: invalid value: Code=3

MY NOTE: invalid value: Code=3

MY NOTE: invalid value: Code=3

Example: Character Strings

You can use a PUT statement to specify a character string to identify your message in the
log. The character string must be enclosed in quotation marks.

data work.loan01;
set cert.loan;
if code='1l' then type='variable';
else if code='2' then type='fixed';
else type='unknown';
put 'MY NOTE: The condition was met.';

run;

The following is printed to the SAS log.

Log 5.4 SAS Log

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

MY NOTE: The condition was met.

NOTE: There were 9 observations read from the data set
CERT.LOAN.

NOTE: The data set WORK.LOANO1l has 9 observations and 6
variables.

Example: Data Set Variables

You can use a PUT statement to specify one or more data set variables to be examined
for that iteration of the DATA step.

Note: When you specify a variable in the PUT statement, only its value is written to the
log. To write both the variable name and its value to the log, add an equal sign (=) to
the variable name.

data work.loan01;
set cert.loan;
if code='1l' then type='variable';
else if code='2' then type='fixed';
else type='unknown';
put 'MY NOTE: Invalid Value: ' code= type= ;

Correcting Common Errors 67

run;

The following is printed to the SAS log.

Log 5.5 SAS Log

MY NOTE: Invalid Value: Code=1 type=variable

MY NOTE: Invalid Value: Code=1 type=variable

MY NOTE: Invalid Value: Code=1 type=variable

MY NOTE: Invalid Value: Code=2 type=fixed

MY NOTE: Invalid Value: Code=2 type=fixed

MY NOTE: Invalid Value: Code=2 type=fixed

MY NOTE: Invalid Value: Code=3 type=unknown

MY NOTE: Invalid Value: Code=3 type=unknown

MY NOTE: Invalid Value: Code=3 type=unknown

NOTE: There were 9 observations read from the data set
CERT.LOAN.

NOTE: The data set WORK.LOANOl has 9 observations and 6
variables.

Example: Conditional Processing

You can use a PUT statement with conditional processing (that is, with IF-THEN/ELSE
statements) to flag program errors or data that is out of range. In the example below, the
PUT statement is used to flag any missing or zero values for the variable Rate.

data work.newcalc;
set cert.loan;
if rate>0 then Interest=amount* (rate/12);
else put 'DATA ERROR: ' rate= n = ;
run;

The following is printed to the SAS log:

Log 5.6 SAS Log

DATA ERROR: Rate=. N =7

NOTE: There were 10 observations read from the data set
CERT.LOAN.

NOTE: The data set WORK.NEWCALC has 10 observations and 5

variables.

Missing RUN Statement

Each step in a SAS program is compiled and executed independently from every other
step. As a step is compiled, SAS recognizes the end of the current step when it
encounters one of the following statements:

* a DATA or PROC statement, which indicates the beginning of a new step
* a RUN or QUIT statement, which indicates the end of the current step

Note: The QUIT statement ends some SAS procedures.

68 Chapter 5 < Identifying and Correcting SAS Language Errors

data work.admitfee; /= /
set cert.admit;
proc print data=work.admitfee; B/

var id name actlevel fee;
/KR

1 Even though there is no RUN statement after the DATA step, the DATA step
executes because the PROC step acts as a step boundary.

2 The PROC step does not execute. There is no following RUN statement for the step,
nor is there a DATA or PROC step following the PROC PRINT step. Therefore,
there is no indication that the step has ended.

3 The RUN statement is necessary at the end of the last step. If the RUN statement is
omitted from the last step, the program might not complete processing and might
produce unexpected results.

If you are programming in Enterprise Guide or SAS Studio, the system submits a RUN
statement after every program that you submit, so the above program would execute
normally.

Note: Although omitting a RUN statement is not technically an error, it can produce
unexpected results. A best practice is to always end a step with a RUN statement.

To correct the error, submit a RUN statement at the end of the PROC step.

run;

Missing Semicolon

One of the most common errors is a missing semicolon at the end of a statement. Here is
an example:

data work.admitfee;
set cert.admit;

run;

proc print data=work.admitfee
var id name actlevel fee;

run;

When you omit a semicolon, SAS reads the statement that lacks the semicolon (along
with the following statement) as one long statement.

Log 5.7 SAS Log: Error Messages

9240 proc print data=work.admitfee

9241 var id name actlevel fee;
22
76
ERROR 22-322: Syntax error, expecting one of the following: ;, (, BLANKLINE,

CONTENTS, DATA,

DOUBLE, GRANDTOTAL_LABEL, GRANDTOT_ LABEL, GRAND_LABEL,
GTOTAL_LABEL, GTOT_ LABEL,

HEADING, LABEL, N, NOOBS, NOSUMLABEL, OBS, ROUND, ROWS, SPLIT,
STYLE, SUMLABEL,

UNIFORM, WIDTH.
ERROR 76-322: Syntax error, statement will be ignored.
9242 run

Correcting Common Errors 69

Correcting the Error: Missing Semicolon

1. Find the statement that lacks a semicolon. You can usually find it by looking at the
underscored keywords in the error message and working backward.

2. Add a semicolon in the appropriate location.
3. Resubmit the corrected program.

4. Check the SAS log again to make sure there are no other errors.

Unbalanced Quotation Marks

Some syntax errors, such as the missing quotation mark after HIGH in the program
below, cause SAS to misinterpret the statements in your program.

data work.admitfee;
set cert.admit;
where actlevel='HIGH;

run;

proc print data=work.admitfee;
var id name actlevel fee;

run;

When the program is submitted, SAS is unable to resolve the DATA step, and a DATA
STEP running message appears at the top of the active window.

Both SAS Enterprise Guide and SAS Studio add a final line of code to stop
unbalanced quotation marks.

Sometimes a warning appears in the SAS log that indicates the following:
* A quoted string has become too long.

* A statement that contains quotation marks (such as a TITLE or FOOTNOTE
statement) is ambiguous because of invalid options or unquoted text.

When you have unbalanced quotation marks, SAS is often unable to detect the end of the
statement in which it occurs. In Enterprise Guide or SAS Studio, simply add the
balancing quotation mark and resubmit the program. However, in some environments,
this technique usually does not correct the error. SAS still considers the quotation marks
to be unbalanced.

Therefore, you need to resolve the unbalanced quotation mark by canceling the
submitted statements (in the Windows and UNIX operating environments) or by
submitting a line of SAS code (in the z/OS operating environment) before you recall,
correct, and resubmit the program.

Correcting the Error in the Windows Operating Environment
1. Press the Ctrl and Break keys or click the Break Icon @ on the toolbar.

2. Select 1. Cancel Submitted Statements, and then click OK.

70 Chapter 5 -« Identifying and Correcting SAS Language Errors

Tasking Manager X

Select:

(@) 1. Cancel Submitted Statements

() 2. Halt DATA step/PROC: DATASTEP
() C. Cancel the dialog

() T. Teminate the SAS System

3. Select Y to cancel submitted statements, and then click OK.

BREAK -= Submit X

Press.
(®) to cancel submitted statements,
() N to continue.

4. Correct the error and resubmit the program.

Correcting the Error in the UNIX Environment

1. Open the Session Management window and click Interrupt.

X sAS: Session Management - d X

2. Select 1. Cancel Submitted Statements, and then click Y.

X 5AS: TaskingM... — O X

[E

3. Correct the error and resubmit the program.

Correcting the Error in the z/0S Operating Environment

1. Submit an asterisk followed by a single quotation mark, a semicolon, and a RUN
statement.

*'; run;

Correcting Common Errors 71

2. Delete the line that contains the asterisk followed by the single quotation mark, the
semicolon, and the RUN statement.

3. Insert the missing quotation mark in the appropriate place.

4. Submit the corrected program.

You can also use the above method in the Windows and UNIX operating
environments.

Semantic Error: Invalid Option

An invalid option error occurs when you specify an option that is not valid in a particular
statement. In the program below, the KEYLABEL option is not valid when it is used
with the PROC PRINT statement.

data work.admitfee;
set cert.admit;
where weight>180 and (actlevel='MOD' or actlevel='LOW) ;
run;
proc print data=cert.admit keylabel;
label actlevel='Activity Level';
run;

When a SAS statement that contains an invalid option is submitted, a message appears in
the SAS log indicating that the option is not valid or not recognized.

Log 5.8 SAS Log: Syntax Error Message

9254 proc print data=cert.admit keylabel;
22
202
ERROR 22-322: Syntax error, expecting one of the following: ;, (, BLANKLINE,
CONTENTS, DATA,
DOUBLE, GRANDTOTAL LABEL, GRANDTOT LABEL, GRAND LABEL,
GTOTAL_LABEL, GTOT_LABEL,
HEADING, LABEL, N, NOOBS, NOSUMLABEL, OBS, ROUND, ROWS, SPLIT,
STYLE, SUMLABEL,
UNIFORM, WIDTH.
ERROR 202-322: The option or parameter is not recognized and will be ignored.
9255 label actlevel='Activity Level';
9256 run;

NOTE: The SAS System stopped processing this step because of errors.

Correcting the Error: Invalid Option
1. Remove or replace the invalid option, and check your statement syntax as needed.
2. Resubmit the corrected program.

3. Check the SAS log again to make sure there are no other errors.

72 Chapter 5 < Identifying and Correcting SAS Language Errors

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Suppose you have submitted a SAS program that contains spelling errors. Which set
of steps should you perform, in the order shown, to revise and resubmit the program?

a. * Correct the errors.

* Clear the SAS log.

* Resubmit the program.

* Check the Output window.

* Check the SAS log.
b. * Correct the errors.

* Resubmit the program.

* Check the Output window.
c. * Correct the errors.

* Clear the SAS log.

* Resubmit the program.

* Check the Output window.
d. + Correct the errors.

* Clear the Outputwindow.

* Resubmit the program.

* Check the Output window.

2. What happens if you submit the following program?

proc sort data=cert.stress out=maxrates;
by maxhr;
run;
proc print data=maxrates label double noobs;
label rechr='Recovery Heart Rate;
var resthr maxhr rechr date;
where toler='I' and resthr>90;
sum fee;
run;

a. SAS log messages indicate that the program ran successfully.
b. A log message might indicate an error in a statement that seems to be valid.
c. A SAS log message indicates that an option is not valid or not recognized.

d. A SAS log message might indicate that a quoted string has become too long or
that the statement is ambiguous.

3. What generally happens when a syntax error is detected?

a. SAS continues processing the step.

Chapter Quiz 73

b. SAS continues to process the step, and the SAS log displays messages about the
error.

c. SAS stops processing the step in which the error occurred, and the SAS log
displays messages about the error.

d. SAS stops processing the step in which the error occurred, and the Output
window displays messages about the error.

A syntax error occurs during the following actions:

a. Some data values are not appropriate for the SAS statements that are specified in
a program.

b. The code executes successfully, but produces incorrect results.

c. Program statements do not conform to the rules of the SAS language.

d. none of the above

How can you tell whether you have specified an invalid option in a SAS program?
a. A SAS log message indicates an error in a statement that seems to be valid.

b. A SAS log message indicates that an option is not valid or not recognized.

c. You cannot tell until you view the output from the program.

d. none of the above

Which of the following programs contains a syntax error?

a. proc sort data=cert.mysales;
by region;
run;

b. data=work.mysales;
set cert.salesl7;
where sales<5000;

run;

Cc. proc print data=work.mysales label;
label region='Sales Region';
run;

d. none of the above

What are the temporary variables that can be helpful when debugging a DATA step?
a. OBS

b. N_

c. ERROR_

d. bandconly

When the source of the errors in the program is not apparent, which statement or
statements can you use to examine errors and print messages to the log?

a. PUTLOG statement
b. PUT statement

c. VAR statement

d. aandb only

e. none of the above

74 Chapter 5 < Identifying and Correcting SAS Language Errors

9. What types of errors can the PUTLOG statement help you resolve?
a. syntax errors
b. semantic errors
c. logic errors

d. all of the above

Chapter 6

75

Creating Reports

Creatinga BasicReport 76
Selecting Variables e 77
The VAR Statement i 77
Removingthe OBS Column i 78
Identifying Observations 78
Using the ID Statement in PROCPRINT, 78
Example: ID Statementttt e 79
Example: ID and VAR Statement i 79
Selecting ObServationso vttt et e 80
Specifying WHERE EXPressionsovvt vttt 81
Using the CONTAINS Operatorovvt ittt et 82
Specifying Compound WHERE Expressionsccoviuiinenennn.. 82
Examples of WHERE Statements i, 82
Using System Options to Specify Observations 83
Examples: FIRSTOBS=and OBS=0ptionscouvuriininn.. 83
Using FIRSTOBS= and OBS= for Specific DataSets....................... 85
Example: FIRSTOBS= and OBS=as Data SetOptions 85
Sorting Data e 86
The SORT Procedure s 86
Example: PROC SORT e e e e e 86
Generating Column Totals 88
The SUM Statementottt ettt 88
Creating Subtotals for Variable Groupso, 89
Example: SUM Statementttt 90
Creating a Customized Layout with BY Groups and ID Variables 91
Example: ID, BY, and SUM Statementsvtiininrenenennnn... 91
Creating Subtotals on Separate Pages, 92
Example: PAGEBY Statement0, 93
Specifying Titles and Footnotes in Procedure Output 95
TITLE and FOOTNOTE Statementsiiiiieinninen. .. 95
Example: Creating Titles i 95
Example: Creating Footnotest 96
Modifying and Canceling Titles and Footnotes 97
Assigning Descriptive Labels 100
Temporarily Assigning Labels to Variables 100
Example: Using the LABEL Option in the PROC PRINT Statement.......... 101

Example: Using Multiple LABEL Statements 101

76 Chapter 6 + Creating Reports

Example: Using a Single LABEL Statement to Assign Multiple Labels 102
Using Permanently Assigned Labels 103
Chapter QUiz e 103

Creating a Basic Report

To produce a simple list report, you first reference the library where your SAS data set is
stored. You can also set system options to control the appearance of your reports. Then
you submit a PROC PRINT step.

Syntax, PROC PRINT step:

PROC PRINT DATA=SA4S-data-set;
RUN;
SAS-data-set is the name of the SAS data set to be printed.

In the program below, the PROC PRINT statement invokes the PRINT procedure and
specifies the data set Therapy in the SAS library to which the libref Cert has been
assigned.

libname cert 'C:\Users\Studentl\Cert';
proc print data=cert.therapy;
run;

Notice the layout of the resulting report below. These are the default behaviors:
» All observations and variables in the data set are printed.
* A column for observation numbers appears on the far left.

* Variables and observations appear in the order in which they occur in the data set.

Figure 6.1 Cert.Therapy Data Set (partial output)

Obs Date AerClass WalkJogRun Swim
1 JAN2012 56 78 14
2 FEB2012 32 109 19
3 MAR2012 35 106 22
4 APR2012 47 115 24

5 MAY2012 25 121 31

Selecting Variables T7

Selecting Variables

The VAR Statement

By default, PROC PRINT lists all the variables in a data set. You can select variables
and control the order in which they appear by using a VAR statement.

Syntax, VAR statement:
VAR variable(s);

variable(s) is one or more variable names, separated by blanks.

For example, the following VAR statement specifies that only the variables Age, Height,
Weight, and Fee be printed, in that order:

proc print data=cert.admit;
var age height weight fee;

run;

The procedure output from the PROC PRINT step with the VAR statement lists only the
values for those variables.

Figure 6.2 PRINT Procedure Output

The SAS System

Obs | Age | Height | Weight Fee
1) 27 72 1686 8520

34 66 152 | 124.80
3 61 123 149.75
43 63 137 149.75
51 71 158 124.80

29 76 193 124.80
32 67 151 149.75
35 7o 173 149.75

9 34 73 154 | 124.80
10| 45 64 172 124.80
11| 44 66 140 149.75
12| 28 62 118 8520
13 | 30 69 147 | 149.75
14| 40 69 163 | 124.80
15| 47 72 173 124.80
16 | B0 71 191 149.75
17 | 43 65 123 124.80
18| 25 75 188 85.20
19| 22 63 139 8520
20| 41 67 141 149.75
21| 54 71 163 149.75

[=- R = L S FUR K]

78 Chapter6 + Creating Reports

Removing the OBS Column
In addition to selecting variables, you can suppress observation numbers.
To remove the Obs column, specify the NOOBS option in the PROC PRINT statement.

proc print data=work.example noobs;
var age height weight fee;
run;

Figure 6.3 PRINT Procedure Output with No Observation Numbers

The SAS System

Age Height Weight Fee
27 72 1686 | 85.20
34 6& 152 | 124.80

3 61 123 | 149.75
43 63 137 | 149.75
51 7 158 | 124.80
29 76 193 | 124.80
32 67 151 | 149.75

35 70 173 | 149.75
34 73 154 | 124.80
49 64 172 | 124.80
44 BE 140 | 149.75
28 62 118 | 85.20

30 69 147 | 149.75
40 69 163 | 124.80
47 72 173 | 124.80
a0 71 191 | 149.75

43 65 123 | 124.80
25 75 188 @ 85.20
22 63 139 | 85.20
41 67 141 | 149.75
54 71 183 | 148.75

Identifying Observations

Using the ID Statement in PROC PRINT

The ID statement identifies observations using variable values, such as an identification
number, instead of observation numbers.

Syntax, ID statement in the PRINT procedure:
ID variable(s);

variable(s) specifies one or more variables to print whose value is used instead of the
observation number at the beginning of each row of the report.

Identifying Observations 79

Example: ID Statement

In the following example, the OBS column in the output is replaced with the variable
values for IDnum and LastName.

proc print data=cert.reps;
id idnum lastname;

run;

Here is the output produced by PROC PRINT:

Figure 6.4 PROC PRINT: ID Statement Output

1269
1935
1417
1839
111
1352
1332
1443

IDnum | LastName

CASTON
FERNANDEZ
NEWKIRK
NORRIS
RHODES
RIVERS
STEPHENSON
WELLS

FirstName | City State | Sex | JobCode | Salary Birth Hired HomePhone
FRANKLIMN | STAMFORD | CT Mo NAT 41690.00 06MAYG0 | 01DECSE0 203/781-3335
KATRINA | BRIDGEPORT | CT MA2 £1081.00 | 3IMAR42 | 190CT69 203/675-2962
WILLIAM PATERSON | NJ . MNAZ 52270.00 | 30JUNS2 10MARTT | 201/732-6611
DIANE MEW YORK YN F MAT 43433.00 02DEC58 | 06JULS1 | 718/384-1767
JEREMY PRIMCETOMN | NJ Mo NAT 40586.00 17JUL6T | 03NOWVS0 201/812-1837
SIMON MEW YORK NY M MNA2 5379.80 | 05DEC48 190CT74 | 718/383-3345
ADAM BRIDGEPORT CT Mo NAT 42178.00 20SEP53 | 07JUNTY | 203/675-1497
AGNES STAMFORD CT F MA1 42274 | 20NOVEG | 01SEPT9 | 203/781-5546

Example: ID and VAR Statement

You can use the ID and VAR statement together to control which variables are printed
and in which order. If a variable in the ID statement also appears in the VAR statement,
the output contains two columns for that variable.

proc print data=cert.reps;

id idnum lastname; VA 1
var idnum sex jobcode salary; VA 2 W

run;

1 The ID statement replaces the OBS column in the output with the IDnum and
LastName variable values.

2 The VAR statement selects the variables that appear in the output and determines the
order.

The variable IDnum appeared in both the ID statement and the VAR statement.
Therefore, IDnum appears twice in the output.

80 Chapter6 < Creating Reports

Output 6.1 PROC PRINT: ID and VAR Statement Output

IDnum | LastName IDnum | Sex | JobCode Salary
1269 | CASTON 1269 |M NAT 41690.00
1935 | FERNANDEZ | 1935 MNAZ 51081.00
1417 | NEWKIRK 1417 |, MA2 52270.00
1839 | NORRIS 1839 |F NAT 43433.00
1111 | RHODES M1 M MNAT 40586.00
1352 | RIVERS 1352 |IM MAZ 5379.80
1332 | STEPHENSON| 1332 M NAT 42178.00
1443 | WELLS 1443 |F NAT 42274

Selecting Observations

By default, a PROC PRINT step lists all the observations in a data set. You can control
which observations are printed by adding a WHERE statement to your PROC PRINT
step. There should be only one WHERE statement in a step. If multiple WHERE
statements are issued, only the last statement is processed.

Syntax, WHERE statement:
WHERE where-expression;

where-expression specifies a condition for selecting observations. The where-expression can be
any valid SAS expression.

Example Code 1 Using the WHERE Statement in PROC PRINT

proc print data=cert.admit;

var age height weight fee; /N /
where age>30; /B2 /
run;

1 The VAR statement selects the variables Age, Height, Weight, and Fee and displays
them in the output in that order.

2 The WHERE statement selects only the observations for which the value of Age is
greater than 30 and prints them in the output.

The following output displays only the observations where the value of Age is greater
than 30.

Identifying Observations 81

Figure 6.5 PROC PRINT Output with a WHERE Statement

Obs |Age | Height Weight| Fee | VAR Statement
2| 66 152 124.80
31 61 123 149.75

3

41 43 63 137 149.75
3l A 7 158 124.80
7| 32 67 151 | 149.75
&) 35 70 173 14975
91 34 73 164 ' 124.80
0f 49 64 172 | 12480
1] 44 66 140 14875
14 40 69 163 | 124.80
15 47 72 173 124.80
16| 60 71 191 | 149.75
17 43 65 123 1 124.80
200 M 67 141 148.75
21| 54 71 183 | 149.75

WHERE Statement

Specifying WHERE Expressions

In the WHERE statement, you can specify any variable in the SAS data set, not just the
variables that are specified in the VAR statement. The WHERE statement works for both
character and numeric variables. To specify a condition based on the value of a character
variable, follow these rules:

* Enclose the value in quotation marks.

* Write the value with lowercase, uppercase, or mixed case letters exactly as it appears
in the data set.

You use the following comparison operators to express a condition in the WHERE
statement:

Table 6.1 Comparison Operators in a WHERE Statement

Symbol Meaning Sample Program Code
=oreq equal to where name='Jones, C.';
A= or ne not equal to where temp ne 212;

>or gt greater than where income>20000;

<orlt less than where partno 1t "BGO5";

82 Chapter6 -+ Creating Reports

Symbol Meaning Sample Program Code
>=or ge greater than or equal to where 1d>='1543";
<=orle less than or equal to where pulse le 85;

Using the CONTAINS Operator

The CONTAINS operator selects observations that include the specified substring. The
symbol for the CONTAINS operator is ?. You can use either the CONTAINS keyword
or the symbol in your code, as shown below.

where firstname CONTAINS 'Jon';
where firstname ? 'Jon';

Specifying Compound WHERE Expressions

You can also use WHERE statements to select observations that meet multiple
conditions. To link a sequence of expressions into compound expressions, you use
logical operators, including the following:

Table 6.2 Compound WHERE Expression Operators

Operator, Symbol Description

AND & and, both. If both expressions are true, then the
compound expression is true.

OR or, either. If either expression is true, then the
compound expression is true.

Examples of WHERE Statements

* You can use compound expressions like these in your WHERE statements:

where age<=55 and pulse>75;
where area='A' or region='S';
where ID>'1050' and state='NC';

* When you test for multiple values of the same variable, you specify the variable
name in each expression:

where actlevel='LOW' or actlevel='MOD';
where fee=124.80 or fee=178.20;

* You can use the IN operator as a convenient alternative:

where actlevel in ('LOW', 'MOD') ;
where fee in (124.80,178.20);

» To control how compound expressions are evaluated, you can use parentheses
(expressions in parentheses are evaluated first):

Identifying Observations 83

where (age<=55 and pulse>75) or area='A';
where age<=55 and (pulse>75 or area='A');

Using System Options to Specify Observations

SAS system options set the preferences for a SAS session. You can use the FIRSTOBS=
and OBS= options in an OPTIONS statement to specify the observations to process from
SAS data sets.

Specify either or both of these options as needed:
» FIRSTOBS= starts processing at a specific observation.
* OBS= stops processing after a specific observation.

Note: Using FIRSTOBS= and OBS= together processes a specific group of
observations.

Syntax, FIRSTOBS=, and OBS= options in an OPTIONS statement:
FIRSTOBS=n
OBS=n

n is a positive integer. For FIRSTOBS=, n specifies the number of the first observation to
process. For OBS=, n specifies the number of the /ast observation to process. By default,
FIRSTOBS=1. The default value for OBS= is MAX, which is the largest signed, 8-byte integer
that is representable in your operating environment. The number can vary depending on your
operating system.

To reset the number of the last observation to process, you can specify OBS=MAX in
the OPTIONS statement.

options obs=max;

This instructs any subsequent SAS programs in the SAS session to process through the
last observation in the data set that is being read.

CAUTION:
Each of these options applies to every input data set that is used in a program or a
SAS process because a system option sets the preference for the SAS session.

Examples: FIRSTOBS= and OBS= Options

The following examples use the data set Cert.Heart, which contains 20 observations and
8 variables.

Example Code 2 Using the FIRSTOBS= Option

options firstobs=10; /*E*/
proc print data=cert.heart; /*EBJ*/
run;

1 Use the OPTIONS statement to specify the FIRSTOBS= option. In this example, the
FIRSTOBS=10 option enables SAS to read the 10th observation of the data set first
and read through the last observation.

2 A total of 11 observations are printed using the PROC PRINT step.

Here is the output:

84 Chapter6 -+ Creating Reports

Figure 6.6 PROC PRINT Output with FIRSTOBS=10

Obs | Patient | Sex | Survive Shock Arterial | Heart | Cardiac | Urinary
10 | 509 2 SURV OTHER 79 a4 256 90
11| 742 1 DIED HYPOWOL 100 54 135 0
12 | 609 2 DIED NOMNSHOCK 93 101 260 90
13| 318 2 DIED OTHER 72 81 410 405
14 | 412 1 SURV | BACTER 61 a7 296 44
15 601 1 DIED BACTER g4 101 260 3T
16 | 402 1 SURV CARDIO g8 137 312 75
17 | 98 2 S5URV CARDIO 84 a7 260 3vr
18 4 1 SURYV | HYPOWOL 81 149 406 200
19 50 2 SURV HYPOWOL 2 1M 332 12
20 2 2 DIED OTHER 101 114 424 97

You can specify the FIRSTOBS= and OBS= options together. In the following example,
SAS reads only through the 10th observation.

Example Code 3 Using the FIRSTOBS= and OBS= Options

options firstobs=1 obs=10; /N /
proc print data=cert.heart; /*EB*/

run;

1 The FIRSTOBS=1 option resets the FIRSTOBS= option to the default value. The
default value reads the first observation in the data set. When you specify OBS=10 in
the OPTIONS statement, SAS reads through the 10th observation.

2 A total of 10 observations are printed using the PROC PRINT step.

Here is the output:

Figure 6.7 PROC PRINT Output with FIRSTOBS=1 and Obs=10

Obs | Patient | Sex Survive Shock Arterial | Heart | Cardiac | Urinary
1203 1/ SURV | NOMSHOCK g8 95 66 110
2 54 1| DIED HYPOWOL 83 183 95 0
3| 664 2 SURV | CARDIO 72 111 332 12
4210 2 DIED BACTER 74 97 369 0
5101 2 DIED NEURD 80 130 297 0
6 102 2 SURV OTHER 87 107 47 65
7529 1| DIED CARDIO 103 106 217 15
8 524 2 DIED CARDIO 145 99 156 10
9| 426 1 SURV OTHER 68 77 410 75

-
=

509 2 SURV OTHER 79 84 256 90

Identifying Observations 85

You can also combine FIRSTOBS= and OBS= to process observations in the middle of
the data set.

Example Code 4 Processing Middle Observations of a Data Set

options firstobs=10 obs=15; /*E*/
proc print data=cert.heart; /B /
run;

1 When you set FIRSTOBS=10 and OBS=15, the program processes only observations
10 through 15.

2 A total of six observations are printed using the PROC PRINT step.

Here is the output:

Figure 6.8 PROC PRINT Output with FIRSTOBS=10 and Obs=15

Obs | Patient | Sex | Survive | Shock Arterial | Heart | Cardiac | Urinary
10 | 509 2 SURV OTHER 79 84 256 a0
11 742 1| DIED HYPOWVOL 100 54 135 0
12 609 2 DIED HONSHOCK 93 11 260 a0
13 318 2 DIED OTHER 72 81 410 405
14 412 1/ SURV | BACTER 61 87 296 44
15 601 1| DIED BACTER 84 1M 260 T

Using FIRSTOBS= and OBS= for Specific Data Sets

Using the FIRSTOBS= or OBS= system options determines the first or last observation,
respectively, that is read for all steps for the duration of your current SAS session or until
you change the setting. However, you can still do the following:

» override these options for a given data set
» apply these options to a specific data set only

To affect any single file, use FIRSTOBS= or OBS= as data set options instead of using
them as system options. You specify data set options in parentheses immediately
following the input data set name.

A FIRSTOBS= or OBS= specification from a data set option overrides the
corresponding FIRSTOBS= or OBS= system option, but only for that DATA step.

Example: FIRSTOBS= and OBS= as Data Set Options

As shown in the following example, this program processes only observations 10
through 15, for a total of 6 observations:

options firstobs=10 obs=15;
proc print data=clinic.heart;

run;

86 Chapter6 + Creating Reports

You can create the same output by specifying FIRSTOBS= and OBS= as data set
options, as follows. The data set options override the system options for this instance
only.

options firstobs=10 obs=15;
proc print data=clinic.heart (firstobs=20 obs=30);
run;

To specify FIRSTOBS= or OBS= for this program only, you could omit the OPTIONS
statement altogether and simply use the data set options.

Sorting Data

The SORT Procedure

By default, PROC PRINT lists observations in the order in which they appear in your
data set. To sort your report based on values of a variable, you must use PROC SORT to
sort your data before using the PRINT procedure to create reports from the data.

The SORT procedure does the following:

+ rearranges the observations in a SAS data set

» creates a new SAS data set that contains the rearranged observations
* replaces the original SAS data set by default

+ can sort on multiple variables

» can sort in ascending or descending order

+ treats missing values as the smallest possible values

Note: PROC SORT does not generate printed output.

Syntax, PROC SORT step:
PROC SORT DATA=SAS-data-set <OUT=SAS-data-set>;
BY <DESCENDING> BY-variable(s);
RUN;
* The DATA= option specifies the data set to be read.
* The OUT= option creates an output data set that contains the data in sorted order.

* BY-variable(s) in the required BY statement specifies one or more variables whose values
are used to sort the data.

+ The DESCENDING option in the BY statement sorts observations in descending order. If
you have more that one variable in the BY statement, DESCENDING applies only to the
variable that immediately follows it.

CAUTION:
If you do not use the OUT= option, PROC SORT overwrites the data set that is
specified in the DATA= option.

Example: PROC SORT

Sorting Data 87

proc sort data=cert.admit out=work.wgtadmit; /**/
by weight age;

run;

proc print data=work.wgtadmit; /B /
var weight age height fee; /B /
where age>30; 7~/

run;

1 The PROC SORT step sorts the permanent SAS data set Cert. Admit by the values of
the variable Age within the values of the variable Weight. The OUT= option creates
the temporary SAS data set Wgtadmit.

2 The PROC PRINT step prints a subset of the Wgtadmit data set.

3 The VAR statement selects only the variables Weight, Age, Height, and Fee to be
printed in the output.

4 The WHERE statement subsets the data by printing only those observations where
the values of Age are greater than 30.

The report displays observations in ascending order of Age within Weight.

Figure 6.9 Observations Displayed in Ascending Order of Age within Weight

The SAS System

Obs Weight Age Height Fee

2 123 AN 61 149.75
3 123 43 65 124.80
4 137 43 63 149.75
6 140 44 66 149.75
[} 141 H 67 149.75
9 151 32 67 149.75
10 152 34 66 124.80
11 124 34 73 124.80
12 158 51 71 124.80
13 163 40 69 | 124.80
15 172 4% 64 124.80
16 173 35 70 149.75
17 173 47 72 1 124.80
18 183 54 71 149.75
20 191 &0 71 149.75

Adding the DESCENDING option to the BY statement sorts observations in ascending
order of age within descending order of weight. Notice that DESCENDING applies only
to the variable Weight.

proc sort data=cert.admit out=work.wgtadmit;
by descending weight age;

run;

proc print data=work.wgtadmit;
var weight age height fee;
where age>30;

run;

88 Chapter 6

Creating Reports

Figure 6.10 Observations Displayed in Descending Order by Weight and Age

The SAS System

Obs | Weight | Age | Height Fee

2 191 | &0 71 148.75

183 54 71 149.75
5 173 | 35 70 14975
6 173 47 72 124.80
T 172 | 49 64 | 124.80
9 163 40 69 124.80
10 158 @ 51 7112480

11 154 34 73 124.80
12 152 34 66 | 124.80
13 181 32 67 | 149.75
15 141 H 67 14975
16 140 44 66 149.75
18 137 43 63 149.75
19 123 AN 61 149.75
20 123) 43 65 124.80

Generating Column Totals

The SUM Statement

To produce column totals for numeric variables, you can list the variables to be summed
in a SUM statement in your PROC PRINT step.

Syntax, SUM statement:
SUM variable(s);

variable(s) is one or more numeric variable names, separated by blanks.

The SUM statement in the following PROC PRINT step requests column totals for the
variable BalanceDue:

proc print data=cert.insure;
var name policy balancedue;
where pctinsured < 100;
sum balancedue;

run;

Column totals appear at the end of the report in the same format as the values of the
variables.

Figure 6.11 Column Totals

Obs

SO = | T Un | b |

13
14
15
17
18
20
21

The SAS System

Name
Almears, C
Bonaventure, T
Johnson, R
LaMance, K
Jones, M
Reberson, P
King, E

Pitts, D
Eberhardt, 5
Peterson, V
Quigley, M
Cameron, L
Takahashi, ¥
Derber, B
Wilcox, E
Warren, C

Generating Column Totals 89

Policy | BalanceDue

95824
87795
39022
63265
92473
25530
18744
60978
81589
TH986
97043
42351
54219
74653
94034
20347

156.05
9.48
61.04
4368
52.42
207.41
2719
310.82
17347
226.00
99.01
111.41
166.58
236.11
212.20
164.44

2279.0 |

Note: If you specify the same variable in the VAR statement and the SUM statement,
you can omit the variable name in the VAR statement. If a SUM variable is not
specified in the VAR statement, the variable to be summed is added to the output in
the order in which it appears in the SUM statement.

Creating Subtotals for Variable Groups

You might also want to group and subtotal numeric variables. You group variables using
the BY statement. SAS calls these groups BY groups. You can use the SUM statement to
create a subtotal value for variables in the group.

Syntax, BY statement in the PRINT procedure:

BY <DESCENDING> BY-variable-1

<...<DESCENDING> <BY-variable-n>>

<NOTSORTED>;

* BY-variable specifies a variable that the procedure uses to form BY groups. You can specify
more than one variable, separated by blanks.

» The DESCENDING option specifies that the data set is sorted in descending order by the

variable that immediately follows.

* The NOTSORTED option specifies that the observations in the data set that have the same
BY values are grouped together, but are not necessarily sorted in alphabetical or numeric
order. For example, the observations might be sorted in chronological order using a date
format such as DDMMYYY. If observations that have the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Note: The NOTSORTED option applies to all of the variables in the BY statement. You
can specify the NOTSORTED option anywhere within the BY statement. The

90 Chapter 6 - Creating Reports

requirement for ordering or indexing observations according to the values of BY
variables is suspended when you use the NOTSORTED option.

When you sort the data set, you must use the same BY variable in PROC SORT as you
do in PROC PRINT.

Example: SUM Statement

The following example uses the SUM statement and the BY statement to generate
subtotals for each BY group and a sum of all of the subtotals of the Fee variable.

proc sort data=cert.admit out=work.activity; /**/
by actlevel;

run;

proc print data=work.activity;
var age height weight fee;
where age>30;

sum fee; A 2
by actlevel; /< /
run;

1 The PROC SORT step sorts the permanent SAS data set Cert. Admit by the values of
the variable ActLevel. The OUT= option creates the temporary SAS data set
Activity.

2 The SUM statement produces column totals for the numeric variable Fee.

3 The BY statement specifies ActLevel as the variable that PROC PRINT uses to form
BY groups.

In the output, the BY variable name and value appear before each BY group. The BY
variable name and the subtotal appear at the end of each BY group.

Figure 6.12 BY-Group Output: High

Actlevel=HIGH

Obs Age Height Weight Fee

2 34 66 152 | 124.80

4 44 66 140 14875

53 40 69 163 | 124.80

T 4 67 141 149.75
Actlevel 549.10

Figure 6.13 BY-Group Output: Low

ActlLevel=LOW

Obs | Age Height | Weight Fee

8 61 123 14975

9 51 71 158 124.80

10 34 73 154 124.80

11 49 64 172 124.80

13 60 71 191 14975
ActLevel 673.90

Generating Column Totals 91

Figure 6.14 BY-Group Output: Mod

Actlevel=MOD

Obs | Age Height Weight Fee

15| 43 63 137 | 148.75

16 32 67 151 | 14875

17 35 70 173 | 14875

19 47 T2 173 124.80

20 43 65 123 124.80

21| 54 7 183 14975
Actlevel 848.60
2071.60

Creating a Customized Layout with BY Groups and ID Variables

In the previous example, you might have noticed the redundant information for the BY
variable. For example, in the PROC PRINT output below, the BY variable ActLevel is
identified both before the BY group and for the subtotal.

Figure 6.15 Creating a Customized Layout with BY Groups and ID Variables

ActlLevel=HIGH

Obs | Age Height Weight Fee

2| 34 66 152 | 124 80

4| 44 66 140 | 149.75

5| 40 69 163 | 124.80

7/ M &7 141 | 149.75
ActlLevel 549.10

To show the BY variable heading only once, use an ID statement and a BY statement
together with the SUM statement. Here are the results when an ID statement specifies
the same variable as the BY statement:

* The Obs column is suppressed.
* The ID or BY variable is printed in the left-most column.

» Each ID or BY value is printed only at the start of each BY group and on the line that
contains that group's subtotal.

Example: ID, BY, and SUM Statements

The ID, BY, and SUM statements work together to create the output shown below.

proc sort data=cert.admit out=work.activity; /**/
by actlevel;

run;

proc print data=work.activity;
var age height weight fee;
where age>30;
sum fee; /*E&*/
by actlevel; /**/

92 Chapter 6 - Creating Reports

id actlevel; 7~/
run;

1 The PROC SORT step sorts the permanent SAS data set Cert. Admit by the values of
the variable ActLevel. The OUT= option creates the temporary SAS data set
Activity.

2 The SUM statement produces column totals for the numeric variable Fee.

3 The BY statement specifies ActLevel as the variable that PROC PRINT uses to form
BY groups.

4 The ID statement specifies ActLevel as the variable that replaces the Obs column
and listed only once for each BY group and once for each sum. The BY lines are
suppressed, and the values of the ID statement variable ActLevel identify each BY

group.

Output 6.2 Creating Custom Output Example Output

The SAS System

Actlevel Age Height Weight Fee
HIGH 34 66 152 | 124.80
44 66 140 149.75
40 69 163 | 124.80
41 6T 141 149.75
HIGH 549.10

Actlevel Age Height Woeight Fee
LOW 3 61 123 149.75
51 71 158 | 124.80
34 73 154 | 124.80
49 64 172 | 124.80
60 71 191 149.75

LOW 673.90
Actlevel Age Height Weight Fee
MOD 43 63 137 | 14975

32 67 151 | 148.7%

35 70 173 14975

47 72 173 | 124.80

43 65 123 | 124.80

54 71 183 | 148.7%

MOD 843.60
2071.60

Creating Subtotals on Separate Pages

As another enhancement to your PROC PRINT report, you can request that each BY
group be printed on a separate page by using the PAGEBY statement.

Generating Column Totals 93

Syntax, PAGEBY statement:
PAGEBY BY-variable:

BY-variable identifies a variable that appears in the BY statement in the PROC PRINT step.
PROC PRINT begins printing a new page if the value of the BY variable changes, or if the
value of any BY variable that precedes it in the BY statement changes.

Note: The variable specified in the PAGEBY statement must also be specified in the BY
statement in the PROC PRINT step.

Example: PAGEBY Statement

The PAGEBY statement prints each BY group on a separate page. The following
example uses the PAGEBY statement to print the BY groups for the variable ActLevel
on separate pages. The BY groups are separated by horizontal lines in the HTML output.

proc sort data=cert.admit out=work.activity;
by actlevel;

run;

proc print data=work.activity;
var age height weight fee;
where age>30;
sum fee;
by actlevel;
id actlevel;
pageby actlevel;

run;

94 Chapter 6

Creating Reports

Output 6.3 PAGEBY Example Output

ActLevel Age | Height Weight

HIGH 34
44
40
41
HIGH

The

ActLevel Age
LOW K
51
34
49
60
LOW

The

Actl evel | Age
MoD 43
32
35
47
43
o4
MoD

66 162
66 140
69 163
67 141
SAS System

Height | Weight

61 123
71 158
73 154
B4 172
71 191
SAS System

Height | Weight

63
67
70
72
65
I

137
151
173
173
123
183

Fee
124 80
149.75
124.80
149.75
549.10

Fee
149.75
124 80
124.80
124.80
149.75
673.90

Fee
149.75
149.75
149.75
124 .80
124 80
149.75
848.60

2071.60

Specifying Titles and Footnotes in Procedure Output 95

Specifying Titles and Footnotes in Procedure
Output

TITLE and FOOTNOTE Statements

To make your report more meaningful and self-explanatory, you can assign up to 10
titles with procedure output by using TITLE statements before the PROC step. Likewise,
you can specify up to 10 footnotes by using FOOTNOTE statements before the PROC
step.

Because TITLE and FOOTNOTE statements are global statements, place them
anywhere within or before the PRINT procedure. Titles and footnotes are assigned as
soon as TITLE or FOOTNOTE statements are read; they apply to all subsequent
output.

Syntax, TITLE, and FOOTNOTE statements:
TITLE<n> 'text’;
FOOTNOTE<#n> 'text';

n is a number from 1 to 10 that specifies the title or footnote line, and fext’ is the actual title or
footnote to be displayed. The maximum title or footnote length depends on your operating
environment and on the value of the LINESIZE= option.

The keyword TITLE is equivalent to TITLEL. Likewise, FOOTNOTE is equivalent to
FOOTNOTEI. If you do not specify a title, the default title is The SAS System. No footnote is
printed unless you specify one.

As a best practice be sure to match quotation marks that enclose the title or footnote text.

Example: Creating Titles

In the following example, the two TITLE statements are specified for lines 1 and 3.
These two TITLE statements define titles for the PROC PRINT output. You can create a
blank line between two titles by skipping a number in the TITLE statement.

titlel 'Heart Rates for Patients with:';
title3 'Increased Stress Tolerance Levels';
proc print data=cert.stress;

var resthr maxhr rechr;

where tolerance='I1"';
run;

96 Chapter 6 - Creating Reports

Output 6.4 PROC PRINT Output with Titles

Heart Rates for Patients with:

Increased Stress Tolerance Levels

Obs | RestHR | MaxHR | RecHR

2 63 17 133
3 7a 177 139
g 70 167 122
11 65 181 141
14 74 152 113
15 78 158 108
20 73 189 138

Example: Creating Footnotes

In the following example, the two FOOTNOTE statements are specified for lines 1 and
3. These two FOOTNOTE statements define footnotes for the PROC PRINT output.
Since there is no FOOTNOTE2, a blank line is inserted between FOOTNOTEI and
FOOTNOTES3 in the output.

footnotel 'Data from Treadmill Tests';
footnote3 'lst Quarter Admissions';
proc print data=cert.stress;

var resthr maxhr rechr;

where tolerance='I1"';

run;

Footnotes appear at the bottom of each page of procedure output. Notice that footnote
lines are pushed up from the bottom. The FOOTNOTE statement that has the largest
number appears on the bottom line.

Specifying Titles and Footnotes in Procedure Output 97

Output 6.5 PROC PRINT Output with Footnotes

Heart Rates for Patients with

Increased Stress Tolerance Levels

Obs | RestHR MaxHR RecHR

2 Ga 171 133
3 78 177 139
8 70 167 122
11 65 181 14
14 74 152 113
15 75 158 108
20 [k 189 138

Data from Treadmill Tests

15t Quarter Admissions

Modifying and Canceling Titles and Footnotes

As global statements, the TITLE and FOOTNOTE statements remain in effect until you
modify the statements, cancel the statements, or end your SAS session. In the following
example, the titles and footnotes that are assigned in the PROC PRINT step also appear
in the output for the PROC MEANS step.

titlel 'Heart Rates for Patients with';
title3 'Increased Stress Tolerance Levels';
footnotel 'Data from Treadmill Tests';
footnote3 'lst Quarter Admissions';
proc print data=cert.stress;

var resthr maxhr rechr;

where tolerance='1"';
run;
proc means data=cert.stress;

where tolerance='1"';

var resthr maxhr;

run;

98 Chapter 6 - Creating Reports

Output 6.6 PROC PRINT Output with Titles and Footnotes

Heart Rates for Patients with

Increased Stress Tolerance Levels

Obs | RestHR | MaxHR | RecHR

2 63 17 133
3 7a 177 139
g 70 167 122
11 65 181 141
14 74 152 113
15 7h 158 108
20 73 189 138

Data from Treadmill Tests

15t Quarter Admissions

Output 6.7 PROC MEANS Output with Titles and Footnotes

Heart Rates for Patients with

Increased Stress Tolerance Levels

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

RestHR 7 725714286 5.0284803 65.0000000 75.0000000
MaxHR | 7 170.7142857 12.9449383 152.0000000 189.0000000

Data from Treadmill Tests

1st Quarter Admissions

Redefining a title or footnote line cancels any higher numbered title or footnote lines,
respectively. In the example below, defining a title for line 2 in the second report
automatically cancels title line 3.

titlel 'Heart Rates for Patients with';
title3 'Participation in Exercise Therapy';
footnotel 'Data from Treadmill Tests';
footnote3 'lst Quarter Admissions';
proc print data=cert.therapy;

var swim walkjogrun aerclass;
run;
title2 'Report for March';
proc print data=cert.therapy;

run;

Specifying Titles and Footnotes in Procedure Output 99
Output 6.8 PROC PRINT Output of Cert. Therapy with Title 1 and Title 3 (partial output)

Heart Rates for Patients with

Participation in Exercise Therapy

Obs | Swim WalkJogRun AerClass

1 14 78 L6
2 19 109 32
...more observations...
20 53 65 63
21 68 49 &0
22 41 70 T8
23 58 44 a2
24 a7 57 93

Data from Treadmill Tests

1st Quarter Admissions

Output 6.9 PROC PRINT Output of Cert. Therapy with Title 1 and Title 2 (partial output)

Heart Rates for Patients with

Report for March
Obs Date AerClass | WalkJogRun | Swim
1 JAN2012 56 78 14
2 FEB2012 32 109 19
more observations.
20 AUG2013 63 65 53
21 SEP2013 60 49 68
22 0CT2013 78 70 41
23 NOV2013 82 44 58
24 DEC2013 93 57 47

Data from Treadmill Tests
1st Quarter Admissions
To cancel all previous titles or footnotes, specify a null TITLE or FOOTNOTE

statement. A null TITLE or FOOTNOTE statement does not contain any number or text
and cancels all footnotes and titles that are in effect.

titlel; /= /
footnotel 'Data from Treadmill Tests'; /*m*/

footnote3 'lst Quarter Admissions';
proc print data=cert.stress;
var resthr maxhr rechr;
where tolerance='1"';
run;
footnote; & 3
proc means data=cert.stress;

100 Chapter 6 < Creating Reports

where tolerance='1"';
var resthr maxhr;

run;

1 Specifying the TITLEI statement cancels all previous titles and cancels the default
title The SAS System. The PRINT procedure and the MEANS procedure do not
contain any titles in the output.

2 Specifying the FOOTNOTE1 and FOOTNOTES3 statements before the PRINT
procedure results in footnotes in the PROC PRINT output.

3 Specifying a null FOOTNOTE statement cancels the previously defined footnotes
that are in effect.

Output 6.10 PROC PRINT Output with Footnotes and No Titles

Obs | RestHR | MaxHR | RecHR

2 68 171 133
3 78 177 139
a 70 167 122
11 65 181 141
14 74 152 113
13 7h 158 108
20 78 189 138

Data from Treadmill Tests

1st Quarter Admissions

Output 6.11 PROC MEANS Output with No Footnotes and No Titles

The MEANS Procedure

Variable | N Mean Std Dev Minimum | Maximum

RestHR | 7 725714286 5.0284903 65.0000000 780000000
MaxHR | 7 1707142857 12.8449383 152.0000000 189.0000000

Assigning Descriptive Labels

Temporarily Assigning Labels to Variables
To enhance your PROC PRINT by labeling columns:
» Use the LABEL statement to assign a descriptive label to a variable.

» Use the LABEL option in the PROC PRINT statement to specify that the labels be
displayed.

Assigning Descriptive Labels 101

Syntax, LABEL statement:

LABEL variablel ="labell’
variable2="label2’

Labels can be up to 256 characters long. Enclose the label in quotation marks.

Tip: The LABEL statement applies only to the PROC step in which it appears.

Example: Using the LABEL Option in the PROC PRINT Statement

In the PROC PRINT step below, the variable name WalkJogRun is displayed with the
label Walk/Jog/Run. Note that the LABEL option is in the PROC PRINT statement.

proc print data=cert.therapy label;
label walkjogrun='Walk/Jog/Run';

run;

Output 6.12 PROC PRINT Output with LABEL Option (partial output)

Obs Date AerClass Walk/Jog/Run Swim
1 JAN2012 56 78 14
2 FEB2012 32 109 19

more observations.

20 AUG2013 63 65 23
21 SEP2013 60 49 68
22 OCT2013 78 70 41
23 NOV2013 82 44 o8
24 DEC2013 93 af 47

If you omit the LABEL option in the PROC PRINT statement, PROC PRINT uses the
name of the column heading, walkjogrun, even though you specified a value for the
variable.

Example: Using Multiple LABEL Statements

The following example illustrates the use of multiple LABEL statements.

proc print data=cert.admit label; /*E+/
var age height;
label age='Age of Patient'; /*E*/
label height='Height in Inches'; A 3

run;

1 Use the LABEL option with the PROC PRINT statement. If you omit the LABEL
option in the PROC PRINT statement, PROC PRINT uses the variable name.

102 Chapter 6 < Creating Reports

2 You can assign labels in separate LABEL statements. In this example, label the
variable Age as Age of Patients.

3 This is the second LABEL statement in this example. Label the variable Height as
Height in Inches.

Output 6.13 PROC PRINT Output with Multiple LABEL Statements (partial output)

Obs | Age of Patient Height in Inches

1 27 72
2 34 66
...more observations...
17 43 65
18 25 75
19 22 63
20 41 &7
21 54 71

Example: Using a Single LABEL Statement to Assign Multiple
Labels

You can also assign multiple labels using a single LABEL statement.

proc print data=cert.admit label; VA 1
var actlevel height weight;
label actlevel='Activity Level' VA 2

height='Height in Inches'
weight='Weight in Pounds';

run;

1 Use the LABEL option with the PROC PRINT statement.

2 Assingle LABEL statement assigns three labels to three different variables. Note that
you do not need a semicolon at the end of your label until you are ready to close your
LABEL statement. In this example, the semicolon is at the end of the label for
Weight.

Output 6.14 PROC PRINT Output with a Single LABEL Statement (partial output)

Obs | Activity Level Height in Inches | Weight in Pounds

1 HIGH 72 168

2 HIGH 66 152
more observations.

17 | MOD 65 123

18 | HIGH 75 188

19 | LOW 63 139

20 | HIGH 67 141

21 | MOD 71 183

Chapter Quiz 103

Using Permanently Assigned Labels

When you use a LABEL statement within a PROC step, the label applies only to the
output from that step.

However, in PROC steps, you can also use permanently assigned labels. Permanent
labels can be assigned in the DATA step. These labels are saved with the data set, and
they can be reused by procedures that reference the data set.

For example, the DATA step below creates the data set Cert.Paris and defines the label
for the variable Date. Because the LABEL statement is inside the DATA step, the labels
are written to the Cert.Paris data set and are available to the subsequent PRINT
procedure.

data cert.paris;
set cert.laguardia;
where dest='PAR' and (boarded=155 or boarded=146) ;
label date='Departure Date';
run;
proc print data=cert.paris label;
var date dest boarded;

run;

Output 6.15 Using Permanent Labels

Obs | Departure Date | Dest | Boarded

1 04MARZ2012 PAR 146
2 07TMARZ2012 | PAR 155
3 04MAR2012 PAR 145
4 0TMARZ2012 PAR 185

Notice that the PROC PRINT statement still requires the LABEL option in order to
display the permanent labels. Other SAS procedures display permanently assigned labels
without additional statements or options.

For more information about permanently assigning labels, see “Assigning Descriptive
Labels” on page 100.

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Which PROC PRINT step below creates the sample output with the labels and
variables being displayed? Hint: PROC CONTENTS output is shown first to assist
you.

104 Chapter 6 < Creating Reports

Alphabetic List of Variables and Attributes

Variable | Type Len Format Label

6 Boarded MNum 3 On

2 | Date MNum g DATET.

3 Depart MNum 3 TIMES.

8 Deplaned | MNum 8

5 | Dest Char 3

1 | Flight Char 3

4 Orig Char 3

9 | Revenue Mum 3

T Transferred | Num 3 Changed
Date On Changed Flight

04MAR12 | 232 18 219

05MAR12 | 160 4219

06MAR12 163 14 219

0TMAR12 | 241 9219

08MAR12 183 11 219

09MAR12Z | 211 18 219

10MAR12 | 167 71219

a. proc print data=cert.laguardia noobs;
var on changed flight;
where on>=160;

run;

b. proc print data=cert.laguardia;
var date on changed flight;
where changeds>3;

run;

C. proc print data=cert.laguardia label;
id date;
var boarded transferred flight;
label boarded='On' transferred='Changed';
where flight='219"';
run;

d. proc print cert.laguardia noobs;
id date;
var date on changed flight;
where flight='219"';
run;

2. Which of the following PROC PRINT steps is correct if labels are not stored with the
data set?

a. proc print data=cert.totals label;
label region8='Region 8 Yearly Totals';

Chapter Quiz 105

run;

b. proc print data=cert.totals;
label region8='Region 8 Yearly Totals';
run;

C. proc print data cert.totals label noobs;
run;

d. proc print cert.totals label;
run;

3. Which of the following statements selects from a data set only those observations for
which the value of the variable Style is RANCH, SPLIT, or TWOSTORY?

a. where style='RANCH' or 'SPLIT' or 'TWOSTORY';

b. where style in 'RANCH' or 'SPLIT' or 'TWOSTORY';
C. where style in (RANCH, SPLIT, TWOSTORY) ;

d. where style in ('RANCH','SPLIT', 'TWOSTORY');

4. If you want to sort your data and create a temporary data set named Calc to store the
sorted data, which of the following steps should you submit?

a. proc sort data=work.calc out=finance.dividend;

run;

b. proc sort dividend out=calc;
by account;

run;

Cc. proc sort data=finance.dividend out=work.calc;
by account;

run;

d. proc sort from finance.dividend to calc;
by account;

run;

106 Chapter 6 < Creating Reports

5. Which of the following statements can you use in a PROC PRINT step to create this
output?

Month | Instructors | AerClass | WalkJogRun | Swim

1 1 37 91 83
2 2 41 102 27
3 1 52 98 19
4 1 61 118 22
5 3 49 88 29
i) 2 24 101 o4
7 1 45 91 69
8 2 63 65 a3
9 1 60 49 68
10 1 78 70 41
11 3 82 44 a8
12 2 93 af 47
20 685 974 570

a. var month instructors;

sum instructors aerclass walkjogrun swim;

b. var month;
sum instructors aerclass walkjogrun swim;

c. var month instructors aerclass;

sum instructors aerclass walkjogrun swim;
d. all of the above
6. What happens if you submit the following program?

proc sort data=cert.diabetes;

run;

proc print data=cert.diabetes;
var age height weight pulse;
where sex='F';

run;

a. The PROC PRINT step runs successfully, printing observations in their sorted
order.

b. The PROC SORT step permanently sorts the input data set.

c. The PROC SORT step generates errors and stops processing, but the PROC
PRINT step runs successfully, printing observations in their original (unsorted)
order.

d. The PROC SORT step runs successfully, but the PROC PRINT step generates
errors and stops processing.

7. 1If you submit the following program, which output does it create?

proc sort data=cert.loans out=work.loans;
by months amount;
run;

proc print data=work.loans noobs;

var months amount payment;

sum amount payment;

where months<360;

run;

a.

Months
12
24
36
48
60
60

Months
12
24
36
48
60
60

Months
12

48

60

24

360

600

Months
12
24
36
48
60
60

Amount
$3,500
38,700
$10,000

$5.000
$186,500
522,000
$67,700

Amount
$3,500
§8.700

$10,000
$5.000
$18,500
§22,000
67,700

Amount
$3,500
35,000
$16,500

38,700
$10,000
§22,000

Payment
5308.52
5403.47
5325.02
3128.02
5393.07
546743

$2,025.53

Payment
5308.52
5403.47
$325.02
5128.02
£393.07
S467.43

Payment
5308.52
5128.02
5393.07
540347
5325.02
5467.43

$67,700 | $2,025.53

Amount
$3,500
6,700
$10,000

35,000
518,500
522,000

Payment
5308.52
5403 .47
£325.02
5128.02
5393.07
5467 .43

$2,025.53

Chapter Quiz 107

8. Which statement below selects rows that satisfy both these conditions?

a.

The amount is less than or equal to $5000.

The account is 101-1092 or the rate equals 0.095.

where amount <= 5000 and

108 Chapter 6

Creating Reports

account='101-1092' or rate = 0.095;

where (amount le 5000 and account='101-1092")
or rate = 0.095;

where amount <= 5000 and
(account='101-1092"' or rate eq 0.095);

where amount <= 5000 or account='101-1092"'
and rate = 0.095;

9. What does PROC PRINT display by default?

a.

PROC PRINT does not create a default report; you must specify the rows and
columns to be displayed.

PROC PRINT displays all observations and variables in the data set. If you want
an additional column for observation numbers, you can request it.

PROC PRINT displays columns in the following order: a column for observation
numbers, all character variables, and all numeric variables.

PROC PRINT displays all observations and variables in the data set, a column
for observation numbers on the far left, and variables in the order in which they

occur in the data set.

Chapter 7

109

Understanding DATA Step
Processing

How SAS Processes Programs iiiiiiririniennnnn.. 109
Compilation Phase 112
Program Data Vector (PDV) e 112
Syntax Checking e e e 112
Data Set Variablesot 112
Descriptor Portion of the SASDataSet.............. 113
Execution Phase L 115
Initializing Variables e 115
SET Statementottt 115
Sequentially Process Statementsttt 115
End of the DATA Stepo oottt e e et 116
Iterations of the DATA Step oottt e 117
End-of-File Marker 119
End of the Execution Phase 119
Debugging a DATA Step i 120
Diagnosing Errors in the Compilation Phase 120
Diagnosing Errors in the Execution Phase 121
Debugging Data Errors oottt e 121
Using an Assignment Statement to Clean InvalidData 123
Testing Your Programs i 125
Limiting Observationsov vttt et e 125
Example: Viewing Executioninthe SASLog........... 125
Chapter QUIZ e e 126

How SAS Processes Programs

When you submit a DATA step, SAS processes the DATA step and creates a new SAS
data set. A SAS DATA step is processed in two phases:

110 Chapter 7 - Understanding DATA Step Processing

Figure 7.1 DATA Step Process

New SAS Data Set

Compilation——» Descriptor Portion
Phase

Execution——» Data Portion
Phase

When you submit a DATA step for execution, SAS checks the syntax of the SAS
statements and compiles them. In this phase, SAS identifies the type and length of each
new variable, and determines whether a variable type conversion is necessary for each
subsequent reference to a variable. During the compilation phase, SAS creates the
following items:

* program data vector (PDV)
» descriptor information

When the compilation phase is complete, the descriptor portion of the new data set is
created.

By default, a simple DATA step iterates once for each observation that is being created.
The flow of action in the execution phase of a simple DATA step is described as follows:

1. The DATA step begins with a DATA statement. Each time the DATA statement
executes, a new iteration of the DATA step begins, and the N_ automatic variable is
incremented by 1. The N _automatic variable represents the number of times the
DATA step has iterated.

2. SAS sets the newly created program variables to missing in the program data vector
(PDV).

3. SAS reads an observation from a SAS data set directly into the PDV. You can use
MERGE, SET, MODIFY, or UPDATE statement to read a record.

4. SAS executes any subsequent programming statements sequentially and updates the
PDV.

5. When SAS executes the last statement in the DATA step, all values (except
temporary variables and those marked to be dropped) are written as a single
observation to the data set. Note that variables that you read with a SET, MERGE,
MODIFY, or UPDATE statement are not reset to missing here.

6. SAS counts another iteration, reads the next observation, and executes the
subsequent programming statements for the current observation.

7. The DATA step terminates when SAS encounters the end-of-file in a SAS data set.

Figure 7.2 shows the general flow of DATA step processing for reading raw data.

How SAS Processes Programs 111

Figure 7.2 Compilation and Execution Phases of DATA Step Processing

Compiles
SAS statements
(includes syntax
checking)

Compilation Phase

Y

Creates
» a program data
vector (PDV)
+ descriptor

information
Execution Phase
¥
Eegins Sets Reads
_| with a DATA .| variable values to and stores observations
| statement {counts "| missing in the PDV. directly into the PDV.
iterations).
¥
Whrites Executes
an observation to the SAS | subsequent programming
data set, except those - statement sequentially and
marked to be dropped. updates the PDV.
Hetums P ,f/ "~
to the beginning of .
the SAS DATA step. | Yes End-of-File Marker ~_
SAS counts another [* Are there anymore /
iteration, reads, and ‘\\r\ecords to fea'if/-"
executes. “‘\H
Mo

/ SAS confirms that the \\
[input data file was read |
and displays the |
number of observations |
|\ and variables in the /

'\data set. /_,

112 Chapter7

Understanding DATA Step Processing

Compilation Phase

Program Data Vector (PDV)

Syntax Checking

The PDV is a logical area in memory where SAS builds a data set, one observation at a
time. When a program executes, SAS reads data values or creates them by executing
SAS language statements. The data values are assigned to the appropriate variables in
the PDV. From here, SAS writes the values to a SAS data set as a single observation.

Along with data set variables and computed variables, the PDV contains these automatic
variables:

» the N_ variable, which counts the number of times the DATA step iterates.

+ the ERROR variable, which signals the occurrence of an error caused by the data
during execution. The value of ERROR is 0 when there are no errors. When an
error occurs, whether one error or multiple errors, the value is set to 1. The default
value is 0.

Note: SAS does not write these variables to the output data set.

During the compilation phase, SAS scans each statement in the DATA step, looking for
syntax errors. Here are examples:

* missing or misspelled keywords
* invalid variable names
* missing or invalid punctuation

+ invalid options

Data Set Variables

As the SET statement compiles, a slot is added to the PDV for each variable in the new
data set. Generally, variable attributes such as length and type are determined the first
time a variable is encountered.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice= (CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollaré6.2;
run;

Figure 7.3 Program Data Vector

Program Data Vector

Item

IDnum

InStock | BackOrd | CostPerUnit N_| _ERROR_

Compilation Phase 113

Any variables that are created with an assignment statement in the DATA step are also
added to the PDV. For example, the assignment statement below creates two variables,
Total and SalePrice. As the statement is compiled, the variable is added to the PDV. The
attributes of the variable are determined by the expression in the statement. Because the
expression contains an arithmetic operator and produces a numeric value, Total and
SalePrice are defined as numeric variables and are assigned the default length of 8.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice=(CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollar6.2;

run;

Figure 7.4 Program Data Vector

Program Data Vector

Item

IDnum

InStock | BackOrd | CogtPerUnit | Total | SalePrice | N_| _ERROR_

Descriptor Portion of the SAS Data Set

The descriptor portion is information that SAS creates and maintains about each SAS
data set, including data set attributes and variable attributes. Here are examples:

+ the name of the data set and its member type
» the date and time that the data set was created
+ the names, data types (character or numeric), and lengths of the variables

Extended attribute descriptor information is defined by the user and includes the name of
the attribute, the name of the variable, and the value of the attribute. The descriptor
information also contains information about extended attributes (if defined in a data set).
You can use the CONTENTS procedure to display descriptor information.

proc contents data=work.update;

run;

114 Chapter 7 - Understanding DATA Step Processing

Figure 7.5 CONTENTS Procedure Output: Data Set Descriptor Specifics

Data Set Name WORK.UPDATE Observations 9
Member Type DATA Variables T
Engine V9 Indexes 0
Created 07/25/2018 15:13:34 Observation Length | 64
Last Modified 07/25/2018 15:13:34 Deleted Observations | 0
Protection Compressed MO
Data Set Type Sorted NO
Label

Data Representation | WINDOWS_B4

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information
Data Set Page Size 65536
Number of Data Set Pages | 1

First Data Page 1
Max Obs per Page 1021
Obs in First Data Page 9

Number of Data Set Repairs | 0

ExtendObsCounter YES

Filename C:\Users\Student \SAS Temporary Files\ TD18132_D7C049 ‘\wpdate sasThdat
Release Created 9.0401M4

Host Created X64_10PRO

Owner Name Student1

File Size 128KB

File Size (bytes) 131072

Alphabetic List of Variables and Attributes
| Variable Type Len Format

4 | BackOrd Num 8

5| CostPerUnit | Num 8 DOLLARG.2
2 | IDnum Char 5

3 | InStock Num 8

1| ltem Char 13

T | SalePrice Num 8 DOLLARG.2
6 | Total Num 8

At this point, the data set contains the six variables that are defined in the input data set
and in the assignment statement. N and ERROR are not written to the data set.
There are no observations because the DATA step has not yet executed. During
execution, each raw data record is processed and is then written to the data set as an
observation.

Execution Phase 115

Execution Phase

Initializing Variables

At the beginning of the execution phase, the value of N _is 1. Because there are no data
errors, the value of ERROR_ is 0.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice=(CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollar6.2;

run;

Figure 7.6 Program Data Vector: Initializing Variables

Program Data Vector

Item | IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice | _N_| _ERROR_

- - . - * 1 G

SET Statement

The remaining variables are initialized to missing. Missing numeric values are
represented by periods, and missing character values are represented by blanks.

The SET statement identifies the location of the input data set. Columns are added to the
PDV in the order in which they appear in the input table. Attributes are inherited from
the input table.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice= (CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollaré6.2;

run;

Sequentially Process Statements

After the SET statement, SAS executes the remaining statements sequentially and
updates the values in the PDV.

data work.update;
set cert.invent;

Total=instock+backord; /*ER*/
SalePrice= (CostPerUnit*0.65) +CostPerUnit; /*E&/

format CostPerUnit SalePrice dollaré6.2;

run;

1 SAS processes the first assignment statement to create the new variable, Total. The
values of InStock and BackOrd are added together to create a value for Total. See
Figure 7.7 below for a visual representation of how the PDV processes the first
assignment statement.

116 Chapter 7 - Understanding DATA Step Processing

2 SAS processes the second assignment statement to create the new variable,
SalePrice. The value of CostPerUnit is multiplied by 0.65, and the resulting value is
added to the value of CostPerUnit to create a value for SalePrice. See Figure 7.8
below for a visual representation of how the PDV processes the second assignment

statement.

Figure 7.7 PDV: Create a New Variable, Total

Program Data Vector

Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice _ERROR_
Bird Feeder | LGOSS 3 20 $5.00 23 . 0
Figure 7.8 PDV: Create a New Variable, SalePrice
Program Data Vector
Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice | _N_ | _ERROR_
Bird Feeder | LGOSS 3 20 $5.00 23 $8.25 1 0

The formats for each variable are applied before SAS adds the values to the PDV.

End of the DATA Step

At the end of the DATA step, several actions occur. First, the values in the PDV are
written to the output data set as the first observation.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice= (CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollaré6.2;

run;

Figure 7.9 Program Data Vector and Output Data Set

Program Data Vector
Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice _ERROR_
Bird Feeder | LGO88 3 20 $5.00 23 $8.25 0
SAS Data Set Work.Update Output
Obs | ltem IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice
1 | Bird Feeder LG088 3 20 $5.00 23 $8.25

Next, control returns to the top of the DATA step, and the value of N _increments from
1 to 2. Finally, the variable values in the PDV are reset to missing. Notice that the
automatic variable ERROR is reset to 0 if necessary.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice=(CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollar6.2;

run;

Execution Phase 117

Figure 7.10 Program Data Vector and Output Data Set

Program Data Vector

Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice N _ERROR_

Bird Feeder | LG088 3 20 $5.00 * * 2 0

SAS Data Set Work Update Output
Obs | Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice
1 Bird Feeder LG08s 3 20 $5.00 23 58.25

Iterations of the DATA Step

You can see that the DATA step works like a loop, repetitively executing statements to
read data values and create observations one by one. At the beginning of the second
iteration, the value of N _is 2, and ERROR is still 0. Each loop (or cycle of
execution) is called an iteration.

Figure 7.11 lIterations of the DATA Step

— data work.update;
set cert.invent:
Total=instock+backord:
SalePrice=(CostPerUnit*0.65) +CostPerlUnit;
format CostPerUnit SalePrice dollare.2;
run;

As the SET statement executes for the second time, the values from the second record
are read from the input table into the PDV.

Figure 7.12 Program Data Vector and Output Data Set

Program Data Vector

Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice N _ERROR_

6 Glass Mugs | SB0&2 6 12 $1.50 . * 2 0

SAS Data Set Work Update Output
Obs | ltem IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice
2 | 6 Glass Mugs | SB082 6 12 5150 18 5248

Next, the value for Total is calculated based on the current values for InStock and
BackOrd.

data work.update;
set cert.invent;
Total=instock+backord;
SalePrice=(CostPerUnit*0.65)+CostPerUnit;
format CostPerUnit SalePrice dollar6.2;

run;

118 Chapter 7 - Understanding DATA Step Processing

Figure 7.13 Program Data Vector and Output Data Set

Program Data Vector

Item IDnum | InStock

BackOrd | CostPerUnit | Total | SalePrice _ | _ERROR_
6 Glass Mugs | SBOSZ2 6 12 %1.50 18 . 0
L,] i
SAS Data Set Work. Update Output
Obs | Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice
2| 6 Glass Mugs | SB082 6 12 $1.50 18 $2.48
Next, the value for SalePrice is calculated based on the values for CostPerUnit,
multiplied by 0.65, and added to the value of CostPerUnit.
data work.update;
set cert.invent;
Total=instock+backord;
SalePrice= (CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollaré6.2;
run;
Figure 7.14 Program Data Vector and Output Data Set
Program Data Vector
Item IDnum | InSteck | BackOrd | CostPerUnit | Total | SalePrice _ERROR_
6 Glass Mugs | SBO82 6 12 $1.50 18 $2.48 0

SAS Data Set Waork Update Output
Obs | Item IDnum

2 6 Glass Mugs SB082 6 12

InStock BackOrd | CostPerUnit | Total

51.50

L-I-[Cc:stF':a\r'Unit X 0.65) :—T

SalePrice

o[_snl

The RUN statement indicates the end of the DATA step loop. At the bottom of the DATA
step, the values in the PDV are written to the data set as the second observation.

data work.update;
set cert.invent;
Total=instock+backord;

SalePrice= (CostPerUnit*0.65)+CostPerUnit;
format CostPerUnit SalePrice dollar6.2;

run;

Next, the value of N _increments from 2 to 3, control returns to the top of the DATA
step, and the values for Item, IDnum, InStock, BackOrd, CostPerUnit, Total, and

SalePrice are reset to missing.

data work.update;
set cert.invent;
Total=instock+backord;

SalePrice= (CostPerUnit*0.65)+CostPerUnit;
format CostPerUnit SalePrice dollar6.2;

run;

Execution Phase 119

Figure 7.15 Program Data Vector and Output Data

Program Data Vector
Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice | _N_ | _ERROR_
- - - L] - 3 D
| Resets to Missing |
| |
SAS Data Set Output Work.Update

Obs | Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice
1 | Bird Feeder LG088 3 20 $5.00 23 $8.25
2|6 Glass Mugs SB082 6 12 $1.50 18 $2.48
When PROC IMPORT reads raw data, SAS sets the value of each variable in the DATA
step to missing at the beginning of each cycle of execution, with these exceptions:
» variables that are named in a RETAIN statement
» variables that are created in a sum statement
* automatic variables
In contrast, when reading variables from a SAS data set, SAS sets the values to missing
only before the first cycle of execution of the DATA step. Therefore, the variables retain
their values until new values become available (for example, through an assignment
statement or through the next execution of a SET or MERGE statement). Variables that
are created with options in a SET or MERGE statement also retain their values from one
cycle of execution to the next.

End-of-File Marker

The execution phase continues in this manner until the end-of-file marker is reached in
the input data file. When there are no more records in the input data file to be read, the
data portion of the new data set is complete and the DATA step stops.

This is the output data set that SAS creates:

Figure 7.16 SAS Data Set Work.Update

ftem | |Dnum | InStock BackOrd | CostPerlnit Total SalePrice
1 Bird Feeder LG08s 3 20 $5.00 23 58325
2 6 Glass Mugs SB0E2 6 12 §1.50 18 5248
3 Glass Tray BQD43 12 6 §2.50 18 5413
4 Padded Hangrs MM256 15 6 §2.00 21 £330
b Jewelry Box AJ458 23 0 86.50 23 851073
6 Red Apron AQDT2 9 12 §1.00 21 $1.65
7 Crystal Vase AQRT2 7 0 §7.00 27 &11.55
8 Picnic Basket L5930 2 0 £3.50 21 5578
] Brass Clock ANS10 2 10 $11.50 12 51838

End of the Execution Phase

At the end of the execution phase, the SAS log confirms that the input data file was read,
and it displays the number of observations and variables in the data set.

120 Chapter 7

Understanding DATA Step Processing

Log 7.1 SAS Log

NOTE: There were 9 observations read from the data set
CERT.INVENT.

NOTE: The data set WORK.UPDATE has 9 observations and 7
variables.

Recall that you can display the data set with the PRINT procedure.

proc print data=work.update;

run;

Output 7.1 Output from the PRINT Procedure

Obs | Item IDnum | InStock | BackOrd | CostPerUnit | Total | SalePrice
1 | Bird Feeder LG0B8 3 20 $5.00 23 $8.25
2 | 6 Glass Mugs | 5B0g2 6 12 $1.50 18 $2.48
3 | Glass Tray BQ049 12 B 52.50 18 413
4 | Padded Hangrs | MM256 15 B $2.00 21 $3.30
5 | Jewelry Box AJ493 23 0 $6.50 23 $10.73
6 | Red Apron AQ0T2 9 12 $1.00 21 $1.65
T | Crystal Vase | AQE72 27 0 57.00 27 511.55
8 | Picnic Basket | LS930 21 0 $3.50 21 $5.78
9 | Brass Clock ANI10 2 10 $11.50 12 $18.98

Debugging a DATA Step

Diagnosing Errors in the Compilation Phase

Errors that are detected during the compilation phase include these:
+ misspelled keywords and data set names

* unbalanced quotation marks

+ invalid options

During the compilation phase, SAS can interpret some syntax errors (such as the
keyword DATA misspelled as DAAT). If it cannot interpret the error, SAS does the
following:

» prints the word ERROR followed by an error message in the SAS log

+ compiles but does not execute the step where the error occurred, and prints the
following message:

NOTE: The SAS System stopped processing this step because of errors.

Some errors are explained fully by the message that SAS prints; other error messages are
not as easy to interpret. For example, because SAS statements are free-format, when you
fail to end a SAS statement with a semicolon, SAS cannot detect the error.

Debugging a DATA Step 121

Diagnosing Errors in the Execution Phase

When SAS detects an error in the execution phase, the following can occur, depending
on the type of error:

* A note, warning, or error message is displayed in the SAS log.
* The values that are stored in the PDV are displayed in the SAS log.

» The processing of the step either continues or stops.

Debugging Data Errors

Recall that data errors occur when data values are not appropriate for the SAS statements
that are specified in a program. SAS detects data errors during program execution. When
a data error is detected, SAS continues to execute the program.

In general, SAS procedures analyze data, produce output, or manage SAS files. In
addition, SAS procedures can be used to detect invalid data. In addition to the PRINT
procedure showing missing values, the following procedures can be used to detect
invalid data:

« PROC FREQ
« PROC MEANS

The FREQ procedure detects invalid character and numeric values by looking at distinct
values. You can use PROC FREQ to identify any variables that were not given an
expected value.

Syntax, FREQ procedure:

PROC FREQ DATA=SAS-data-set <NLEVELS>;
TABLES variable(s);
RUN;

+ The NLEVELS option displays a table that provides the number of distinct values for each
variable that is named in the TABLES statement.

+ The TABLES statement specifies the frequency tables to produce based on the number of
variables that are specified.

In the following example, the data set contains invalid characters for the variables
Gender and Age. PROC FREQ displays the distinct values of variables and is therefore
useful for finding invalid values in data. You can use PROC FREQ with the TABLES
statement to produce a frequency table for specific variables.

proc freq data=cert.pats;
tables Gender Age;
run;

In the following figures, notice the valid (M and F) and invalid (G) values for Gender,
and the valid and invalid (202) values for Age. In both the Gender and Age FREQ
tables, data in one observation needs to be cleaned.

122 Chapter 7 + Understanding DATA Step Processing

Output 7.2 FREQ Procedure Output

Cumulative Cumulative

Frerquency| Percent | Frequency Percent

F 10 6667 10 66.67
© 2 1333 12 80.00
M 3 2000 15 100.00

Cumulative | Cumulative
Frequency Percent | Frequency Percent

16 1 667 1 667
18 1 667 2 1333
39 2 1333 4 26 67
" 1 667 5 33.33
2 1 667 6 40.00
18 1 667 7 46.67
56 1 667 8 5333
57 1 667 9 60 00
59 1 667 10 66.67
60 1 667 1 73.33
63 1 667 12 80 00
64 1 667 13 86.67

1 667 14 93.33

1 667 15 100.00

The MEANS procedure can also be used to validate data because it produces summary
reports that display descriptive statistics. For example, PROC MEANS can show
whether the values for a particular variable are within their expected range.

Syntax, MEANS procedure:
PROC MEANS DATA=SAS-data-set <statistics>;
VAR variable(s);
RUN;
» The statistics to display can be specified as an option in the PROC MEANS statement.

» The VAR statement specifies the analysis variables and their order in the results.

Using the same data set as in the previous example, you can submit PROC MEANS to
determine whether the age of all test subjects is within a reasonable range. Notice that
the VAR statement is specified with that particular variable (Age) to get the statistical
information, or range, of the data values.

proc means data=cert.pats;
var Age;
run;

Debugging a DATA Step 123

The following figure shows the output for the MEANS procedure. It displays a range of
16 to 202, which clearly indicates that there is invalid data somewhere in the Age
column.

Output 7.3 MEANS Procedure Output

Analysis Variable : Age

N Mean Std Dev | Minimum Maximum

15 61.2666667 453375698 16.0000000€202.000000U2

Using an Assignment Statement to Clean Invalid Data

You can use an assignment statement or a conditional clause to programmatically clean
invalid data when it is identified.

For example, if your input data contains a field and that field contains an invalid value,
you can use an assignment statement to clean your data. To avoid overwriting your
original data set, you can use the DATA statement to create a new data set. The new data
set contains all of the data from your original data set, along with the correct values for
invalid data.

The following example assumes that Gender has an invalid value of G in the input data.
This error might be the result of a data entry error. If G should actually be M, it is possible
to correct the invalid data for Gender by using an assignment statement along with an IF-
THEN statement:

data work.pats_clean;

set cert.pats;

gender=upcase (Gender) ;

if Gender='G' then Gender='M';
run;
proc print data=work.pats clean;
run;

Notice that two observations contain invalid values for Age. These values exceed a
maximum value of 100. It is possible to uniquely identify each of the observations by
specifying the variable ID. After checking the date of birth in each of the observations
and determining the correct value for Age, you can change the data by inserting an IF-
THEN-ELSE statement:

data work.clean data;
set cert.pats;
gender=upcase (Gender) ;
if Gender='G' then Gender='M';
if 1d=1147 then age=65;
else if id=5277 then age=75;
run;
proc print data=work.clean data;
run;

124 Chapter 7 + Understanding DATA Step Processing

Output 7.4 PROC PRINT Output of Work.Clean _Data Data Set

Obs ID | Gender Age

11129 F 48
2[1147 M 65
3(1387 | F 57
42304 F 16
52486 F 63
64759 F 60
7|5277 F 78
85438 F 42
9/ 6745 | M 18
10 6488 F 59
11 8045 M 40
12 8125 M 39
13 9012 F 39
14 9125 F 56
15 9968 | M 64

Another way of ensuring that your output data set contains valid data is to
programmatically identify invalid data and delete the associated observations from your
output data set:

data work.clean data;
set cert.pats;
gender=upcase (Gender) ;
if Gender='G' then Gender='M';
if Age>110 then delete;
run;
proc print data=work.clean data;
run;

Testing Your Programs 125

Output 7.5 PROC PRINT Output of Work.Clean_Data Data Set with Deleted Observations

Obs ID | Gender | Age

1 129 F 48
21387 F a7
3 2304 F 16
4 2486 F 63
2 4759 F 60
6 5438 F 42
T 6745 M 18
& 6488 F 53
9 8045 M 40
10 8125 M 39
119012 F 39
12 9125 F 56
13 9968 M 64

Testing Your Programs

Limiting Observations

Remember that you can use the OBS= option in the SET statement to limit the number
of observations that are read or created during the execution of the DATA step.

data work.limitobs;
set cert.invent (obs=10);
total=instock+backord;
run;

When processed, this DATA step creates the Work.LimitObs data set with variables but
with only 10 observations.

Example: Viewing Execution in the SAS Log

You can view the execution process in the SAS log. Use the PUTLOG statement to print
the PDV in the SAS log. This enables you to view the execution process as the control
goes from one record to the next. You can also place the PUTLOG statement before the
FORMAT statement to see how the variables are being populated.

data work.update;
set cert.invent;
putlog 'PDV After SET Statement';
putlog all ;
Total=instock+backord;
SalePrice=(CostPerUnit*0.65) +CostPerUnit;
format CostPerUnit SalePrice dollar 6.2;
run;

126 Chapter 7 + Understanding DATA Step Processing

Log 7.2 SAS Log

PDV After SET Statement
Item=Bird Feeder IDnum=LG088 InStock=3 BackOrd=20
CostPerUnit=$5.00 Total=. SalePrice=. _ERROR =0 _N =1

PDV After SET Statement
Item=6 Glass Mugs IDnum=SB082 InStock=6 BackOrd=12
CostPerUnit=$1.50 Total=. SalePrice=. ERROR =0 N =2

PDV After SET Statement

Item=Glass Tray IDnum=BQ049 InStock=12 BackOrd=6
CostPerUnit=$2.50 Total=. SalePrice=. ERROR =0 N =3
PDV After SET Statement

Item=Padded Hangrs IDnum=MN256 InStock=15 BackOrd=6
CostPerUnit=$2.00 Total=. SalePrice=. ERROR =0 N =4

PDV After SET Statement

Item=Jewelry Box IDnum=AJ498 InStock=23 BackOrd=0
CostPerUnit=$6.50 Total=. SalePrice=. ERROR =0 N =5
PDV After SET Statement

Item=Red Apron IDnum=AQ072 InStock=9 BackOrd=12
CostPerUnit=$1.00 Total=. SalePrice=. ERROR =0 N =6

PDV After SET Statement
Item=Crystal Vase IDnum=AQ672 InStock=27 BackOrd=0
CostPerUnit=$7.00 Total=. SalePrice=. ERROR =0 N =7

PDV After SET Statement

Item=Picnic Basket IDnum=LS930 InStock=21 BackOrd=0
CostPerUnit=$3.50 Total=. SalePrice=. ERROR =0 N =8
PDV After SET Statement

Item=Brass Clock IDnum=AN910 InStock=2 BackOrd=10
CostPerUnit=$11.50 Total=. SalePrice=. ERROR =0 N =9

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Which of the following is not written to the output during the compilation phase?
a. the data set descriptor
b. the first observation
c. the program data vector
d. the N and ERROR automatic variables

2. During the compilation phase, SAS scans each statement in the DATA step, looking
for syntax errors. Which of the following is not considered a syntax error?

a. incorrect values and formats
b. invalid options or variable names

c. missing or invalid punctuation

Chapter Quiz 127

d. missing or misspelled keywords

Unless otherwise directed, how does the DATA step execute?
a. once for each compilation phase

b. once for each DATA step statement

c. once for each record in the input file

d. once for each variable in the input file

At the beginning of the execution phase, the value of N is 1, the value of
_ERROR is 0, and the values of the remaining variables are set to the following:

a. 0

b. 1

c. undefined
d. missing

Suppose you run a program that causes three DATA step errors. What is the value of
the automatic variable ERROR _when the observation that contains the third error
is processed?

a. 0
b. 1
c. 2
d. 3

Which of the following actions occurs at the beginning of an iteration of the DATA
step?

a. The automatic variables N and ERROR are incremental by one.
b. The DATA step stops execution.
c. The descriptor portion of the data set is written.

d. The values of variables created in programming statements are reset to missing in
the program data vector.

Consider the following DATA step. Based on the sample input file below, in what
order are the variables stored in the new SAS data set?

data work.fin2;
set cert.finance;
if Salary>25000 then Raise=0.03;
else Raise=0.05;
NewSalary=(Salary*Raise)+Salary;

run;
55N | Name | Salary Date

1 025-46-5261 Rudelich 35000 D2JANTT
2 074539852 Vincent 35000 02JANTT
3 228-38-9649 Benito 28000 16JANTY
4 442-21-8075 Sirignano 5000 OGFEB17
5 446-93-2122 Harbinger 33500 OGFEB17
6 776-84-5351 Phillipon 29750 DEJUNTE
7 925-75-0218 Gurter 27500 DEJUNTE

a. SSN Name Salary Date Raise NewSalary

128 Chapter 7 + Understanding DATA Step Processing

b. Raise NewSalary SSN Name Salary Date
c. NewSalary Raise SSN Name Salary Date
d. SSN Name Date Salary Raise NewSalary
8. What happens when SAS cannot interpret syntax errors?
a. Data set variables contain missing values.
b. The DATA step does not compile.
c. The DATA step still compiles, but it does not execute.
d. The DATA step still compiles and executes.
9. What is wrong with this program?

data work.fin2;
set cert.finance;
length Raise $9;
if Salary>25000 then Raise='3 Percent';
else Raise='5 Percent';
if Salary>25000 then NewSalary=(25000%0.03)+Salary;
else NewSalary=(Salary*0.05)+Salary;
length Bonus $5;
Bonus=Raise*0.02;
run;

a. There is a missing semicolon on the second line.

b. There is a missing semicolon on the third line.

c. The variables Bonus and Raise have the incorrect length.
d. The variable type for Bonus is incorrect.

10. Which procedure produces distinct values of variables and can be used to clean your
data?

a. PROC CONTENTS
b. PROC MEANS

c. PROC FREQ

d. PROC PRINT

11. At the start of DATA step processing, during the compilation phase, variables are
created in the program data vector (PDV), and observations are set to which of the

following:
a. blank.
b. missing.
c. 0.

d. there are no observations.

Chapter 8

129

BY-Group Processing

Definitions 129

Preprocessing Data 130
Determine Whether the Data Requires Preprocessing 130
Example: Sorting Observations for BY-Group Processing 130

FIRST. and LAST. DATA Step Variables 131
How the DATA Step Identifies BY Groupso, .. 131
How SAS Determines FIRST.variable and LAST.variable 132
Example: Grouping Observations Using One BY Variable 132
Example: Grouping Observations Using Multiple BY Variables.............. 134

Chapter QUIZ e e 137

Definitions
BY-group processing

is a method of processing observations from one or more SAS data sets that are
grouped or ordered by values of one or more common variables.

BY variable
names a variable or variables by which the data set is sorted. All data sets must be
ordered by the values of the BY variable.

BY value
is the value of the BY variable.

BY group
includes all observations with the same BY value. If you use more than one variable
in a BY statement, a BY group is a group of observations with the same combination
of values for these variables. Each BY group has a unique combination of values for
the variables.

FIRST.variable and LAST.variable
are variables that SAS creates for each BY variable. SAS sets FIRST.variable when
it is processing the first observation in a BY group, and sets LAST.variable when it
is processing the last observation in a BY group. These assignments enable you to
take different actions, based on whether processing is starting for a new BY group or
ending for a BY group.

130 Chapter 8 + BY-Group Processing

Preprocessing Data

Determine Whether the Data Requires Preprocessing

Before you perform BY-group processing on one or more data sets using the SET,
MERGE, and UPDATE statements, you must check the data to determine whether it
requires preprocessing. The data requires no preprocessing if the observations in all of
the data sets occur in one of the following patterns:

» ascending or descending numeric order
» ascending or descending character order

* not alphabetical or numerical order, but grouped in some way, such as by calendar
month

If the observations are not in the order that you want, sort the data set before using BY-
group processing.

Example: Sorting Observations for BY-Group Processing

You can use the SORT procedure to change the physical order of the observations in the
data set. You can either replace the original data set, or create a new, sorted data set by
using the OUT= option of the SORT procedure. In this example, PROC SORT
rearranges the observations in the data set Cert.Usa in ascending order based on the
values of the variable Manager. Then, the sorted data is created as a new, sorted data set
Work.Usa.

Note: The default sort order for the SORT procedure is ascending.

proc sort data=cert.usa out=work.usa;
by manager;

run;

proc print data=work.usa;

run;

Specify the variables in the PROC SORT BY statement in the same order that you intend
to specify them in subsequent DATA or PROC steps.

FIRST. and LAST. DATA Step Variables 131

The following output shows the Work.Usa data set sorted by the variable Manager in
ascending order.

Output 8.1 Sorted Work.Usa Data Set

Obs Dept | WageCat | WageRate | Manager| JobType
1| ADM10 S 3392.50 | Coxe 3
2| ADM10 S 3420.00 | Coxe 50
3| ADM10 S 6862.50 | Coxe 50
4 ADM10 H 13.65 | Coxe 240
5| ADM20 S 4522 50 | Coxe 240
6| ADM20 S 2960.00 | Delgado 240
7| ADM20 S 5260.00 | Delgado 240
& | ADM20 S 1572 50 | Delgado 420
9| ADM30 S 3819.20 | Delgado 420
10 | ADM30 | S 1813.30 | Delgado 440
11 | CAM10 | S 6855.90 | Overby 1
12 | CAM10 | S 4045.80 | Overby 5
13 | CAM20 | S 4480.50 | Overby 10
14 | ADM10 | S 5910.80 | Owverby 20
15 | CAM10 | S 9073.80 | Overby 20

FIRST. and LAST. DATA Step Variables

How the DATA Step Identifies BY Groups

In the DATA step, SAS identifies the beginning and end of each BY group by creating
the following two temporary variables:

* FIRST.variable
» LAST.variable

The temporary variables are available for DATA step programming, but they are not
added to the output data set. Their values indicate whether an observation is one of the
following positions:

+ the first one in a BY group
+ the last one in a BY group
* neither the first nor the last one in a BY group

* both first and last, as is the case when there is only one observation in a BY group

132 Chapter 8 + BY-Group Processing

How SAS Determines FIRST.variable and LAST.variable

* When an observation is the first in a BY group, SAS sets the value of the
FIRST.variable to 1. This happens when the value of the variable changed from the
previous observation.

» For all other observations in the BY group, the value of FIRST.variable is 0.

* When an observation is the last in a BY group, SAS sets the value of LAST.variable
to 1. This happens when the value of the variable changes in the next observation.

» For all other observations in the BY group, the value of LAST.variable is 0.

» For the last observation in a data set, the value of all LAST.variable variables are set
to 1.

Example: Grouping Observations Using One BY Variable

In this example, the Cert.Usa data set contains payroll information for individual
employees. Suppose you want to compute the annual payroll by department. Assume
2,000 work hours per year for hourly employees.

Before computing the annual payroll, you need to group observations by the values of
the variable Dept.

Output 8.2 Sample Data Set: Cert.Usa

Obs Dept | WageCat | WageRate Manager JobType

1| ADMI0 S 3392.50 Coxe 3
2 ADM10 S 3420.00 Coxe 50
3| ADMI0 S 6862.50 Coxe 50
4 ADM10 | H 13.65 Coxe 240
5 ADMZ20 S 452250 Coxe 240
6| ADM20 S 28960.00 | Delgada 240
7| ADMZ20 S 5260.00 Delgado 240
& | ADMZ0 S 1672.50 | Delgado 420
9 ADM30D | S 3818.20 Delgado 420
10 | ADM30 S 1813.30 | Delgado 440
11 | CAM1I0 | S 6855.90 Owverby 1
12 CAM10 S 404580 Owverby]
13 | CAM20 | S 4480.50 | Overby 10
14 | ADM10 | S 5910.80 Owerby 20
15 CAM10 S 9073.80 Owerby 20

The following program computes the annual payroll by department. Notice that the
variable name Dept has been appended to FIRST. and LAST.

proc sort data=cert.usa out=work.temp; /*E/
by dept;

FIRST. and LAST. DATA Step Variables 133

run;
data work.budget (keep=dept payroll); A 2
set work.temp;
by dept; A 3
if wagecat='S' then Yearly=wagerate*12; /A /
else if wagecat='H' then Yearly=wagerate*2000;
if first.dept then Payroll=0; A 5
payroll+yearly; VA 6 ¥l
if last.dept; A +7 W
run;

1 The SORT procedure sorts the data in Cert.Usa by the variable Dept. The results of
the SORT procedure are stored in Work.Temp.

2 The KEEP= data set option keeps the variables Dept and Payroll in the output data
set, Work.Budget.

3 The BY statement in a DATA step applies only to the SET statement. The data set
Work. Temp must be sorted by the Dept variable for the BY statement to set up
grouping variables. By specifying Dept as the variable, you can identify the first and
last observations for each Dept group. The Dept groups are ADM10, ADM20, ADM30,
CAM10, and CAM20.

4 The IF statement executes the statements conditionally. If the value for WageCat is
S, then the variable Yearly contains the value of WageRate multiplied by 12. If the
value of WageCat is H, then the variable Yearly contains the value of WageRate
multiplied by 2000.

5 If the observation is the first observation for the variable Dept, initialize Payroll to 0.

Note: FIRST.Dept variable is not written to the data set and does not appear in the
output.

6 Add the value of Yearly to the value of Payroll.

7 If this observation is the last in the variable, Dept, then end. If not, then read the next
observation.

Note: LAST.Dept variable is not written to the data set and does not appear in the
output.

The following figure illustrates how SAS processes FIRST.Dept and LAST.Dept. Notice
that the values of FIRST.Dept and LAST.Dept change as the value for Dept changes.

134 Chapter 8 + BY-Group Processing

Figure 8.1 BY Group for Dept

“N_| Dept Yearly | Payroll | FIRST.Dept LAST.Dept
1| ADM10 40710.0 | 40710.01 0
2| ADM10 41040.0| 81750.0)0 0
3| ADm10 82350.0 | 164100.0 | 0 0
4| ADm10 27300.0 | 191400.0) 0 0
5| ADM10 70929.6 | 262329.6 | 0 1
6 | ADN20 54270.0 | 54270.0| 1 0
7 | ADm20 35520.0 | 89790.0)0 0
8 | ADM20 63120.0 | 152910.0 0 0
9 | ADM20 18870.0 | 171780.0| 0 1
10 | ADM30 45830.4 | 45830.4 | 1 0
11 | ADM30 21759.6 | 67590.0)0 1
12 | GAM10 82270.8 | 82270.8| 1 0
13 | CAM10 48549.6 | 130820.4 | 0 0
14| CAM10 | 108885.6 | 239706.0 | 0 1
15| cAM20 | 53766.0| 53766.0 |1 | 1

When you print the new data set, you can now list and sum the annual payroll by
department.

proc print data=work.budget noobs;

sum payroll;

format payroll dollarl2.2;

run;

Output 8.3 PROC PRINT Output of Work.Budget: Sum of Payroll

The SAS System

Dept

Payroll

ADM10 | $262,329 .60
ADM20 $171,780.00
ADM30 $67,590.00
CAM10 $239,706.00
CAM20 $53,766.00
$795,171.60

Example: Grouping Observations Using Multiple BY Variables

Suppose you now want to compute the annual payroll by job type for each manager. In
the following example, you specify two BY variables, Manager and JobType, creating

FIRST. and LAST. DATA Step Variables 135

two groups. The Manager group contains three subgroups: Coxe, Delgado, and
overby. The JobType subgroup contains nine subgroups: 1, 3, 5, 10, 20, 50, 240,
420, and 440. Within these subgroups, you can identify the first and last observations
for each of these subgroups.

proc sort data=cert.usa out=work.temp2; /**/
by manager jobtype;

run;

data work.budget2 (keep=manager jobtype payroll); /*m*/
set work.temp2;
by manager jobtype; /By /
if wagecat='S' then Yearly=wagerate*12; /A /

else if wagecat='H' then Yearly=wagerate*2000;

if first.jobtype then Payroll=0; V& 5
payroll+yearly; /A /
if last.jobtype; /*El*/

run;

1 The SORT procedure sorts the data in Cert.Usa by the variables Manager and
JobType. The results of the SORT procedure are stored in Work. Temp?2.

2 The KEEP= data set option specifies the variables Manager, JobType, and Payroll
and writes the variables to the new data set, Work.Budget.

3 The BY statement in a DATA step applies only to the SET statement. The data set
Work.Temp2 must be sorted by the Manager and JobType variables in order for the
BY statement to set up grouping variables. The data set is sorted by the variable
Manager first and then by JobType.

4 The IF statement executes the statements conditionally. If the value for WageCat is
S, then the variable Yearly contains the value of WageRate multiplied by 12. If the
value of WageCat is H, then the variable Yearly contains the value of WageRate
multiplied by 2000.

5 If the observation is the first for JobType, then initialize Payroll to 0.
6 Add the value of Yearly to the value of Payroll.

7 If this observation is the last in the variable, JobType, then end. If not, then read the
next observation.

The following figure illustrates how SAS processes FIRST.Manager, FIRST.JobType,
LAST.Manager, and LAST.JobType. Notice how the values of FIRST.Manager and
LAST.Manager change only when the Manager value changes. However, the values for
FIRST.JobType and LAST.JobType values change multiple times even when the
Manager value remains the same.

136 Chapter 8

» BY-Group Processing

Figure 8.2 Multiple BY Group Variables: Manager and JobType

N | Manager | JobType |WageRate| Yearly Payroll | FIRST.Manager | LAST.Manager| FIRST.JobType | LAST.JobType
1|Coxe 3| 3392.50| 40710.00| 40710.00 1 0 1 1
2|Coxe 50| 3420.00] 41040.00| 41040.00 0 0 1 0
3|Coxe 50| 6862.50| 82350.00]1123390.00 4] 0 4] 1
4|Coxe 240 13.65| 27300.00] 27300.00 0 0 1 0
5|Coxe 240| 4522.50| 54270.00| 81570.00 0 1 0 1
6|Delgado 240| 2960.00| 35520.00] 35520.00 1 0 1
7|Delgado 240| 5260.00| 63120.00| 98640.00 0 0 0 1
&|Delgado 4201 1572.50| 18870.00| 18870.00 0 0 1 0
9|Delgado 420 3819.20| 45830.40| 64700.40 4] 0 4] 1I

10|Delgado 4401 1813.30| 21759.60| 21759.60 0 1 1 1I
11|0Overby 1| 6855.90| 82270.80| 82270.80 1 0 1 1II
12|0verby 5| 4045.80| 48549.60| 48549.60 4] 0 1 1I
13|0verby 10| 4480.50| 53766.00| 53766.00 0 0 1 1
14|0verby 20| 5910.80| 70929.60| 70929.60 0 0 1 0
15|0verby 20| 9073.80|108885.601179815.20 4] 1 4] U |

You can generate a sum for the annual payroll by job type for each manager. The
example below shows the payroll sum for only two managers, Coxe and Delgado.

proc print data=work.budget2 noobs;

by manager;
var jobtype;
sum payroll;

where manager in ('Coxe',

'Delgado') ;

format payroll dollarl2.2;

run;

Figure 8.3 Payroll Sum by Job Type and Manager

Manager=Coxe

JobType Payroll
3| $40,710.00

50 $123.380.00

240) $81,570.00
Manager | $245,670.00

Manager=Delgado

JobType Payroll
240 | 398,640.00

420 564,700.40

440) 321,759.60
Manager | $185,100.00
$430,770.00

Chapter Quiz 137

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1.

Which of the following statements is false when you use the BY statement with the
SET statement?

a. The data sets listed in the SET statement must be indexed or sorted by the values
of the BY variable or variables.

b. The DATA step automatically creates two variables, FIRST. and LAST., for each
variable in the BY statement.

c. FIRST. and LAST. identify the first and last observation in each BY group,
respectively.

d. FIRST. and LAST. are stored in the data set.

Your data does not require any preprocessing if the observations in all of the data sets
occur in which of the following patterns?
a. Ascending or descending character order.
b. Ascending or descending numeric order.
¢. The data must be grouped in some way.
d. all of the above
Which temporary variables are available for DATA step programming during BY-
group processing only, but are not added to the data set?
a. FIRST.variable and LAST.variable.
b. N _and ERROR variables.
c. Bothaandb.
d. none of the above
Which program below creates the following output?
Obs | Account | Name Type Transaction
1 7821 MICHELLE STANTOMN A 304 .45
2 1086 KATHERINE MORRY A 64.98
3 6201 MARY WATERS c 4500
4 | 6621 WALTER LUND C 23476
5 781 ELIZABETH WESTIN C 188.23
6 0265 JEFFREY DOMALDSON | C 75.90
7 1118 ART CONTUCK O 57.69
8 2287 MICHAEL WINSTONE D 14589
9 0556 LEE McDOMALD b 70.82
10 1010 MARTIMN LY MM O 150.55

138 Chapter 8

BY-Group Processing

proc print data=cert.credit;

by type;
run;

proc sort data=cert.credit;
by type ascending;
run;

proc sort data=cert.credit;

by type;
run;

proc sort data=cert.credit;
by type descending;
run;

5. What statement correctly describes a BY group?

It contains temporary variables that SAS creates for each BY variable.
It includes all observations with the same BY value.
It names a variable or variables by which the data set is sorted.

It is a method of processing observations from one or more SAS data sets that are
group or ordered by one or more common variables.

6. How does SAS determine FIRST.variable?

a

When an observation is the first in a BY group, SAS sets the value of the
FIRST.variable to 1. This happens when the value of the variable changed from
the previous observation.

For all other observations in the BY group, the value of FIRST.variable is 0.
Both a and b.

When an observation is the last in a BY group, SAS sets the value of
FIRST.variable to 1.

7. Which program creates the following output?

Obs

=R T- T -~ T - Y T S R SURR T P

[R e
[I

Day | Flavor
01 CHOCOLATE
01 RASPBERRY

01 VAMILLA
02 PEACH
02 VAMILLA

03 CHOCOLATE
04 CHOCOLATE
04 PEACH

04 ' RASPBERRY
05 CHOCOLATE
05 STRAWBERRY
05 VAMILLA

proc sort data=cert.choices out=work.choices;

by
run;
proc
run;

proc

by
run;
proc
run;

proc
by
run;

proc

by
run;
proc
run;

Chapter Quiz

day flavor;

print data=work.choices;

sort data=cert.choices out=work.choices;
day;

print data=work.choices;

print data=cert.choices out=work.choices;
day;

sort data=cert.choices out=work.choices;

flavor;

print data=work.choices;

139

140 Chapter 8 + BY-Group Processing

Chapter 9
Creating and Managing
Variables

141

Creating Variables 142
Assignment StAtEMENTS o\ vttt e e e 142
SAS EXPIESSIONS . .« v v vttt et et ettt ettt e 142
Using Operators in SAS EXPressionso v ventnt i 142
Examples: Assign Variables i 144
Date Constantsttt 145
Example: Assignment Statements and Date Values 146

Modifying Variables 146
Selected Useful Statements ot 146
Accumulating Totals o 147
Example: Accumulating Totals, 147
Initializing Sum Variables 148
Example: RETAIN Statementottt e 149

Specifying Lengths for Variables 149
Avoiding Truncated Variable Values 149
Example: LENGTH Statement, 150

Subsetting Data 151
Using a Subsetting IF Statement, 151
Example: Subsetting IF Statement 151
Categorizing Valuesottt e 152
Example: IF-THEN Statement 152
Examples: Logical Operatorsttt 153
Providing an Alternative ACtiont 154
Deleting Unwanted Observationsuuninirnininenennenan .. 155
Example: IF-THEN and DELETE Statements 155
Selecting Variables i 156
Example: DROP Data SetOption, 156
Example: Using the DROP Statement 157

Transposing Variables into Observations 158
The TRANSPOSE Procedureooniinii i 158
PROC TRANSPOSEResults oo 159
Example: Performing a Simple Transposition 159
Transposing Specific Variables i 160
Naming Transposed Variables, 162
Transposing BY Groups oottt e e 163

Using SAS Macro Variables i 164
YLET Statementottt 164
Example: Using SAS Macro Variables with Numeric Values 165

142 Chapter 9 < Creating and Managing Variables

Example: Using SAS Macro Variables with Character Values 166
Example: Using Macro Variables in TITLE Statements 169
Chapter Quiz e 170

Creating Variables

Assignment Statements

Use an assignment statement in any DATA step in order to modify existing values or
create new variables.

Syntax, assignment statement:
variable=expression;

* variable names a new or existing variable
* expression is any valid SAS expression

Tip: The assignment statement is one of the few SAS statements that do not begin with a
keyword.

For example, here is an assignment statement that assigns the character value Toby
Witherspoon to the variable Name:

Name='Toby Witherspoon';

SAS Expressions

You use SAS expressions in assignment statements and many other SAS programming
statements to do the following:

» transform variables

* create new variables

» conditionally process variables

» calculate new values

* assign new values

An expression is a sequence of operands and operators that form a set of instructions.

* Operands are variable names or constants. They can be numeric, character, or both.

* Operators are special-character operators, grouping parentheses, or functions.

Using Operators in SAS Expressions

Use the following arithmetic operators to perform a calculation.

Creating Variables 143

Table 9.1 Arithmetic Operators

Operator Action Example Priority
- negative prefix negative=-x; 1
** exponentiation raise=x**y; 1
* multiplication mult=x*y; 2
/ division divide=x/y; 2
+ addition Sum=x+y; 3
- subtraction diff=x-y; 3

The order of operation is determined by the following conditions:
* Operations of priority 1 are performed before operations of priority 2, and so on.
+ Consecutive operations that have the same priority are performed in this order:

* from right to left within priority 1

* from left to right within priority 2 and 3

* You can use parentheses to control the order of operations.

Note: When a value that is used with an arithmetic operator is missing, the result of the
expression is missing. The assignment statement assigns a missing value to a
variable if the result of the expression is missing.

Use the following comparison operators to express a condition.

Table 9.2 Comparison Operators

Operator Meaning Example
=oreq equal to name='Jones, C.'
A= or ne not equal to temp ne 212
> or gt greater than income>20000
<orlt less than x=5000
x<8000
>=or ge greater than or equal to x=5000
x>=2000
<=orle less than or equal to pulse le 85

Use logical operators to link a sequence of expressions into compound expressions.

144 Chapter 9 < Creating and Managing Variables
Table 9.3 Logical Operators

Operator, symbol Description

AND or & and, both. If both expressions are true, then the compound
expression is true.

OR or | or, either. If either expression is true, then the compound
expression is true.

Note: In SAS, any numeric value other than 0 or missing is true, and a value of 0 or
missing is false. Therefore, a numeric variable or expression can stand alone in a

condition.

* 0=False
» . =TFalse
e 1=True

Examples: Assign Variables

Example 1: Create a New Variable
The assignment statement in the DATA step below creates a new variable, TotalTime, by
multiplying the values of TimeMin by 60 and then adding the values of TimeSec.

data work.stresstest;

set cert.tests;

TotalTime= (timemin*60) +timesec;
run;
proc print data=work.stresstest;
run;

Output 9.1 Assignment Statement Output (partial output)

Obs ID Name RestHR MaxHR | RecHR | TimeMin TimeSec Tolerance | TotalTime
1|2458 Murray, W 72 184 128 12 3| D 758
2| 2462 Almers, C 65 171 133 10 501 605
3| 2501 Bonaventure, T 78 177 139 1 13 1 673
4 2523 Johnson, R 69 162 114 9 42 5 582
5| 2539 LaMance, K 75 168 141 1 46 D T06

more observations.

16 | 2579 Underwood, K 72 165 127 13 19 5 799
17 | 2584 Takahashi, Y 76 163 135 16 7D 967
18 | 2586 Derber, B 68 176 119 17 3N 1055
19 | 2588 Ivan, H 70 182 126 15 41 M 941
20 | 2589 Wilcox. E 73 189 138 14 AN 897

21 | 2595 Warren, C 7 170 136 12 105 730

Date Constants

Creating Variables 145

Example 2: Re-evaluating Variables

In the following example, the assignment statement contains the variable RestHR, which
appears on both sides of the equal sign. This assignment statement evaluates each
observation to redefine each RestHR observation as 10% higher. When a variable name
appears on both sides of the equal sign, the original value on the right side is used to
evaluate the expression. The result is assigned to the variable on the left side of the equal
sign.

data work.stresstest;
set cert.tests;
resthr=resthr+ (resthr*.10) ;
run;
proc print data=work.stresstest;

run;

Output 9.2 PROC PRINT Output of Work.StressTest (partial output)

Obs | ID Name RestHR | MaxHR | RecHR | TimeMin | TimeSec | Tolerance
12458 Murray, W 79.2 185 128 12 3 D
2| 2462 Almers, C T4.8 171 133 10 511
3 2501 Bonaventure, T 858 177 139 11 131
4 2523 Johnson, R 75.9 162 114 9 42 |5
512539 LaMance, K 82.5 168 141 11 46 D
6 2544 Jones, M 86.9 187 136 12 26 M

more observations.

17 2584 Takahashi, ¥ 83.6 163 135 16 7T D
18 2586 Derber, B 748 176 119 17 35 M
19 2588 Ivan, H 7.0 182 126 15 41N
20 2589 Wilcox, E 95.8 189 138 14 a7 |1
21 2595 Warren, C 84.7 170 136 12 10 S

You can assign date values to variables in assignment statements by using date constants.
SAS converts a date constant to a SAS date. To represent a constant in SAS date form,
specify the date as 'ddmmmyy’ or 'ddmmmyyyy’, immediately followed by a D.

Syntax, date constant:

‘ddmmmyy'd

or

‘ddmmmyy'd

* dd is a one- or two-digit value for the day.

* mmm is a three-letter abbreviation for the month (JAN, FEB, and so on).
* yyoryyyy is a two- or four-digit value for the year, respectively.

Tip: Be sure to enclose the date in quotation marks.

146 Chapter 9 < Creating and Managing Variables

You can also use SAS time constants and SAS datetime constants in assignment
statements.

Time='9:25't;
DateTime='18jan2018:9:27:05'dt;

Example: Assignment Statements and Date Values

In the following program, the second assignment statement assigns a date value to the
variable TestDate.

data work.stresstest;
set cert.tests;
TotalTime= (timemin*60) +timesec;
TestDate='01jan2015'd;

run;

proc print data=work.stresstest;

run;

Notice how the values for TestDate in the PROC PRINT output are displayed as SAS
date values.

Output 9.3 PROC PRINT Output of Work.StressTest with SAS Date Values (partial output)

Obs | 1D Name RestHR MaxHR RecHR | TimeMin TimeSec Tolerance TotalTime | TestDate
12458 Murray, W 72 185 128 12 3| D 758 21185
2| 2462 Almers, C 68 171 133 10 511 605 21185
3| 2501 Bonaventure, T 78 177 139 11 1311 673 21185
4 2523 Johnson, R 69 162 114 9 425 082 21185
52539 LaMance, K 75 168 141 1 46 D 706 21185

more observations.

17 2584 Takahashi, Y 76 163 135 16 7D 967 21185
18 2586 Derber, B 68 176 119 17 35N 1055 21185
19 2588 Ivan, H 70 182 126 15 41 N 941 21185
20 2589 Wilcox, E 78 189 138 14 5711 897 21185
21 | 2595 Warren, C 77 170 136 12 10 'S 730 21185

You can use a FORMAT statement in the PROC PRINT step to modify the TestDate
values and change them to another format. To apply formats to your output, see Chapter
12, “SAS Formats and Informats,” on page 225.

Modifying Variables

Selected Useful Statements

Here are examples of statements that accomplish specific data-manipulation tasks.

Modifying Variables 147
Table 9.4 Manipulating Data Using the DATA Step

Task Example Code

Subset data if resthr<70 then delete;
if tolerance='D';

Drop unwanted variables drop timemin timesec;

Create or modify a variable TotalTime= (timemin*60) +timesec;
Initialize and retain a variable retain SumSec 5400;

Accumulate totals sumsec+totaltime;

Specify a variable's length length TestLength $ 6;

Execute statements conditionally
if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800
then TestLength='Normal';
else if totaltime<750
then TestLength='Short';

The following topics discuss these tasks.

Accumulating Totals

To add the result of an expression to an accumulator variable, you can use a sum
statement in your DATA step.

Syntax, sum statement:
variable+expression;

* variable specifies the name of the accumulator variable. This variable must be numeric. The
variable is automatically set to 0 before the first observation is read. The variable's value is
retained from one DATA step execution to the next.

* expression is any valid SAS expression.

Note: If the expression produces a missing value, the sum statement ignores it.

The sum statement is one of the few SAS statements that do not begin with a keyword.

The sum statement adds the result of the expression that is on the right side of the plus

sign (+) to the numeric variable that is on the left side of the plus sign. The value of the
accumulator variable is initialized to 0 instead of missing before the first iteration of the
DATA step. Subsequently, the variable’s value is retained from one iteration to the next.

Example: Accumulating Totals

To find the total number of elapsed seconds in treadmill stress tests, you need the
variable SumSec, whose value begins at 0 and increases by the amount of the total

148 Chapter 9 < Creating and Managing Variables

seconds in each observation. To calculate the total number of elapsed seconds in
treadmill stress tests, use the sum statement shown below:

data work.stresstest;
set cert.tests;
TotalTime= (timemin*60) +timesec;
SumSec+totaltime;

run;

The value of the variable on the left side of the plus sign, SumSec, begins at 0 and
increases by the value of TotalTime with each observation.

SumSec = TotalTime + Previous total
0

758 = 758 + 0

1363 = 605 + 758

2036 = 673 + 1363

2618 = 582 + 2036

3324 = 706 + 2618

Initializing Sum Variables

In the previous example, the sum variable SumSec was initialized to 0 before the first
observation was read. However, you can initialize SumSec to a different number than 0.

Use the RETAIN statement to assign an initial value, other than 0, to an accumulator
variable in a sum statement.

The RETAIN statement has several purposes:
+ It assigns an initial value to a retained variable.

» It prevents variables from being initialized each time the DATA step executes.

Syntax, RETAIN statement for initializing sum variables:
RETAIN variable <initial-value>;
* variable is a variable whose values you want to retain.
* initial-value specifies an initial value (numeric or character) for the preceding variable.
Note: The following statements are true about the RETAIN statement:
+ Itis a compile-time-only statement that creates variables if they do not already exist.

It initializes the retained variable to missing before the first execution of the DATA step
if you do not supply an initial value.

» It has no effect on variables that are read with SET, MERGE, or UPDATE statements.

Example: RETAIN Statement

Specifying Lengths for Variables 149

Suppose you want to add 5400 seconds (the accumulated total seconds from a previous
treadmill stress test) to the variable SumSec in the StressTest data set when you create
the data set. To initialize SumSec with the value 5400, use the RETAIN statement shown
below. Now the value of SumSec begins at 5400 and increases by the value of TotalTime

with each observation.

data work.stresstest;
set cert.tests;

TotalTime= (timemin*60) +timesec;

retain SumSec 5400;
sumsec+totaltime;

run;

proc print data=work.stresstest;

run;

SumSec

5400

6158

6763

7436

8018

8724

TotalTime

758

605

673

582

706

+ Previous Total
+ 5400
+ 6158
+ 6763
+ 7436
+ 8018

Specifying Lengths for Variables

Avoiding Truncated Variable Values

During the compilation phase, use an assignment statement to create a new character
variable. SAS allocates as many bytes of storage space as there are characters in the first
value that it encounters for that variable.

In the following figure, the variable TestLength has a length of four bytes. The word
Short is truncated because the word Norm uses four bytes.

150 Chapter 9 < Creating and Managing Variables

Figure 9.1 Truncated Variable Values (partial output)

TestlLength
Norm
Shor
Shor
Shor
Shor
Shor
Long

When you assign a character constant as the value of the new variable, use the LENGTH
statement to specify a length to avoid truncation of your values.

Syntax, LENGTH statement:

LENGTH variable(s) <$> length;

* variable(s) names the variable or variables to be assigned a length.
» §is specified if the variable is a character variable.

* length is an integer that specifies the length of the variable.

Here is a variable list in which all three variables are assigned a length of $200.

length Addressl Address2 Address3 $200;

Example: LENGTH Statement

Within the program, a LENGTH statement is included to assign a length to
accommodate the longest value of the variable TestLength. The longest value is
Normal, which has six characters. Because TestLength is a character variable, you must
follow the variable name with a dollar sign ($).

Make sure the LENGTH statement appears before any other reference to the variable in
the DATA step.

data stress;
set cert.stress;
TotalTime= (timemin*60) +timesec;
retain SumSec 5400;
sumsec+totaltime;
length TestLength $ 6;
if totaltime>800 then testlength='Long';
else if 750<=totaltime<=800 then testlength='Normal';
else if totaltime<750 then TestLength='Short';

run;

Note: If the variable has been created by another statement, then a later use of the
LENGTH statement does not change its length.

Now that the LENGTH statement has been added to the program, the values of
TestLength are no longer truncated.

Subsetting Data 151

Figure 9.2 Variable Values That Are Not Truncated (partial output)

TestlLength
MNormal
Short

Short

Short

Short

Short

Long

Subsetting Data

Using a Subsetting IF Statement

The subsetting IF statement causes the DATA step to continue processing only those
observations that meet the condition of the expression specified in the IF statement. The
resulting SAS data set or data sets contain a subset of the original external file or SAS
data set.

Syntax, subsetting IF statement:

IF expression;

expression is any valid SAS expression.

+ If'the expression is true, the DATA step continues to process that observation.

+ Ifthe expression is false, no further statements are processed for that observation, and
control returns to the top of the DATA step.

Example: Subsetting IF Statement

The subsetting IF statement below selects only observations whose values for Tolerance
are D. It is positioned in the DATA step for efficiency: other statements do not need to
process unwanted observations.

data work.stresstest;
set cert.tests;
if tolerance='D';
TotalTime= (timemin*60) +timesec;
run;
proc print data=work.stresstest;
run;

Because Tolerance is a character variable, the value D must be enclosed in quotation
marks, and it must be the same case as in the data set.

Notice that, in the output below, only the values where Tolerance contains the value of D
are displayed and TotalTime was calculated.

152 Chapter 9

Creating and Managing Variables

Output 9.4 Subsetted Data of Work.StressTest

Obs | ID Name RestHR MaxHR RecHR | TimeMin TimeSec |Tolerancef] TotalTime
12458 Murray, W 72 185 128 12 38 |D 758
2| 2539 LaMance, K 75 168 141 1 46 |\D 706
3| 2552 Reberson, P 69 158 139 15 41\D 941
42572 Oberon, M 74 177 138 12 11 |D 73
5| 2574 Peterson, V &80 164 137 14 9|D 849
6 | 2584 Takahashi. Y 76 163 135 16 7D 967

Categorizing Values

Suppose you want to create a variable that categorizes the length of time that a subject
spends on the treadmill during a stress test. This new variable, TestLength, is based on
the value of the existing variable TotalTime. The value of TestLength is assigned
conditionally:

Value for TotalTime Resulting Value for TestLength
greater than 800 Long

750 - 800 Normal

less than 750 Short

To perform an action conditionally, use an IF-THEN statement. The IF-THEN statement

executes a SAS statement when the condition in the IF clause is true.

Syntax, [F-THEN statement:
IF expression THEN statement;
* expression is any valid SAS expression.

* statement is any executable SAS statement.

Example: IF-THEN Statement

To assign the value Long to the variable TestLength when the value of TotalTime is
greater than 800, add the following IF-THEN statement to your DATA step:

data work.stresstest;
set cert.tests;
TotalTime=(timemin*60) +timesec;
retain SumSec 5400;
sumsec+totaltime;
if totaltime>800 then TestLength='Long';

run;

SAS executes the assignment statement only when the condition (Total Time>800) is
true. If the condition is false, the value of TestLength is missing.

Subsetting Data 153

Examples: Logical Operators
The following examples use IF-THEN statements with logical operators:

» Use the AND operator to execute the THEN statement if both expressions that are
linked by AND are true.

if status='OK' and type=3
then Count+1;

if (age®=agecheck | time”=3)
& error=1 then Test=1;

» Use the OR operator to execute the THEN statement if either expression that is
linked by OR is true.

if (age®=agecheck | time”=3)
& error=1 then Test=1;

if status='S' or cond='E'
then Control='Stop';

» Use the NOT operator with other operators to reverse the logic of a comparison.

if not (loghours<7500)
then Schedule='Quarterly';
if region not in ('NE','SE')
then Bonus=200;

» Character values must be specified in the same case in which they appear in the data
set and must be enclosed in quotation marks.

if status='OK' and type=3
then Count+1;
if status='S' or cond='E'
then Control='Stop';
if not (loghours<7500)
then Schedule='Quarterly';
if region not in ('NE','SE')
then Bonus=200;

Logical comparisons that are enclosed in parentheses are evaluated as true or false
before they are compared to other expressions. In the example below, the OR
comparison in parenthesis is evaluated before the first expression and the AND operator
are evaluated.

Figure 9.3 Example of a Logical Comparison

evaluated 2nd evaluated 1st

v vy v

if testx=95 and (theme='A' or project='4'}
then grade='a+';

Therefore, be careful when using the OR operator with a series of comparisons.
Remember that only one comparison in a series of OR comparisons must be true to make
a condition true, and any nonzero, not missing constant is always evaluated as true.
Therefore, the following subsetting IF statement is always true:

if x=1 or 2;

154 Chapter 9

Creating and Managing Variables

SAS first evaluates x=1, and the result can be either true or false. However, since the 2 is
evaluated as nonzero and not missing (true), the entire expression is true. In this
statement, however, the condition is not necessarily true because either comparison can
be evaluated as true or false:

if x=1 or x=2;

Note: Both sides of the OR must contain complete expressions.

Providing an Alternative Action

Suppose you want to assign a value to TestLength based on the other possible values of
TotalTime. One way to do this is to add IF-THEN statements for the other two
conditions.

if totaltime>800 then TestLength='Long';
if 750<=totaltime<=800 then TestLength='Normal';
if totaltime<750 then TestLength='Short';

However, when the DATA step executes, each IF statement is evaluated in order, even if
the first condition is true. This wastes system resources and slows the processing of your
program.

Instead of using a series of IF-THEN statements, you can use the ELSE statement to
specify an alternative action to be performed when the condition in an IF-THEN
statement is false. As shown below, you can write multiple IF-THEN/ELSE statements
to specify a series of mutually exclusive conditions.

if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';
else if totaltime<750 then TestLength='Short';

The ELSE statement must immediately follow the IF-THEN statement in your program.
An ELSE statement executes only if the previous IF-THEN/ELSE statement is false.

Syntax, ELSE statement:
ELSE statement;

statement is any executable SAS statement, including another IF-THEN statement.

To assign a value to TestLength when the condition in your IF-THEN statement is false,
you can add the ELSE statement to your DATA step:

data work.stresstest;
set cert.tests;
TotalTime=(timemin*60)+timesec;
retain SumSec 5400;
sumsec+totaltime;
length TestLength $6;
if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';
else if totaltime<750 then TestLength='Short';
run;
proc print data=work.stresstest;

run;

For greater efficiency, construct your IF-THEN/ELSE statements with conditions of
decreasing probability.

Subsetting Data 155

You can use PUT statements to test your conditional logic.

if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';
else put 'NOTE: Check this Length: ' totaltime=;
run;

Deleting Unwanted Observations

You can specify any executable SAS statement in an IF-THEN statement. For example,
you can use an IF-THEN statement with a DELETE statement to determine which
observations to omit as you read data.

Syntax, DELETE statement:
DELETE;

To conditionally execute a DELETE statement, use the following syntax for an IF statement:
IF expression THEN DELETE;
The expression is evaluated as follows:

+ [Ifitis true, execution stops for that observation. The DELETE statement deletes the
observation from the output data set, and control returns to the top of the DATA step.

» Ifitis false, the DELETE statement does not execute, and processing continues with the
next statement in the DATA step.

Example: IF-THEN and DELETE Statements

In the following example, the IF-THEN and DELETE statements omit any observations
whose values for RestHR are below 70.

data work.stresstest;
set cert.tests;
if resthr<70 then delete;
TotalTime= (timemin*60) +timesec;
retain SumSec 5400;
sumsec+totaltime;
length TestLength $6;
if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';
else if totaltime<750 then TestLength='Short';
run;
proc print data=work.stresstest;
run;

156 Chapter 9 < Creating and Managing Variables

Output 9.5 Values for RestHR Less Than 70 Are Not in the Output (partial output)

Obs

=Y

L5 I L

12
13
14
15
16

1D

2453
2501
2539
2544
2555

2579
2584
2588
2589
2595

Name RestHR | MaxHR | RecHR | TimeMin | TimeSec | Tolerance | TotalTime | SumSec | TestLength
Murray, W 72 185 128 12 38 D 758 6158 Mormal
Bonaventure, T 78 177 139 " 1311 673 6831 | Short
LaMance, K 75 168 141 " 46 D 706 7537 | Short
Jones, M 79 187 136 12 26 N 746 8283 | Short
King, E 70 167 122 13 1311 793 9076 Mormal
more observations.

Underwood, K 72 165 127 13 195 799 14639 | Normal
Takahashi, Y 76 163 135 16 7D 967 15606 Long
lvan, H 70 182 126 15 41 N 841 16547 Long
Wilcox, E 78 189 138 14 57 1 897 17444 Long
Warren, C 7 170 136 12 105 730 18174 | Short

Selecting Variables

You might want to read and process variables that you do not want to keep in your
output data set. In this case, use the DROP= and KEEP= data set options to specify the
variables to drop or keep.

Use the KEEP= option instead of the DROP= option if more variables are dropped than
kept.

Syntax, DROP=, and KEEP= data set options:

(DROP=variable(s))
(KEEP=variable(s))

+ The DROP= or KEEP= options, in parentheses, follow the names of the data sets that
contain the variables to be dropped or kept.

* variable(s) identifies the variables to drop or keep.

Example: DROP Data Set Option

Suppose you want to use theTimeMin and TimeSec variables to calculate the total time
in the TotalTime variable, but you do not want to keep them in the output data set. You
want to keep only the TotalTime variable. When you use the DROP data set option, the
TimeMin and TimeSec variables are not written to the output data set:

data work.stresstest (drop=timemin timesec);
set cert.tests;
if resthr<70 then delete;
TotalTime= (timemin*60) +timesec;
retain SumSec 5400;
sumsec+totaltime;
length TestLength $6;
if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';

Output 9.6 StressTest Data Set with Dropped Variables (partial output)

Obs

LA IR R TR]

13
14
15
16

D

2458
2501
2539
2544
25585

2579
2584
2588
2589
2595

else if totaltime<750 then TestLength='Short';

run;

proc print data=work.stresstest;

run;

Name

Murray, W
Bonaventure, T
LaMance, K
Jones, M
King. E

Underwood, K
Takahashi, ¥
lvan, H
Wilcox, E
Warren, C

72
73
75
79
70

I

185
177
168
187
167
more
165
163
182
189
170

RestHR | MaxHR | RecHR

128
139
141
136
122

observations.

127
135
126
138
136

Tolerance | TotalTime SumSec

D]
I
D
M
I

3
D
N
I

3

758
673
706
746
793

799
967
41
897
730

6158
6831
7537
8283
9076

14634
15606
16547
17444
18174

Subsetting Data

TestLength
MNormal
Short

Short

Short

Mormal

Morma
Long
Long
Lang
Short

157

Another way to exclude variables from a data set is to use the DROP statement or the
KEEP statement. Like the DROP= and KEEP= data set options, these statements drop or
keep variables. However, the DROP and KEEP statements differ from the DROP= and

KEEP= data set options in the following ways:

* You cannot use the DROP and KEEP statements in SAS procedure steps.

* The DROP and KEEP statements apply to all output data sets that are named in the
DATA statement. To exclude variables from some data sets but not from others, use
the DROP= and KEEP= data set options in the DATA statement.

The KEEP statement is similar to the DROP statement, except that the KEEP statement
specifies a list of variables to write to output data sets. Use the KEEP statement instead
of the DROP statement if the number of variables to keep is smaller than the number to

drop.

Syntax, DROP, and KEEP statements:

DROP variable(s);
KEEP variable(s),

variable(s) identifies the variables to drop or keep.

Example: Using the DROP Statement

The following example uses the DROP statement to drop unwanted variables.

data work.stresstest;

set cert.tests;

if tolerance='D';

drop timemin timesec;

158 Chapter 9 < Creating and Managing Variables

TotalTime=(timemin*60) +timesec;
retain SumSec 5400;
sumsec+totaltime;
length TestLength $6;
if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';
else if totaltime<750 then TestLength='Short';
run;
proc print data=work.stresstest;
run;

Transposing Variables into Observations

The TRANSPOSE Procedure

The Basics of PROC TRANSPOSE

The TRANSPOSE procedure creates an output data set by restructuring the values in a
SAS data set, transposing selected variables into observations. By using PROC
TRANSPOSE, you can often avoid writing a lengthy DATA step to achieve the same
result. Further, the output data set can be used in subsequent DATA or PROC steps for
analysis, reporting, or further data manipulation.

PROC TRANSPOSE does not produce printed output. To print the output data set from
the PROC TRANSPOSE step, use PROC PRINT.

PROC TRANSPOSE Syntax

To create a transposed variable, the procedure transposes the values of an observation in
the input data set into values of a variable in the output data set.

Syntax, PROC TRANSPOSE statement:

PROC TRANSPOSE<DATA=input-data-set> <OUT=output-data-set> <PREFIX=prefix>;
BY <DESCENDING> variable-1
<NOTSORTED>;
ID variable(s);

VAR variable(s);
* input-data-set names the SAS data set to transpose.

* output-data-set names the output data set. If output-data-set does not exist, then PROC
TRANSPOSE creates it by using the DATA# naming convention. The default is DATA#.

+ prefix specifies a prefix to use in constructing names for transposed variables in the output
data set. For example, if PREFIX=VAR, then the names of the variables are VAR1,
VAR?2, ..., VARn. The default variable name is COLn.

Note: When you use PREFIX= with an ID statement, the variable name begins with the prefix
value followed by the ID value.

Tip: You can use name literals (n-literals) for the value of PREFIX. Name literals are helpful
when specifying typographical or foreign characters, especially when
VALIDVARNAME=ANY. To recall how VALIDVARNAME=ANY interacts with name
literals, see “VALIDVARNAME=System Option” on page 14.

Transposing Variables into Observations 159

PROC TRANSPOSE Results

Output Data Set Variables
The TRANSPOSE procedure always produces an output data set, regardless of whether
you specify the OUT= option in the PROC TRANSPOSE statement.

The output data set contains the following variables:
» variables that result from transposing the values of each variable into an observation.

» avariable whose values identify the source of the values in each observation in the
output data set. This variable is a character variable whose values are the names of
the variables that are transposed from the input data set. By default, PROC
TRANSPOSE names this variable NAME . To override the default name, use the
NAME-= option. The label for the NAME variable is NAME OF FORMER
VARIABLE.

» acharacter variable whose values are the variable labels of the variables that are
being transposed (if any of the variables that the procedure is transposing have
labels). Specify the name of the variable by using the LABEL= option. The default is

LABEL .

» variables that PROC TRANSPOSE copies from the input data set when you use
either the BY or COPY statement. These variables have the same names and values
as they do in the input data set. These variables also have the same attributes (for
example: type, length, label, informat, and format).

Note: If the value of the LABEL= option or the NAME= option is the same as a
variable that appears in a BY or COPY statement, then the output data set does not
contain a variable whose values are the names or labels of the transposed variables.
See Output 9.7 on page 160 for a sample transposed data set.

Attributes of Transposed Variables
Transposed variables contain the following attributes:

» All transposed variables are the same type and length.

» Ifall variables that the procedure is transposing are numeric, then the transposed
variables are numeric. Thus, if the numeric variable has a character string as a
formatted value, then its unformatted numeric value is transposed.

» If any variable that the procedure is transposing is character, then all transposed
variables are character. If you are transposing a numeric variable that has a character
string as a formatted value, then the formatted value is transposed.

» The length of the transposed variables is equal to the length of the longest variable
that is being transposed.

Example: Performing a Simple Transposition

Here is the Cert.Class data set before any transposition.

160 Chapter 9 < Creating and Managing Variables

Figure 9.4 Cert.Class Data Set

Obs | Name Scorel | Score? | Scored | Homework
1| LINDA 53 G0 BB 42
2 | DEREK 72 64 56 32
3 | KATHY 98 82 100 48
4 MICHAEL 80 55 95 50

This example performs a default transposition and uses no subordinate statements.

proc transpose data=cert.class out=score transposed; /**/
run;
proc print data=score transposed noobs; /*m*/

title 'Scores for the Year';
run;

1 PROC TRANSPOSE transposes only the numeric variables Scorel, Score2, Score3,
and Homework. OUT= puts the result of the transposition in the data set
Score_Transposed.

2 PROC PRINT prints the Score Transposed data set. The NOOBS option suppresses
the printing of observation numbers.

In the output data set Score_Transposed, the variables COL1 through COL4 contain the
values of Score 1, Score 2, Score 3, and Homework for the year for each student. The
variable NAME contains the names of the variables from the input data set that were
transposed.

Output 9.7 Student Test Scores in Variables
Scores for the Year

NAME |COL1 COL2 COL3 COL4

Scorel 53 72 98 a0
Score? 60 64 a2 55
Score3 66 56 100 95

Homework 42 32 43 50

Transposing Specific Variables

Use the VAR statement to list the variables to transpose. If you omit the VAR statement,
then the TRANSPOSE procedure transposes all numeric variables in the input data set
that are not listed in another statement. You must list character variables in a VAR
statement if you want to transpose them.

Note: If the procedure is transposing any character variable, then all transposed
variables are character variables.

Transposing Variables into Observations 161

Syntax, VAR statement:
VAR variable(s);

* variable(s) names one or more variables to transpose.

Here is the Cert.Trials data set:

Figure 9.5 Cert.Trials Data Set

Obs | Name TestDate | Sex | Placebo | Cholesterol | Triglyc Uric
1| Johnson | 22MAY2000 F YES 200 180 3.7
2 | Eberhardt | 22MAY2000 F MO 244 320 46
3 | Nunnelly | 22MAY2000 F YES 210 300 4.0
4 | Johnson | 0M1AUG2000 F YES 205 185 3.8
5 | Eberhardt | 01AUG2000 F NO 249 325 | 47
6 | Nunnelly | 01AUG2000 F YES 215 305 41
7| Johnson | 09AUG2000 F YES 215 190 39
& | Eberhardt | 09AUG2000 F NO 254 330 438
9 | Nunnelly | 09AUG2000 F YES 220 310 42
proc transpose data=cert.trials out=transtrialsl; /R /

var Cholesterol Triglyc Uric; B/
run;
proc print data=transtrialsil; A 3 i
run;

1 Transpose the data set Cert.Trials and put the results of the transposition in the
Transtrials1 data set.

2 The VAR statement specifies the Cholesterol, Triglyc, and Uric variables as the only
variables to be transposed.

3 Use the PROC PRINT statement to print the Transtrials1 data set.

In the following output, the variables in the Transtrials1 data set, Cholesterol, Triglyc,
and Uric, are the only variables that are transposed. The procedure uses the default
variable name COLn.

Output 9.8 PROC PRINT Results: Transtrials1 Data Set

Obs | NAME_ COL1 | COL2|COL3 COL4 COLS5 COL6 COLT COL8 COL9
1| Cholesterol 200.0 | 2440 210 205.0 2450 215.0 2150 254.0 220.0
2 | Triglyc 180.0 320.0 300 1850 325.0 305.0 190.0| 330.0 310.0
3 | Uric 3T 4.6 4 38 47 41 39 438 42

162 Chapter 9 < Creating and Managing Variables

Naming Transposed Variables

Use the ID statement to create variable names in the output data set that are based on one
or more variables from the input data set.

When a variable name is formed in the transposed data set, the formatted values of all
listed ID variables are concatenated in the same order that the variables are listed in the
ID statement. The PREFIX= option specifies a common character or character string to
appear at the beginning of the formed variable names.

Syntax, ID statement:
ID variable(s);

* variable(s) names one or more variables whose formatted values are used to form the names
of the variables in the output data set.

If the value of any ID variable is missing, then PROC TRANSPOSE writes a
warning message to the log. The procedure does not transpose observations that have
a missing value for any ID variable.

The following example uses the values of a variable and a user-supplied value to name

transposed variables.
proc transpose data=cert.trials out=transtrials2; /**/
var cholesterol triglyc uric; /B2 /
id name testdate; /< /
run;
proc print data=transtrials2; /*m*/
run;

1 Transpose the data set Cert.Trials and put the results of the transposition in the
Transtrials2 data set.

2 The VAR statement specifies the Cholesterol, Triglyc, and Uric variables as the only
variables to be transposed.

3 The ID statement specifies Name and TestDate as the variables whose nonmissing
formatted values name the transposed variables in the output data set, Transtrials2.
Because the ID statement specifies two variables, the values of those variables are
concatenated to create the new variable names.

4 Use the PROC PRINT statement to print the Transtrials2 data set.

Transposing Variables into Observations 163

Output 9.9 PROC PRINT Results: Transtrials2 Data Set

Obs _NAME_ | Johnson22MAY2000 Eberhardt22MAY2000 Nunnelly22MAY2000 | Johnson(1AUG2000

1 Cholesteral 200.0 2440 210 205.0
2 Triglyc 180.0 320.0 300 185.0
3 Uric 37 46 4 3.8

Eberhardt01AUG2000 Nunnelly1AUG2000 | Johnson0SAUG2000 | Eberhardt0SAUG2000 | Nunnelly03AUG2000

2490 2150 2150 2540 2200
325.0 305.0 190.0 330.0 310.0
47 4.1 3.9 43 4.2
Transposing BY Groups

Use the BY statement in the PROC TRANSPOSE step to define and transpose BY
groups.

Syntax, BY statement:

BY <DESCENDING> variable-1
<NOTSORTED>;

* variable specifies the variable that PROC TRANSPOSE uses to form BY groups. You can
specify more than one variable. If you do not use the NOTSORTED option in the BY
statement, then either the observations must be sorted by all the variables that you specify, or
they must be indexed appropriately. Variables in a BY statement are called BY variables.

+ DESCENDING specifies that the input data set is sorted in descending order by the variable
that immediately follows the word DESCENDING in the BY statement.

+ NOTSORTED specifies that observations are not necessarily sorted in alphabetic or numeric
order.

The requirement for ordering or indexing observations according to the values of BY
variables is suspended for BY-group processing when you use the NOTSORTED option.
The procedure does not use an index if you specify NOTSORTED. The procedure defines a
BY group as a set of contiguous observations that have the same values for all BY variables.
If observations with the same values for the BY variables are not contiguous, then the
procedure treats each contiguous set as a separate BY group.

proc transpose data=cert.trials out=transtrials3; /**/
var cholesterol triglyc uric; & 2
id name; /5 /
by testdate; /*m*/

run;

proc print data=transtrials3; R/

run;

1 Transpose the data set. The OUT= option puts the results of the transposition in the
Transtrials3 data set.

2 The VAR statement specifies the Cholesterol, Triglyc, and Uric variables as the only
variables to be transposed.

164 Chapter9 -

Creating and Managing Variables

3 The ID statement specifies Name as the variable whose nonmissing formatted values
name the transposed variables in the output data set, Transtrials3.

4 The BY statement creates BY groups for each unique TestDate. The procedure does
not transpose the BY variables.

5 Use the PROC PRINT statement to print the Transtrials3 data set.

The following data set is the output data set, Transtrials3. For each BY group in the
original data set, PROC TRANSPOSE creates three observations, one for each variable
that it is transposing.

Output 9.10 PROC PRINT Results: Transtrials3 Data

Obs TestDate | _NAME_ | Johnson | Eberhardt | Nunnelly

1| 22MAY2000 Cholesteral 200.0 2440 210.0
2 | 22MAYZ2000 Triglyc 180.0 320.0 300.0
3| 22MAY2000 | Uric 3T 4.6 4.0
4| 01AUG2000 | Cholesteral 2050 2480 2150
5| MAUGZ000 Triglyc 185.0 3250 305.0
6 | 01AUGZ2000 Uric 3.8 47 41
7| 09AUG2000 Chaolesteral 215.0 2540 220.0
& | 09AUGZ2000 Triglyc 190.0 330.0 310.0
9 09AUG2000 | Uric 3.8 4.8 42

Using SAS Macro Variables

%LET Statement

The SAS macro language enables you to design dynamic programs that you can easily
update or modify.

A macro variable can be defined to represent a string of text that appears in your
program. For example, if you reference a specific variable value in multiple places in a
program, you can substitute a macro variable in its place. Then, if you want to update the
value of the variable, you need to update the macro variable definition only once, rather
than searching through your code to find the value in multiple places. It is common to
place macro variable assignments at the top of SAS programs.

Use the %LET statement to create a macro variable and assign it a value.

Syntax, %LET statement:
%LETmacro-variable=<value>;

* macro-variable is either the name of a macro variable or a text expression that produces a
macro variable name. The name can refer to a new or existing macro variable.

* value is a character string or a text expression. Omitting value produces a null value (0
characters). Leading and trailing blanks in value are ignored.

Using SAS Macro Variables 165
You reference the macro variable that you created by using the name of the macro
variable with an ampersand (&). An example is ¯o-variable.

Note: If the macro variable has already been previously defined in the program, the
value is replaced with the most current value.

Example: Using SAS Macro Variables with Numeric Values

When referencing a SAS macro variable with numeric values, use the name of the macro
variable with a preceding ampersand (&) and no quotation marks.

%let Cyl Count=5; 7~/
proc print data=sashelp.cars;
where Cylinders=&Cyl Count; B/
var Type Make Model Cylinders MSRP;
run;

proc freq data=sashelp.cars;
where Cylinders=&Cyl Count;
tables Type;

run;

1 Use the %LET statement to create a macro variable named Cyl Count that stores the
value 5.

2 To reference the macro variable Cyl_Count in your code, use an ampersand (&) and
then the macro variable name. Doing so enables you to reference the value of
Cyl_Count without having to repeatedly write out the full value.

Seven observations are printed.

Output 9.11 PROC PRINT Results

Obs Type | Make Model Cylinders | MSRP
419 Sedan Wolvo S60 2.5 4dr 5 831,745
420 | Sedan Volvo | S60 TA 4dr 5 534,845
421 | Sedan | Volvo | S60 R 4dr 5 $37.560
423 Sedan | Volvo | S80 2.5T 4dr 5 537,885
424 | Sedan | Volvo | C70 LPT convertible 2dr 5 540,565
425 | Sedan | Volvo | C70 HPT convertible 2dr 5 542565
428 Wagon | Volvo | XCT0 5 535,145

Output 9.12 PROC FREQ Results

Cumulative Cumulative
Type Frequency | Percent Frequency Percent

Sedan B 85.71 i 85.71
Wagon 1 14.29 7 100.00

When you want to run the code for a different cylinder count, you change only the value
of Cyl_Count at the top of the program.

166 Chapter 9 < Creating and Managing Variables

Example: Using SAS Macro Variables with Character Values

When referencing a SAS macro variable with character values, enclose the ampersand
(&) and the macro variable in double quotation marks.

In the following example, the macro variable is “Wagon", and the WHERE statement
would be where Type = "Wagon". The macro variable is simply taking the place of
Wagon, so the macro variable goes inside the quotation marks. Although constants can
be enclosed in single quotation marks, macro variables with character variables must
always be enclosed in double quotation marks.

%let CarType=Wagon; 7~/
proc print data=sashelp.cars;
where Type="&CarType"; B/
var Type Make Model MSRP;
run;

proc means data=sashelp.cars;
where Type="&CarType";
var MSRP MPG Highway;

run;

proc freq data=sashelp.cars;
where Type="&CarType";
tables Origin Make;

run;

1 Use the %LET statement to create a macro variable named CarType that stores the
text Wagon.

Note: 1t is recommended that you do not include quotation marks when you define
the macro variable value. Use quotation marks when necessary after the macro
variable is resolved.

2 To reference the macro variable CarType in your code, use an ampersand (&) and
then the macro variable name.

If you want to run reports later on a different type of car, such as an SUV, then
update the value of the macro variable to SUV and rerun the program. If you did not
use a macro variable, then you would have to replace the value throughout the code.

The following PRINT, MEANS, and FREQ output shows results where the value for
Type is Wagon.

Output 9.13 PROC PRINT Results

Obs
25
26
46
30

105
140
141
186
187
215
229
275
276
217
286

316
330

352
354
364
365
33
401
114
415
416
429
428

Type

Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon

Make

Audi

Audi

BMW

Chevrolet
Chrysler

Ford

Ford

Infiniti

Infiniti

Kia

Lexus
Mercedes-Benz
Mercedes-Benz
Mercedes-Benz
Mercury
Mitsubishi
Missan

Pontiac

Saab

Saturn

Scion

Subaru

Subaru

Suzuki

Toyota
Volkswagen
Volkswagen
Volkswagen
WVolvo

Vaolvo

Model

AB 3.0 Avant Quattro

54 Avant Quattro
325xi Sport
Malibu Maxx LS
Pacifica

Focus ZTW
Taurus SE

F¥35

F¥45

Rio Cinco

IS 300 SportCross
240

E320

E&00

Sable GS

Lancer Sportback LS

Murano SL
Vibe

9-5 Aero
L3002

xB
Forester X
Cutback
Aerio SX
Matrix ¥R
Jetta GL
Passat GLS 1.8T
Passat W3
Va0

KCT0

Using SAS Macro Variables 167

MSRP
540,840
549,030
532,845
§22,225
531,230
517,475
522,230
534,895
536,395
511,905
532,455
533,780
550,670
560,670
522 535
517,435
528,739
517,045
540,845
523,560
514,165
521,445
523,895
516,497
516,635
519,005
524,955
540,235
526,135
535,145

168 Chapter 9

Creating and Managing Variables

Output 9.14 PROC MEANS Results

The MEANS Procedure

Variable Label N Mean Std Dev| Minimum Maximum
MSRP 30 2884053 11834.00 11905.00 B0O67V0.00
MPG_Highway MPG (Highway)} 30 27.9000000 44127558 19.0000000 36.0000000
Output 9.15 PROC FREQ Results
The FREQ Procedure
Cumulative Cumulative
Origin | Frequency Percent| Frequency Percent
Asia 1 36.67 11 36.67
Europe 12 40.00 23 76.67
USA 7 23.33 30 100.00
Cumulative Cumulative
Make Frequency Percent Frequency Percent
Audi 2 6.67 2 6.67
BMW 1 3.33 3 10.00
Chevrolet 1 3.33 4 13.33
Chrysler 1 333 5 16.67
Ford 2 6.67 7 23.33
Infiniti 2 6.67 9 30.00
Kia 1 333 10 3333
Lexus 1 333 1 36.67
Mercedes-Benz 3 10.00 14 46.67
Mercury 1 3.33 15 50.00
Mitsubishi 1 333 16 53.33
Hissan 1 3.33 17 56.67
Pontiac 1 333 18 60.00
Saab 1 333 19 63.33
Saturn 1 3.33 20 66.67
Scion 1 333 21 70.00
Subaru 2 6.67 23 76.67
Suzuki 1 3.33 24 80.00
Toyota 1 3.33 25 83.33
Volkswagen 3 10.00 28 93.33
Volvo 2 6.67 30 100.00

Example: Using Macro Variables in TITLE Statements

Using SAS Macro Variables 169

The following example uses multiple macro variables with character and numeric
values. There are two %LET statements that are used to define two different macro
variables. The first is a TITLE statement that contains character values. The other %LET
statement contains numeric values. Notice that when you are referencing macro
variables with character values, the ampersand (&) and the macro variable name are
enclosed in double quotation marks, but the macro variables with numeric values are not.

%let TitleX=PROC PRINT Of Only &Cyl Count Cylinder Vehicles;

%let Cyl Count=5;

Title "&TitleX";

proc print data=sashelp.cars;
where Cylinders=&Cyl Count;
var Type Make Model Cylinders MSRP;

run;

Output 9.16 PROC PRINT Results: 5-Cylinder Vehicles

PROC PRINT Of Only 5 Cylinder Vehicles

Obs
419
420
4
423
424
425
478

MSRP
$31,745
534,845
537,560
537,885
540,565
542,565
535,145

If you want to rerun the code to find 12—cylinder vehicles and want to run PROC
MEANS instead, simply update your macro variables and rerun the code.

%let TitleX=PROC MEANS Of Only &Cyl Count Cylinder Vehicles;

%$let Cyl Count=12;

Title "&TitleX";

proc means data=sashelp.cars;
where Cylinders=&Cyl Count;

var MSRP;

run;

170 Chapter 9 < Creating and Managing Variables

Output 9.17 PROC MEANS Results: 12—Cylinder Vehicles

PROC MEANS Of Only 12 Cylinder Vehicles

The MEANS Procedure

Analysis Variable : MSRP
N Mean | 5td Dev Minimum | Maximum

3 110030.00 30349493 75000.00 128420.00

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Given the following data set, which program creates the output shown below?

&ockNuml Finigh | Style | ftem | Price |
1 310 oak pedestal table 22999
2 i maple pedestal table 369.59
3 32 brass floor lamp 79.99
4 313 glass table lamp h9.99
h 34 oak rocking chair 15359
& 315 oak pedestal table 17859
7 316 glass table lamp 45599
3 317 maple pedestal table 165.55
9 118 maple rocking chair 15555

StockNum | Finish | Style Item | TotalPrice

310 oak pedestal | table 229.99
3N maple pedestal table 599.98
32 brass | floor lamp 67997
313 glass | table lamp 739.96
316 glass | table lamp 789.95
T maple pedestal | table 959 94
318 maple | rocking | chair 1159.93

a. data test2;

set cert.furnture;
if finish='oak';
if price<100 then delete;
TotalPrice+price;
drop price;

run;

proc print data=test2 noobs;

run;

b. data test2;
set cert.furnture;

Chapter Quiz 171

if finish='oak' and price<200;
TotalPrice+price;
drop price;
run;
proc print data=test2 noobs;
run;

c. data test2;
set cert.furnture;
if finish='oak' and price<200 then delete;
TotalPrice+price;
drop price;
run;
proc print data=test2 noobs;
run;

d. data test2;
set cert.furnture;
if finish='oak' and price<100 then do;
TotalPrice+price;
drop price;
end;
run;
proc print data=test2 noobs;
run;

2. Consider the IF-THEN statement shown below. When the statement is executed,
which expression is evaluated first?

if finlexam>=95
and (research='A' or
(project="'A"' and present='A'))
then Grade='A+';

a. finlexam>=95
b. research='A'
C. project='A' and present='A'

d. research='A' or
(project='A' and present='A"')

3. For the observation shown below, what is the result of the IF-THEN statements?

Status Type Count Action Control

OK 3 12 E Go

if status='OK' and type=3
then Count+1;

if status='S' or action='E'
then Control='Stop';

a. Count = 12 Control = Go
b. Count = 13 Control =Stop
c. Count = 12 Control =Stop

d. Count = 13 Control = Go

172 Chapter 9 < Creating and Managing Variables

4. Which of the following can determine the length of a new variable?

a.
b.
c.

d.

the length of the variable's first reference in the DATA step
the assignment statement
the LENGTH statement

all of the above

5. Which set of statements is equivalent to the code shown below?

if code='1l' then Type='Fixed';

if code='2' then Type='Variable';

if code®='1' and code”='2' then Type='Unknown';

a.

if code='1' then Type='Fixed';
else if code='2' then Type='Variable';
else Type='Unknown';

if code='1l' then Type='Fixed';
if code='2' then Type='Variable';
else Type='Unknown';

if code='1"' then type='Fixed';
else code='2' and type='Variable';
else type='Unknown';

if code='1l' and type='Fixed';
then code='2"' and type='Variable';
else type='Unknown';

6. What is the length of the variable Type, as created in the DATA step below?

data work.newloan;

set cert.records;
TotLoan+payment ;

if code='1l' then Type='Fixed';
else Type='Variable';

length type $ 10;

run;
a. 5

b. 8

c. 10

d. It depends on the first value of Type.

7. Which program contains an error?

a.

data stresstest (drop=timemin timesec);
set cert.tests;
TotalTime= (timemin*60) +timesec;
SumSec+totaltime;

run;

proc print data=stresstest;
label totaltime='Total Duration of Test';
drop sumsec;

run;

proc print data=stresstest (keep=totaltime timemin) ;
label totaltime='Total Duration of Test';

run;

Chapter Quiz 173

d. data stresstest;
set cert.tests;
TotalTime=(timemin*60) +timesec;
keep id totaltime tolerance;
run;

If you submit the following program, which variables appear in the new data set?

data work.cardiac (drop=age group) ;
set cert.fitness(keep=age weight group) ;
if group=2 and age>40;

run;
a. none

b. Weight

c. Age, Group

d. Age, Weight, Group

Which of the following programs correctly reads the data set Orders and creates the
data set FastOrdr?

a. data cert.fastordr (drop=ordrtime) ;
set cert.orders (keep=product units price);
if ordrtime<4;
Total=units*price;
run;

b. data cert.orders (drop=ordrtime) ;
set cert.fastordr (keep=product units price);
if ordrtime<4;
Total=units*price;
run;

c. data cert.fastordr (drop=ordrtime) ;
set cert.orders (keep=product units price
ordrtime) ;
if ordrtime<4;
Total=units*price;
run;

d. none of the above

174 Chapter 9 < Creating and Managing Variables

Chapter 10

175

Combining SAS Data Sets

How to Prepare Your DataSets iiiiiiinenan.. 176
Determining the Structure and Contents of Data Sets 176
Testing Your Programt e 176
Looking at Sources of Common Problems 176

Methods of Combining SAS Data Sets: The Basics 177

One-to-One Reading: Details 178
One-to-One Reading Syntaxttt 178
How One-to-One Reading Selects Data 178
How One-to-One Reading Works i, 179
Example: Using One-to-One Reading to Combine Data Sets 181

Concatenating: Details 182
Concatenating SYNTaX oottt ettt et e e 182
How Concatenating Selects Data, 182
Example: Using Concatenating to Combine Data Sets 183

Match-Merging: Details 184
Match-Merging Syntaxtnit ittt et 184
How Match-Merging Selects Datattt 185
Example: Using Match-Merging to Combine DataSets 185
Example: Merge in Descending Order., 187

Match-Merge Processing it 188
The Basics of Match-Merge Processing, 188
The Compilation Phase: Setting UpaNew DataSet....................... 188
The Execution Phase: Match-Merging Observations 189
Handling Unmatched Observations and Missing Values 191

Renaming Variables 194
The Basics of Renaming Variablesoviuon... 194
RENAME Statement Syntaxoovvt vttt eeeeeeenens 195
Example: Renaming Variables i, 195

Excluding Unmatched Observations 196
OVeIVIEW . . o oottt e e 196
Identifying Observation in Both DataSets 196
Selecting Matching Observationsovi e 197

Chapter QUIZ e e 198

176 Chapter 10 + Combining SAS Data Sets

How to Prepare Your Data Sets

Determining the Structure and Contents of Data Sets

Typically, data comes from multiple sources and might be in different formats. Many
applications require input data to be in a specific format before the data can be
processed. Although application requirements vary, there are common factors for all
applications that access, combine, and process data. You can identify these common
factors for your data. Here are tasks to help you start:

* Determine how the input data is related.

* Ensure that the data is properly sorted or indexed, if necessary.
» Select the appropriate access method to process the input data.
» Select the appropriate SAS tools to complete the task.

You can use the CONTENTS, DATASETS, and PRINT procedures to review the
structure of your data.

Relationships among multiple sources of input data exist when each of the sources
contains common data, either at the physical or logical level. For example, employee
data and department data could be related through an employee ID variable that shares
common values. Another data set could contain numeric sequence numbers whose
partial values logically relate it to a separate data set by observation number.

You must be able to identify the existing relationships in your data. This knowledge is
crucial for understanding how to process input data in order to produce desired results.
All related data falls into one of these four categories, characterized by how observations
relate among the data sets:

* one-to-one

* one-to-many

* many-to-one

* many-to-many

Finally, to obtain the desired results, you should understand how each of these methods
combines observations and how each treats duplicate, missing, or unmatched values of
common variables. Some of the methods require that you preprocess your data sets by
sorting or creating indexes. Testing is a good first step.

Testing Your Program

Create small temporary data sets that contain a sample of rows that test all of your
program's logic. If your logic is faulty and you get unexpected output, you can debug
your program.

Looking at Sources of Common Problems
If your program does not run correctly, review your input data for the following errors:

* columns that have the same name but that represent different data

Methods of Combining SAS Data Sets: The Basics 177

To correct the error, you can rename columns before you combine the data sets by
using the RENAME-= table option in the SET or MERGE statement. As an
alternative, use the DATASETS procedure to display all library management
functions for all member types (except catalogs).

e common columns that have the same data but different attributes

Methods of Combining SAS Data Sets: The
Basics

A common task in SAS programming is to combine observations from two or more data

sets into a new data set. Using the DATA step, you can combine data sets in several

ways.

Table 10.1 Quick-Reference Overview of Data-Combining Methods

Method of Combining

One-to-one reading

Creates observations that contain all of the
variables from each contributing data set.

Combines observations based on their relative
position in each data set.

Statement: SET

Concatenating

Appends the observations from one data set to
another.

Statement: SET

lllustration

SAS Data Set &

SAS Data SetD

Hum Varh Hum VarB
1 a1 z E1l
3 Az Ll EZ
AZ

I— Me;ge A

Comhbined SAS Data Set

Hum Yarh varB
2 Al El
4 ALz B2

SAS Data Set A

SAS Data Set C

Num Yarh Hum VarB
1 Ful 1 E1l
2z LZ 2 Bz
3 Fi%c3 4 B3

I—Cun[:atenale4
Combined 3AS Data Set

Hum Vard YarB

1 Al

2 Az

3 A3

1 Bl

2 Bz

4 B3

178 Chapter 10

Combining SAS Data Sets

Method of Combining

Match-merging

lllustration

SAS Data Set A

SAS Data SetB

Matches observations from two or more data Num Vara Num VarB
sets into a single observation in a new data set 1 Al 1 Bl
according to the values of a common variable. 2 Az 2 Bz
3 A3 4 B3
Statements: MERGE, BY
|—Match;ﬂ|‘lergeg
Combined SAS Data Set
Num Vari VarB

1 Al El

z Az Ez

3 A3

4 B3

You can also use PROC SQL to join data sets according to common values.

One-to-One Reading: Details

One-to-One Reading Syntax

Use multiple SET statements in a DATA step to combine data sets. One-to-one reading
combines rows from two or more data sets by creating rows that contain all of the
columns from each contributing data set. Rows are combined based on their relative
position in each data set. That is, the first row in one data set is combined with the first
in the other, and so on. The data program stops after it has read the last row from the
smallest data set.

Syntax, DATA step for one-to-one reading:
DATA output-SAS-data-set;
SET SAS-data-set-1;
SET SAS-data-set-2;
RUN;
* output-SAS-data-set names the data set to be created.

o SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

How One-to-One Reading Selects Data
The following statements are true when you perform one-to-one reading:

* The new data set contains all the variables from all the input data sets. If the data sets
contain variables that have the same names, the values that are read from the last
data set overwrite the values that were read from earlier data sets.

* The number of observations in the new data set is the number of observations in the
smallest original data set. Observations are combined based on their relative position
in each data set. That is, the first observation in one data set is joined with the first

One-to-One Reading: Details 179

observation in the other, and so on. The DATA step stops after it has read the last
observation from the smallest data set.

data one2one;
set a;
set b;

run;

Figure 10.1 One-to-One Reading

SAS Data Set A SAS Data Set B

Hum Varf Num VarB
1 4l z El
3 a2 4 Ez2
g5 i

Merge

Comhbined SAS Data Set

Hum Yarh VarB
z2 &l El
4 Az Bz

How One-to-One Reading Works

Here is a simple example of one-to-one reading.

data one2one;
set a;
set b;

run;

1. The first SET statement reads the first observation from data set A into the PDV.

Program Data Vector

Num Vara
1 Al

2. The second SET statement reads the first observation from data set B into the PDV,
and SAS writes the contents of the PDV to the new data set. The value for Num from
data set B overwrites the value for Num from data set A.

180 Chapter 10 « Combining SAS Data Sets

Program Data Vector

Num Vara Varg
2 AT B1
SAS Data Set
Hum Yarh VarB
2 Al El

3. The first SET statement reads from data set A into the PDV.

Program Data Vector

Num Yara VarB

3 A2

4. The second SET statement reads the second observation from data set B, and SAS
writes the contents of the PDV to the new data set. The value for Num from data set
B overwrites the value for Num from data set A.

Program Data Vector

Num Yara YarB
4 A2 B2
SAS Data Set
Num varh VarB
z Bl El
4 a2 EZ

5. The first SET statement reads the third observation from data set A into the PDV.

Program Data Vector

Num

VarA

VarB

5

A3

6. The second SET statement reads the end of file in data set B, which stops the DATA
step processing with no further output written to the data set. The last observation in
data set A is read into the PDV, but it is not written to the output data set.

One-to-One Reading: Details 181

Hum Yara WarB

2 a1 Bl
4 AZ Bz

Example: Using One-to-One Reading to Combine Data Sets

In the following example, you have basic patient data in Cert.Patients that you want to
combine with other patient data that is stored in Cert.Measure. The height and weight
data is stored in the data set Cert.Measure. Both data sets are sorted by the variable ID.

Notice that Cert.Patients contains nine out of eleven observations in which the patient
age is less than 60.

Figure 10.2 Example: One-to-One Reading

SAS Data Set Cert.Patients SAS Data Set Cert.Measure
D | S | Age | D | Heght Weight

1 1129 F 48 1 1129 61 137
2 1387 F 7 P 1387 B4 142
3 2304 F 16 3 2304 61 102
4 2486 F 63 4 5438 62 168
5 4759 F &0 R G488 B4 154
[438 F 42 [3045 7. 200
7 6488 F 59 7 8128 7 176
a 5012 F 33 8 5012 63 157
5 9125 F 56 g 9125 65 148
10 8045 M 40

11 3125 M 35

To subset observations from the first data set and combine them with observations from
the second data set, you can submit the following program:

data work.one2one;
set cert.patients;
if age<60;
set cert.measure;

run;

The resulting data set, Work.One2one, contains six observations (the number of
observations read from the smallest data set, which is Cert.Measure). The last
observation in Cert.Patients is not written to the data set because the second SET
statement reaches an end-of-file, which stops the DATA step processing.

182 Chapter 10 + Combining SAS Data Sets

Figure 10.3 The Resulting Data Set for One-to-One Reading Example

ID | Sex | Age | Height | Weight |
1 129 F 48 61 137
2 1387 F 7 64 142
3 2304 F 16 51 102
4 5438 F 42 62 168
5 5482 F 59 54 154
6 3045 M 40 7 200
7 8125 M 39 7 176
8 3012 F 39 83 157
3 9125 F 56 &5 148

Concatenating: Details

Concatenating Syntax

Another way to combine SAS data sets with the SET statement is concatenating, which
appends the observations from one data set to another data set. To concatenate SAS data
sets, you specify a list of data set names in the SET statement.

Syntax, DATA step for concatenating:
DATA output-SAS-data-set;
SET SAS-data-set-1 SAS-data-set-2;
RUN;
* output-SAS-data-set names the data set to be created.

» SAS-data-set-1 and SAS-data-set-2 specify the data sets to concatenate.

How Concatenating Selects Data

When a program concatenates data sets, all of the observations are read from the first
data set listed in the SET statement. Then all of the observations are read from the
second data set listed, and so on, until all of the listed data sets have been read. The new
data set contains all of the variables and observations from all of the input data sets.

data concat;
set a c;
run;

Figure 10.4 How Concatenating Selects

SAS Data Set A

SAS Data Set C

Hum Yark Hum Varg
1 Ll 1 E1l
2 Lz 2 Bz
3 A3 4 B3

|—l13|1n-::a+l,emalre4

Combined SAS Data Set

Hum Varh VarB
1 il
2 AZ
3 8]
1 Bl
2 Bz
4 B3

Concatenating: Details 183

Notice that A and C contain a common variable named Num:

* Both instances of Num (or any common variable) must have the same type attribute,
or SAS stops processing the DATA step and issues an error message stating that the
variables are incompatible.

* However, if the length attribute is different, SAS takes the length from the first data
set that contains the variable. In this case, the length of Num in A determines the
length of Num in Concat.

* The same is true for the label, format, and informat attributes: If any of these
attributes are different, SAS takes the attribute from the first data set that contains the
variable with that attribute.

Example: Using Concatenating to Combine Data Sets

The following DATA step creates Work.Concat by concatenating Cert.Therapy2012 and

Cert.Therapy2013. Each data set contains 12 observations.

data work.concat;
set cert.therapy2012 cert.therapy2013;

run;

proc print data=work.concat;

run;

The first 12 observations in the new output data set Work.Concat were read from
Cert.Therapy2012, and the last 12 observations were read from Cert.Therapy2013.

184 Chapter 10 + Combining SAS Data Sets

Figure 10.5 Example: Concatenating (partial output)

Obs | Month | Year AerClass WalkJogRun | Swim

1 12012 26 78 14
2 2 2012 32 109 19
3 3 2012 15 106 22
4 4 2012 47 115 24
5 52012 95 121 K
more observations
20 8 2013 63 65 53
21 92013 60 49 68
2 10 2013 7o 70 41
23 11 2013 B2 44 58
24 12 2013 93 a7 47

Match-Merging: Details

Match-Merging Syntax

Match-merging combines observations from two or more data sets into a single
observation in a new data set according to the values of a common variable.

When match-merging, use the MERGE statement rather than the SET statement to
combine data sets.

Syntax, DATA step for match-merging:
DATA output-SAS-data-set;
MERGE SA4S-data-set-1 SAS-data-set-2;
BY <DESCENDING> variable(s);
RUN;
* output-SAS-data-set names the data set to be created.
» SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

* variable(s) in the BY statement specifies one or more variables whose values are used to
match observations.

+ DESCENDING indicates that the input data sets are sorted in descending order (largest to
smallest numerically, or reverse alphabetical for character variables) by the variable that is
specified. If you have more that one variable in the BY statement, DESCENDING applies
only to the variable that immediately follows it. The default sort order is ASCENDING.

Each input data set in the MERGE statement must be sorted in order of the
values of the BY variable or variables, or it must have an appropriate index. Each
BY variable must have the same type in all data sets to be merged.

Match-Merging: Details 185

How Match-Merging Selects Data

During match-merging SAS sequentially checks each observation of each data set to see
whether the BY values match and then writes the combined observation to the new data
set.

data merged;
merge a b;
by num;
run;

Figure 10.6 How Match-Merging Selects Data

SAS Data Set A SAS Data Set B
Hum Varf Hum Varp
1 Al 1 Bl
2 AZ 2 Bz
3 A 4 E3
I— Matchll'u'l l.=.r;:||3g

Combined SAS Data Set
Mum Varh VarB

1 Al BEL
2 AZ Bz
3 A3

4 B3

Basic DATA step match-merging produces an output data set that contains values from
all observations in all input data sets. You can add statements and options to select only
matching observations.

If your input data set does not have any observations for a value of the BY variable, then
the observations in the output data set will contain missing values. The missing values
are for the variables that are unique to the input data set.

In match-merging, often one data set contains unique values for the BY variable
and other data sets contain multiple values for the BY variable.

Example: Using Match-Merging to Combine Data Sets
The data sets Cert.Demog and Cert.Visit have been sorted as follows:

proc sort data=cert.demog;
by id;

run;

proc print data=cert.demog;

run;

186 Chapter 10 + Combining SAS Data Sets

Figure 10.7 HTML Output: Sorting Cert.Demog

Obs ID Age | Sex Date

1 A001 | 21 M | 05/22/2007
ADD2 | 32 M 06/15/2006
A3 24 F 08/17/2007
ADD4 . 01/27/2006
AdDs | 44 F 02/24/2005

L= - * R

ADDT 39 M 01/11/2005

proc sort data=cert.visit;
by id;

run;

proc print data=cert.visit;

run;

Figure 10.8 HTML Output: Sorting Cert. Visit

Obs | ID Visit | SysBP DiasBP | Weight Date
1| A001 1 140 85 195 | 11/05/2009
2| A0 2 138 80 198 10/13/2009
3| A001 3 145 95 200 07/04/2009
4 | Ad02 1 121 7a 168 04/14/2009
5| A003 1 118 68 125 08/12/2009
6 | A003 2 112 65 123 08/21/2009
7| AD04 1 143 86 204 | 03/30/2009
& | ADD5 1 132 76 174 02/27/2009
9 | A0S 2 132 78 175 | 07/11/2009
10 | A005 3 134 78 176 | 04/16/2009
11 | A0S 1 126 80 182 05/22/2009

You can then submit this DATA step to create Work.Merged by merging Cert.Demog
and Cert.Visit according to values of the variable ID.

data work.merged;
merge cert.demog cert.visit;
by id;

run;

proc print data=work.merged;

run;

Note: All observations, including unmatched observations and observations that have
missing data, are written to the output data set.

Match-Merging: Details 187

Figure 10.9 HTML Output: Match-Merging Output

Obs 1D Age | Sex Date | Visit | SysBP | DiasBP | Weight
1/ A001 21 M 11/05/2009 1 140 85 195
2 A000 21 M 10/13/2009 2 138 90 198
3 A00T D 21 M 07/04/2009 3 145 95 200
4 A002 32 M| 04/14/2009 1 121 75 168
5 A003 24 F 08/12/2009 1 118 68 125
6 A0D03 24 F 08/21/2009 2 112 65 123
7| ADD4 . 03/30/2009 1 143 86 204
8 AD05 | 44 F 02/27/2009 1 132 76 174
9 ADDs 44 F 07/11/2009 2 132 78 175
10 AD05 | 44 F 04/16/2009 3 134 78 176
11 A007 | 39 M 01/11/2005
12 | ADOB . 05/22/2009 1 126 80 182

Example: Merge in Descending Order

The example above illustrates merging two data sets that are sorted in ascending order of
the BY variable ID. To sort the data sets in descending order and then merge them, you
can submit the following program.

proc sort data=cert.demog;
by descending id;

run;

proc sort data=cert.visit;
by descending id;

run;

data work.merged;
merge cert.demog cert.visit;
by descending id;

run;

proc print data=work.merged;

run;

Note: Specify the DESCENDING option in the BY statements in both the PROC SORT
steps and the DATA step. If you omit the DESCENDING option in the DATA step,
you generate error messages about improperly sorted BY variables.

188 Chapter 10 + Combining SAS Data Sets

Figure 10.10 HTML Output: Merge in Descending Order

Obs 1D Age | Sex Date Visit SysBP DiasBP Weight
1| ADOB . 05/22/2009 1 126 80 182
2 ADDT | 39 M 0141172005
3 A005 44 F 02/27/2009 1 132 76 174
4 A00s 44 F 07/11/2009 2 132 78 175
5 AD05 | 44 F 04/16/2009 3 134 78 176
6 | ADD4 . 03/30/2009 1 143 86 204
T ADD3 24 F 08/M12/2009 1 118 68 125
8 AD03 24 F 08/21/2009 2 112 65 123
9 AD002 32 M | 0414/2009 1 121 75 168
10 ADD1 | 21 M 11/05/2009 1 140 85 195
11 A001 | 21 M 10/13/2009 2 138 90 198
12 AD0T) 21 M 07/04/2009 3 145 95 200

Match-Merge Processing

The Basics of Match-Merge Processing

The match-merging examples in this book are straightforward. However, match-merging
can be more complex, depending on your data and on the output data set that you want
to create. To predict the results of match-merges correctly, you need to understand how
the DATA step performs match-merges.

When you submit a DATA step, it is processed in two phases:

» the compilation phase, in which SAS checks the syntax of the SAS statements and
compiles them (translates them into machine code). During this phase, SAS also sets
up descriptor information for the output data set and creates the PDV.

+ the execution phase in which the DATA step reads data and executes any subsequent
programming statements. When the DATA step executes, data values are read into
the appropriate variables in the PDV. From here, the variables are written to the
output data set as a single observation.

The Compilation Phase: Setting Up a New Data Set
To prepare to merge data sets, SAS does the following:
» reads the descriptor portions of the data sets that are listed in the MERGE statement
» reads the rest of the DATA step program
» creates the PDV for the merged data set

» assigns a tracking pointer to each data set that is listed in the MERGE statement

Match-Merge Processing 189
If there are variables with the same name in more than one data set, then the variable
from the first data set (the order in which the data sets are listed in the MERGE

statement) determines the length of the variable.

Figure 10.11 The Compilation Phase: Setting Up the New Data Set

data work.claims;

merge cert.clients -
cert.amounts; ‘“muul Compiling

by name;
run;
Cert.Clients Cert. Amounts
Name EmpID Name Date Amt

ANKERTON, L. 080CT16 92
ANKERTON, L. 11123 ANKERTON, L. 150CT16 43
DAVIS, R. 22298 DAVIS, R. 04OCTI6 16
MASTERS, T. 33351 MASTERS, T. 130CTI6 18
WOLMER, B. 44yg3 MASTERS, T. 27

THOMAS, A. 210CT16 15

Program Data Vector

Name EmpID Date Amt

After reading the descriptor portions of the data sets Clients and Amounts, SAS does the
following:

1. creates a PDV for the new Claims data set. The PDV contains all variables from the

two data sets. Note that although Name appears in both input data sets, it appears in
the PDV only once.

2. assigns tracking pointers to Clients and Amounts.

The Execution Phase: Match-Merging Observations

After compiling the DATA step, SAS sequentially match-merges observations by

moving the pointers down each observation of each data set and checking to see whether
the BY values match.

» Ifthe BY values match, the observations are read into the PDV in the order in which
the data sets appear in the MERGE statement. Values of any same-named variable
are overwritten by values of the same-named variable in subsequent observations.
SAS writes the combined observation to the new data set and retains the values in the
PDV until the BY value changes in all the data sets.

190 Chapter 10 + Combining SAS Data Sets

data work.claims;

merge cert.clients
cert.amounts; |“m""| Executing

by name;
run;
Cert.Clients Cert.Amounts
Name EmpID Name Date Amt

[ANKERTON, L. 080CTI16 92 |
[ANKERTON, L. 11123 | |ANKERTON, L. 150CT16 43

DAVIS, R. 22298 DAVIS, R. 040CT16 16 [
MASTERS, T. 33351 MASTERS, T. 130CTi16 18
WOLMER, B. 44483 MASTERS, T. 27

THOMAS, A. 210CT16 15

Program Data Vector

—» Name EmpID Date Amt —
ANKERTON, L. 11123 080CT16 a2
Work Claims
Name EmpID Date Amt

|ANKERTON, L. 11123 080CT16 92

If the BY values do not match, SAS determines which BY value comes first and
reads the observation that contains this value into the PDV. Then the contents of the

PDV are written.
Cert.Clients N Cert_hm%un:s Amt
ame ate
Name EmpID ANKERTON, L. 080CT16 92
ANKERTON. L. 11123 [ANKERTON, L. 150CTI16 43 |
DAVIS, R. 22298 | (pavls, R, 04OCT16 16 [
MASTERS, T. 33351 MASTERS, T. 130CT16 18
WOLMER, B. 44483 MASTERS. T. . 27
THOMAS, A. 210CT16 15
Program Data Vector

Name EmpID Date Amt
ANKERTOM, L. 11123 150CT16 43 +
Work Claims
Name EmpID Date Amt

ANKERTON, L. 11123 080CT16 92
| ANKERTON, L. 11123 150CT16 43 |

k

When the BY value changes in all the input data sets, the PDV is initialized to
missing.

Match-Merge Processing 191

Cert Clients 5 CEH.AH’I%UH;S —
ame ate
Name Emp1ID ANKERTON. L. 0SOCTIE 92
ANKERTON, L. 11123 ANKERTON. L. I150CT16 43
DAVIS. R.| 22298 | |payls, R. 040CT16 16 |
MASTERS, T. 33351 | 'MASTERS, T. 130CTI6 18
WOLMER, B. 44483 | |MASTERS, T. . 27
THOMAS, A. 210CT16 15
Program Data Vector
Name EmpID Date Amt
Work_Claims
Name EmpID Date Amt

ANKERTON. L. 11123 080CT16 92
ANKERTON. L. 11123 150CT16 43

The DATA step merge continues to process every observation in each data set until it has
processed all observations in all data sets.

Handling Unmatched Observations and Missing Values

By default, all observations that are read into the PDV, including observations that have
missing data and no matching BY values, are written to the output data set. If you
specify a subsetting IF statement to select observations, then only those that meet the IF

condition are written.

If an observation contains missing values for a variable, then the observation in the

output data set contains the missing values as well. Observations that have missing
values for the BY variable appear at the top of the output data set because missing

values sort first in ascending order.

192 Chapter 10 + Combining SAS Data Sets

data work.claims;

merge cert.clients
cert.amounts; ‘mum" Executing

by name;
run;
Cert Clients T Gert.ﬂmgun:s T
dame ate
Name EmpID ANKERTON, L. 08OCT16 92
ANKERTON, L. 11123 ANKERTON, L. 150CT16 43
DAVIS, R. 22298 DAVIS, R. 04OCTI16 16 [
MASTERS, T. 33351 MASTERS, T. 130CTI6 18
WOLMER, B. 44483 || |MASTERS. T. . 27 |
THOMAS, A. 210CTI6 15
Program Data Vector
- * Name EmpID Date Amt -—
— MASTERS, T. 33351 . 27
Work_Claims
Name EmpID Date Amt
ANKERTON. L. 11123 080CT16 92
ANKERTON. L. 11123 150CT16 43
DAVIS, R. 22298 04OCT16 16
MASTERS, T. 33351 130CT16 18
L—» [MASTERS, T. 33351 . 27 |

» Ifan input data set does not have a matching BY value, then the observation in the
output data set contains missing values for the variables that are unique to that input
data set.

Match-Merge Processing 193

Cert Clients T Cert_Am%unis A
ame ate
Name EmpID ANKERTON, L. 080CT18 92
ANKERTON, L. 11123 | |aNKERTON, L. 150CT16 43
DAVIS. R. 22298 | \payls, R. 040CT16 16
MASTERS, T. 33351 MASTERS, T. 130CTI16 18
[WOLMER, B. 44483 | MASTERS, T. . 27
[THOMAS, A. 210CTI6 15 |
Program Data Vector
Name EmpID Date Amt
— THOMAS, A 210CT16 15
Work Claims
Name EmpID Date Amt
ANKERTON. L. 11123 080CT16 92
ANKERTON. L. 11123 150CT16 43
DAVIS, R. 22298 04OCTIE 16
MASTERS, T. 33351 130CT16 18
L 5 | MASTERS. T. 33351 . 27
[THOMAS , A. . 210CT16 15 |
¢ The last observation in Cert.Clients would be added after the last observation in
Cert.Amounts.
Cert Clients v Cert.Am%untts At
dame ate
Name EmpID ANKERTON, L. 08OCT18 92
ANKERTON, L. 11123 | |aNKERTON, L. 150CT16 43
DAVIS, R. 22298 | payls, R. 040CT16 16
MASTERS, T. 33351 MASTERS, T. 130CTI16 18
WOLMER, B. 44483 || |MASTERS. T. . 27
THOMAS, A. 210CT16 15
Program Data Vector
Name EmpID Date Amt
—| WOLMER, B. 44483 . .
Woark_ Claims
Name EmpID Date Amt
ANKERTON. L. 11123 080CT16 92
ANKERTON. L. 11123 I50CT16 43
DAVIS, R. 22298 04OCTI6 16
MASTERS, T. 33351 1320CTI6 18
MASTERS, T. 33351 . 27
THOMAS, A. . 210CT16 15
L—» |[WOLMER. B. 44483 . .o |

The PROC PRINT output is displayed below. Use the FORMAT statement for the date
variable in the PRINT procedure. To learn how to apply a format, see “Applying SAS
Formats and Informats” on page 225.

proc print data=work.claims noobs;
format date date9.;

194

Chapter 10

Combining SAS Data Sets
run;

Figure 10.12 PROC PRINT Output of Merged Data

Obs | Name EmplD Date | Amount
1| AMKERTON, L. = 11123 080CT2016 92
2 | AMKERTOM, L. = 11123 150CT2016 43
3 | DAVIS, R 22298 040CT2016 16
4 | MASTERS, T. = 33351 130CT2016 18
2| MASTERS. T. | 33381 ; 27
6 | THOMAS, A. . 210CT2016 15
7| WOLMER, B. 44483

Renaming Variables

The Basics of Renaming Variables

DATA step match-merging overwrites values of the like-named variable in the first data
set in which it appears with values of the like-named variable in subsequent data sets.

Consider Cert.Patdat, which contains the variable Date (date of birth), and Cert. Visit,
which also contains Date (date of the clinic visit in 2009). The DATA step below
overwrites the date of birth with the date of the clinic visit.

data work.merged;
merge cert.patdat cert.visit;
by id;

run;

proc print data=work.merged;

run;

The following output shows the effects of overwriting the values of a variable in the
Work.Merged data set. In most observations, the date is now the date of the clinic visit.
In observation 11, the date is still the birthdate because Cert.Visit did not contain a
matching ID value and did not contribute to the observation.

Renaming Variables 195

Figure 10.13 Renaming Variables

Obs | ID Age | Sex Date | Visit SysBP | DiasBP Weight
1/A001) 29 M 11/05/2008 1 140 85 195
2/ A001 29 M 10/13/2009 2 138 90 198
JL AT 21 M 07/04/2009 3 145 95 200
4 A002 32 M 04/14/2009 1 121 [168
5/ A003 24 F 08/12/2009 1 118 68 125
6| A0D03 24 F 08/21/2009 2 112 65 123
7/A004) 28 M 03/30/2009 1 143 86 204
8| A005 | 44 F 02/27/2009 1 132 76 174
9 A005 44| F 07/11/2009 2 132 73 175
10 | ADD5 | 44 | F 04/16/2009 3 134 73 176
11 A007) 39 M 07/10/1979
12 | A00B | 30 | F 05/22/2009 1 126 80 182

RENAME Statement Syntax

To prevent overwriting, you can rename variables by using the RENAME= data set
option in the MERGE statement.

Syntax, RENAME= data set option:
(RENAME=(old-variable-name=new-variable-name))

+ the RENAME-= option, in parentheses, follows the name of each data set that contains one or
more variables to be renamed

* old-variable-name specifies the variable to be renamed.

* new-variable-name specifies the new name for the variable.

Use RENAME= to rename variables in the SET statement or in the output data
set that is specified in the DATA statement.

Example: Renaming Variables

In the following example, the RENAME= option renames the variable Date in
Cert.Patdat to BirthDate, and it renames the variable Date in Cert.Visit to VisitDate.

data work.merged;
merge cert.patdat (rename=(date=BirthDate))
cert.visit (rename=(date=VisitDate)) ;
by id;
run;
proc print data=work.merged;
run;

The following output shows the effect of the RENAME= option.

196 Chapter 10 + Combining SAS Data Sets

Figure 10.14 Output for RENAME= Option

Obs ID | Age Sex Visit | SysBP | DiasBP Weight| VisitDate|

1/ A0 29 M 08171987 1 140 g5 195 | 11/05/2009
2 A001) 29 M 08171997 2 138 50 198 | 10/13/2009
JA00T) 21 M 0BM7M997 3 145 95 200 | 07/04/2009
4 Ap002) 32 M | 021181986 1 121 75 166 | 04/14/2009
5/A003 24 |F 06/07/1994 1 118 68 125 1 08/12/2009
6|A003 | 24 |F 06/07/1994 2 112 65 123 | 08/21/2009
T ADDA | 28 M 01/27/1950 1 143 g6 204 | 03/30/2009
8| A005 | 44 |F 04/24/1974 1 132 76 174 | 02/27/2009
9 A005 44 |F 04/24/1974 2 132 78 175 07/11/2009
10 | AOO5 | 44 |F 04/24/1974 3 134 78 176 | 04/16/2009
11| A007 | 39 M 07/10/1978

12 | A00B | 30 | F 09/16/1988 1 126 80 182 | 05/22/2009

Excluding Unmatched Observations

Overview
By default, DATA step match-merging combines all observations in all input data sets.

To exclude unmatched observations from your output data set, use the following in your
DATA step:

* Use the IN= data set option to create and name a variable that indicates whether the
data set contributed data to the current observation.

» Use the subsetting IF statement to check the IN= values and write to the merged data
set only matching observations

Identifying Observation in Both Data Sets

To match-merge the data sets Cert.Patdat and Cert. Visit and select only observations that
appear in both data sets, use IN= to create two temporary variables, Inpat and Invisit.
The IN= variable is a temporary variable that is available to program statements during
the DATA step, but it is not included in the output SAS data set.

Excluding Unmatched Observations 197

Syntax, IN= data set option:

(IN=variable)

* The IN= option, in parentheses, follows the data set name.
* variable names the variable to be created.

Within the DATA step, the value of the variable is 1 if the data set contributed data to the
current observation. Otherwise, its value is 0.

The DATA step that contains the IN= options appears below. The first IN= creates the
temporary variable, Inpat, which is set to 1 when an observation from Cert.Patdat
contributes to the current observation. Otherwise, it is set to 0. Likewise, the value of
Invisit depends on whether Cert.Visit contributes to an observation or not.

data work.merged;
merge cert.patdat (in=inpat)
cert.visit (in=invisit
rename= (date=BirthDate)) ;
by id;
run;

To specify multiple data set options for a given data set, enclose the options in a
single set of parentheses.

Selecting Matching Observations

To select only observations that appear in both Cert.Patdat and Cert. Visit, specify a
subsetting IF statement in the DATA step.

The subsetting IF statement checks the values of Inpat and Invisit and continues
processing only those observations that meet the condition of the expression. The
condition is that both Cert.Patdat and Cert.Visit contribute to the observation. If the
condition is met, the new observation is written to Work.Merged. Otherwise, the
observation is deleted.

data work.merged;
merge cert.patdat (in=inpat
rename= (date=BirthDate))
cert.visit (in=invisit
rename= (date=VisitDate)) ;
by id;
if inpat=1 and invisit=1;
run;
proc print data=work.merged;

run;

In previous examples, Work.Merged contained 12 observations. In the output below,
notice that only 10 observations met the condition in the IF expression.

198 Chapter 10 « Combining SAS Data Sets

Figure 10.15 Selecting Matching Observations

Obs | ID Age | Sex | BirthDate Visit SysBP DiasBP Weight VisitDate

1/A001) 29 M 08171997 1 140 85 195 1 11/05/2009
2 A0 21 M 08171997 2 138 a0 198 | 10/13/2009
J AWM 21 M 08171997 3 145 95 200 | 07/04/2009
4 A002 32 M 02/18/1986 1 121 [168 | 04/14/2009
5 A003 24 F 06/07/1994 1 118 G 125 | 081272009
6| A003 24 F 06/07/1994 2 112 65 123 | 08/21/2009
T A004) 28 M 01/27/1990 1 143 86 204 | 03/30/2009
8| A00s 44 F 04/24/1974 1 132 76 174 | 02/27/2009
9 AdDE 44 F 04/24/1974 2 132 78 175 | 071172009
10 | A005 | 44 F 04/24/1974 3 134 73 176 | 04/16/2009
11| A008 | 30 F 09/16/1988 1 126 a0 182 | 05/22/2009

SAS evaluates the expression within an IF statement to produce a result that is either
nonzero, zero, or missing. A nonzero and nonmissing result causes the expression to be
true; a zero or missing result causes the expression to be false.

It is possible to specify the subsetting IF statement from the previous example in either
of the following ways. The first IF statement checks specifically for a value of 1. The
second IF statement checks for a value that is neither missing nor 0 (which for IN=
variables is always 1).

if inpat=1 and invisit=1;

if inpat and invisit;

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Which program combines Work.One and Work.Two to produce Work.Three?

Work.Cne Wark Twao Work. Three
VarX | VarY ¥ VarX | VarZ i VarX VarY VarZ
1 Groucho 2 Chico 2 Groucho Chico
3 Harpo 4 Zeppo 4 Harpo | Zeppo
5 Karl

a. data work.three;
set work.one;
set work.two;

run;

data work.three;
set work.one work.two;

run;

data work.three;
set work.one work.two;
by varx;

run;

data work.three;

merge work.one work.two;

by varx;

run;

Chapter Quiz 199

2. Which program combines Cert.Props1 and Cert.Props2 to produce Work.Props3?

Cert.Props1 Cert Props2 Work Props3
Actor Prop | * Actor Prop Actor Prop
Curly Anvil Curly | Ladder Curly Anvil
Larry Ladder Moe | Pliers Larry Ladder
Moe Poker Moe Poker

Curly Ladder

Moe | Pliers

data work.props3;
set cert.propsl;
set cert.props2;

run;

data work.props3;

set cert.propsl cert.props2;

run;

data work.props3;

set cert.propsl cert.props2;

by actor;

run;

data work.props3;

merge cert.propsl cert.props2;

by actor;

run;

3.

Work.Dataone
Career Supervis Finance

72 26 9
63 76 7
96 31 7
96 98 6
84 94 4]

If you submit the following program, which new data set is created?

Work Datatwo
Variety Feedback Autonomy

10 11 70
85 22 93
83 63 73
82 75 97
36 77 97

200 Chapter 10 + Combining SAS Data Sets

data work.jobsatis;

set work.dataone work.datatwo;
run;
proc print data=work.jobsatis noobs;
run;

a.

Career Supervis Finance Variety Feedback Autonomy

72 26 g
63 76 7
96 31 7
96 98 B
84 94 B
10 11 70
85 22 93
83 63 73
82 75 a7
36 77 a7
b.
Career Supervis Finance Variety Feedback Autonomy
72 26 g9 10 11 70
63 78 7 85 22 93
96 31 7 83 63 73
96 98 B 82 75 97
84 94 B 36 77 97
c.

Career | Supervis Finance

72 26 9
63 76 7
96 31 7
96 98 6
84 94 6
10 11 70
85 22 93
83 63 73
82 75 a7
36 77 97

d. none of the above

4. Ifyou concatenate the data sets below in the order shown, what is the value of Sale
in observation 2 of the new data set?

Chapter Quiz 201

Work Reps Work.Close Work Bonus
ID Name ID Sale ID | Bonus
1 Nay Rong 1 $28,000 1 $2,000
2 Kelly Windsor 2 $30,000 2 $4,000
3 | Julio Meraz 2 $40,000 3 $3,000
4 | Richard Krabill 3 $15,000 4 $2 500
3 $20,000
3 $25,000
4 $35,000
a. missing
b. $30,000
c. $40,000

d. You cannot concatenate these data sets.

5. What happens if you merge the following data sets by the variable SSN?

1st Znd

35N Age SSN Age Date

029-46-9261 39 029-46-9261 37 02/15/95
074-53-9892 34 074-53-9892 32 05/22/97
228-88-9649 32 228-88-9649 30 03/04/96
442.21-8075 12 442-21-8075 10 11/22/95
446-93-2122 36 446-93-2122 34 07/08/96
776-84-5391 28 776-84-5391 26 12/15/96
929-75-0218 27 929-75-0218 25 04/30/97

a. The values of Age in the data set st overwrite the values of Age in the data set
2nd.

b. The values of Age in the data set 2nd overwrite the values of Age in the data set
Ist.

c. The DATA step fails because the two data sets contain same-named variables that
have different values.

d. The values of Age in the data set 2nd are set to missing.

202 Chapter 10 + Combining SAS Data Sets

6. Suppose you merge data sets Cert.Setl and Cert.Set2 below:

Cert Set1 Cert Set?

ID | Sex Age ID Height Weight
1128 F 43 1129 61 137
1274 F 50 1387 64 142
1387 F af 2304 51 102
2304 F 16 5438 62 166
2486 F 63 6488 64 154
4425 F 48 9012 63 157
4759 F 60 9125 64 159
5438 F 42
6488 F 59
9012 F 39
9125 F 56

Which output does the following program create?

data work.merged;
merge cert.setl(in=inl) cert.set2(in=in2);
by id;
if inl and in2;

run;

proc print data=work.merged;

run;

a.

Obs ID | Sex Age | Height Weight

11387 F 57 54 142
22304 F 16 51 102
35438 F 42 52 168
4 6488 F 59 54 154
59012 F 39 53 157
69125 F 56 654 159

Obs ID | Sex Age | Height Weight

11128 F 48
21129 . 51
31274 F 50
4 1387 F 57
51387 . 654
62304 F 16
72304 . 61
82486 F 63
94425 F 48
10 4739 F 60
11 5438 F 42
12 5438 . 52
13 6488 F 59
14 6488 . 54
15 9012 F 39
16 9012 . 53
17 19125 F 56
18 9125 . 54

137

142

102

168

154

157

159

Obs ID Sex|Age Height Weight

11129 F 48 61
21387 F 50 54
32304 F 57 61
4 5438 F 16 62
5 6488 F 53 54
69012 F 48 63
79125 F 650 654

d. none of the above

137
142
102
168
154
157
159

Chapter Quiz

203

7. The data sets Cert.Spring and Cert.Sum both contain a variable named Blue. How do
you prevent the values of the variable Blue from being overwritten when you merge
the two data sets?

a.

data work.merged;
merge cert.spring(in=blue)
cert.summer;
by fabric;
run;

data work.merged;
merge cert.spring(out=blue)
cert.summer;

204 Chapter 10

Combining SAS Data Sets

by fabric;
run;

c. data work.merged;
merge cert.spring(blue=navy)
cert.summer;
by fabric;
run;

d. data work.merged;
merge cert.spring(rename=(blue=navy))
cert.summer;
by fabric;
run;

8. What happens if you submit the following program to merge Cert.Donors1 and
Cert.Donors2, shown below?

data work.merged;
merge cert.donorsl cert.donors2;

by id;
run;
Cert.Donors1 Cert.Donors2
ID Type | Units ID Code Units
2304 O 16 6488 65 27
1129 A 485 1129 63 32
1129 A a0 5438 G2 39
1129 A a7 2304 61 45
2486 B 63 1387 64 67

a. The merged data set contains some missing values because not all observations
have matching observations in the other data set.

b. The merged data set contains eight observations.
c. The DATA step produces errors.
d. Values for Units in Cert.Donors2 overwrite values of Units in Cert.Donors|.

9. If you merge Cert.Staff1 and Cert.Staff2 below by ID, how many observations does
the new data set contain?

Cert. Staff1 Cert.5taff2
ID |[Name | Dept Project ID Name |Hours
000 Miguel ' A12 Document 111 Fred 35
111 Fred B45 | Survey 222 Diana 40
222 Diane | B45 Document 177 Steve 0

888 Monigue A12 Document 888 Monigue 37
8999 Vien D03 | Survey

b. 5
c. 6
d 9

Chapter Quiz

205

10. If you merge data sets Work.Reps, Work.Close, and Work.Bonus by ID, what is the
value of Bonus in the third observation in the new data set?

Work Reps Work. Close
ID Name ID Sale
1 Nay Rong 1 $28,000
2 Kelly Windsor 2 $30,000
3 Julio Meraz 2 $40,000
4 ' Richard Krabill 3 $15,000
3 $20,000
3 $25,000
4 $35,000
a. $4,000
b. $3,000
C. missing

d. You cannot tell from the information given.

ID
1

2
3
4

Work.Bonus

Bonus
$2,000
$4,000
$3,000
$2,500

206 Chapter 10 + Combining SAS Data Sets

Chapter 11

207

Processing Data with DO

Loops

The Basics of DO LoOPS o i 207
The Basics of Using Grouping Statements and DO Groups 207
Example: DO and END Statementsc.otitiiinenenan.. 208
DO Statement, Iterative Syntaxt 209
Example: Processing Iterative DOLoops 210

Constructing DO LOOPSt e 212
DO Loop EXeCUtiON . . . o\ v ettt e et 212
Using Explicit OUTPUT Statementscooititiinnennenan.. 213
Decrementing DO LoOpS . . . oot v et e 213
Specifyinga Seriesof Items 214

Nesting DO LoopSot e e e e 215
Indenting and Nesting DO Groupso vt ie it 215
Examples: Nesting DO Loops oot i i e 215

Iteratively Processing Observations fromaDataSet....................... 217

Conditionally Executing DO Loops it .. 218
OVEIVIEW . ¢ . ettt e e e e e e e e e e e e e 218
Using the DO UNTIL Statementttt 218
Using the DO WHILE Statementt 219

Chapter QUIZ e e e 220

The Basics of DO Loops

The Basics of Using Grouping Statements and DO Groups

You can execute a group of statements as a unit by using DO groups.

To construct a DO group, you use the DO and END statements along with other SAS
statements.

208 Chapter 11 + Processing Data with DO Loops

Syntax, DO group:
DO;
SAS statements
END;
* The DO statement begins DO-group processing.

» SAS statements between the DO and END statements are called a DO group and are
executed as a unit.

* The END statement terminates DO-group processing.

Tip: You can nest DO statements within DO groups.

You can use DO groups in IF-THEN/ELSE statements and SELECT groups to execute
many statements as part of the conditional action.

Example: DO and END Statements

In this simple DO group, the statements between DO and END are performed only when
TotalTime is greater than 800. If TotalTime is less than or equal to 800, statements in the
DO group are not executed, and the program continues with the assignment statement
that follows the appropriate ELSE statement.

data work.stresstest;
set cert.tests;
TotalTime= (timemin*60) +timesec;
retain SumSec 5400;
sumsec+totaltime;
length TestLength $6 Message $20;
if totaltime>800 then
do;
TestLength="'Long"';
message='Run blood panel';
end;
else if 750<=totaltime<=800 then TestLength='Normal';
else if totaltime<750 then TestLength='Short';
run;
proc print data=work.stresstest;

run;

The Basics of DO Loops 209

Output 11.1 PROC PRINT Output Work.StressTest (partial output)

Obs | ID Name TimeSec Tolerance TotalTime SumSec TestlLength | Message

12458 Murray, W 38 D 758 6158 MNormal
more observations.

7| 2552 Reberson, P 41 D 941 10411 | Long Run blood panel

more observations.

10 | 2568 Eberhardt, 3 49 N 1009 12835 Long Run blood panel

11 2571 Munnelly, A 21 902 13737 Long Run blood panel

more observations.

13 | 2574 Peterson, V 9D 849 16317 | Long Run blood panel

more observations.

15 | 2578 Cameron, L 27 1 867 16870 Long Run blood panel

more observations.

17 | 2584 Takahashi, ¥ 7D 967 18636 Long Run blood panel
18 | 2586 Derber, B 35N 1055 19691 Long Run blood panel
19 2588 Ivan, H 41 N 941 20632 Long Run blood panel
20| 2589 Wilcox, E 57 1 897 21529 Long Run blood panel

DO Statement, Iterative Syntax

The iterative DO statement executes statements between the DO and END statements
repetitively, based on the value of an index variable.

210 Chapter 11 + Processing Data with DO Loops

Syntax, DO statement, iterative:

DO index-variable=specification-1 <, ...specification-n>;

...more SAS statements...

END;

* index-variable names a variable whose value governs execution of the DO group.

CAUTION:
Avoid changing the index variable within the DO
group. If you modify the index variable within the
iterative DO group, you might cause infinite looping.

Note: Unless you specify to drop it, the index variable is included in the data set that is
being created.

* specification denotes an expression or series of expressions such as these:
start <TO stop> <BY increment> <WHILE(expression) | UNTIL(expression)>

The DO group is executed first with index-variable equal to start. The value of start is
evaluated before the first execution of the loop.

+ start specifies the initial value of the index variable.
* TO stop specifies the ending value of the index variable.

Any changes to stop made within the DO group do
not affect the number of iterations. To stop iteration of a
loop before it finishes processing, change the value of
index-variable, or use a LEAVE statement to go to a
statement outside the loop.

* BY increment specifies a positive or negative number (or an expression that yields a
number) to control the incrementing of index-variable.

The value of increment is evaluated before the execution of the loop. If no increment is
specified, the index variable is increased by 1. When increment is positive, start must be
the lower bound, and stop, if present, must be the upper bound for the loop. If increment
is negative, start must be the upper bound, and stop, if present, must be the lower bound
for the loop.

* WHILE(expression) | UNTIL(expression) evaluates, either before or after execution of
the DO group, any SAS expression that you specify. Enclose the expression in
parentheses.

A WHILE expression is evaluated before each execution of the loop, so that the
statements inside the group are executed repetitively while the expression is true. An
UNTIL expression is evaluated after each execution of the loop, so that the statements
inside the group are executed repetitively until the expression is true.

Note: The order of the optional TO and BY clauses can be reversed.

Note: When you use more than one specification, each one is evaluated before its
execution.

Example: Processing Iterative DO Loops

DO loops process a group of statements repeatedly rather than once. This can greatly
reduce the number of statements required for a repetitive calculation. For example, these
12 sum statements compute a company's annual earnings from investments. Notice that
all 12 statements are identical.

data work.earn (drop=month);
set cert.master;

The Basics of DO Loops 211

Earned=0;

I

* (rate/12
* (rate/12
* (rate/12
* (rate/12
* (rate/12
rate/12
rate/12
* (rate/12
* (rate/12
* (rate/12
* (rate/12
* (rate/12

earned+ (amount+earned

I

earned+ (amount+earned

I

earned+ (amount+earned

I

earned+ (amount+earned

I

earned+ (amount+earned

*

I

earned+ (amount+earned

*

I

earned+ (amount+earned

I

earned+ (amount+earned

I

earned+ (amount+earned

I

earned+ (amount+earned

I

earned+ (amount+earned

I

(
(
(
(
(
(
(
(
(
(
(
(

()
()
()
()
()
()
()
()
()
()
()
()

earned+ (amount+earned

run;

In this program, each sum statement accumulates the calculated interest that is earned for
an investment for one month. The variable Earned is created in the DATA step to store
the earned interest. The investment is compounded monthly, meaning that the value of
the earned interest is cumulative.

By contrast, a DO loop enables you to achieve the same results with fewer statements. In
this case, the sum statement executes 12 times within the DO loop during each iteration
of the DATA step. In this example, the DO group Month is the index variable, 1 is the
start-variable, and 12 is the stop variable.

data work.earnings (drop=month);
set cert.master;
Earned=0;
do month=1 to 12;
earned+ (amount+earned) * (rate/12) ;
end;
Balance=Amount+Earned;
run;
proc print data=work.earnings;
run;

Output 11.2 PROC PRINT Output of Work.Earnings

Obs | Account | Amount | Rate | Earned | Balance
1 1025 9600 0.07 | 693.985 | 10293.98
2 1026 1500 0.05) 76.743 | 1576.74
3 1027 2500 | 0.05)127.905 | 262790
4 1028 5000 0.08 §414.998 | 5415.00
5 1029 6500 0.07 |469.586 | 6969.89
6 1030 5000 0.07 |361.450 | 536145
[1031 4000 | 0.06 §246.711) 4246.71
8 1032 3000 0.01) 30138 | 303014
9 1033 2500 | 0.04 §101.854 | 2601.85
10 1034 3500 0.04 §142.595 | 3642.60
11 1035 1000 0.02) 20184 | 102018

212 Chapter 11

Processing Data with DO Loops

Constructing DO Loops

DO Loop Execution

Here is how the DO loop executes in the DATA step. This example sums the interest that
was earned each month for a one-year investment.

data work.earnings;
Amount=1000;
Rate=0.75/12;
do month=1 to 12;
Earned+ (amount+earned) *rate;
end;

run;

This DATA step does not read data from an external source. When submitted, it compiles
and then executes only once to generate data. During compilation, the program data
vector is created for the Work.Earnings data set.

Program Data Vector

N Amount | Rate month Earned

When the DATA step executes, the values of Amount and Rate are assigned.

Program Data Vector

N Amount Rate month | Earned

1 1000 | 0.0825 . 0

Next, the DO loop executes. During each execution of the DO loop, the value of Earned
is calculated and is added to its previous value. Then the value of Month is incremented.
On the 12th execution of the DO loop, the value of Month is incremented to 12 and the
value of Earned is 1069.839.

Program Data Vector

N Amount Rate month Earned

1 1000 | 0.06825| 12 1069.83

After the 12th execution of the DO loop, the value of Month is incremented to 13.
Because 13 exceeds the stop value of the iterative DO statement, the DO loop stops
executing, and processing continues to the next DATA step statement. The end of the
DATA step is reached, the values are written to the Work.Earnings data set, and in this
example, the DATA step ends. Only one observation is written to the data set.

Figure 11.1 SAS Data Set Work.Earnings

Amourt | Rate | manth | Eamed
1 1000 0.0625 13 1065.8395518

Constructing DO Loops 213

Notice that the index variable Month is also stored in the data set. In most cases, the
index variable is needed only for processing the DO loop and can be dropped from the
data set.

Using Explicit OUTPUT Statements

To create an observation for each iteration of the DO loop, place an OUTPUT statement
inside the loop. By default, every DATA step contains an implicit OUTPUT statement at
the end of the step. But placing an explicit OUTPUT statement in a DATA step overrides
automatic output, causing SAS to add an observation to the data set only when the
explicit OUTPUT statement is executed.

The previous example created one observation because it used automatic output at the
end of the DATA step. In the following example, the OUTPUT statement overrides
automatic output, so the DATA step writes 20 observations.

data work.earn;
Value=2000;
do Year=1 to 20;
Interest=value*.075;
value+interest;
output;
end;
run;
proc print data=work.earn;
run;

Figure 11.2 HTML Output: OUTPUT Statement inside Each DO Loop (partial output)

Obs | Value Interest
1/2150.00 150000
2/2311.25 161.250
3248459 173.344
4 2670.94 | 186.345
5|2871.26 200.320

...more
observatrions. . .

13| 5917.75 | 412,867
16 | 6361.59 443832
17 | 6838.71 477118
18 | 7351.61 512.903
19 | 7902.98 551.371
20 | 849570 592.723

Decrementing DO Loops

You can decrement a DO loop's index variable by specifying a negative value for the BY
clause. For example, the specification in this iterative DO statement decreases the index

214 Chapter 11

Processing Data with DO Loops

variable by 1, resulting in values of 5, 4, 3, 2, and 1. The following brief examples
show you the syntax.

DO index-variable=5 to 1 by -1;
...more SAS statements...
END;

When you use a negative BY clause value, the start value must always be greater than
the stop value in order to decrease the index variable during each iteration.

DO index-variable=5 to 1 by -1;
...more SAS statements...
END;

Specifying a Series of Items

You can also specify how many times a DO loop executes by listing items in a series.

Syntax, DO loop with a variable list:

DO index-variable=valuel, value2, values... ;
...more SAS statements...

END;

values can be character or numeric.

When the DO loop executes, it executes once for each item in the series. The index
variable equals the value of the current item. You must use commas to separate items in
the series.

To list items in a series, you must specify one of the following, as shown in the syntax:
+ all numeric values.

DO index-variable=2,5,9,13,27;
...more SAS statements...
END;

+ all character values, which are enclosed in quotation marks.

DO index-variable='MON',6 'TUE', 'WED', 'THR', 'FRI';
...more SAS statements...
END;

+ all variable names. The index variable takes on the values of the specified variables.

DO index-variable=win,place, show;
...more SAS statements...
END;

Variable names must represent either all numeric or all character values. Do not enclose
variable names in quotation marks.

Nesting DO Loops 215

Nesting DO Loops

Indenting and Nesting DO Groups
You can nest DO groups to any level, just like you nest IF-THEN/ELSE statements.

Note: The memory capabilities of your system might limit the number of nested DO
statements that you can use.

Here is an example structure of nested DO groups:

do;
...more SAS statements...;
do;
...more SAS statements...;
do;
...more SAS statements...;
end;
end;
end;

It is good practice to indent the statements in DO groups, as shown in the
preceding statements, so that their position indicates the levels of nesting.

Examples: Nesting DO Loops

Iterative DO statements can be executed within a DO loop. Putting a DO loop within a
DO loop is called nesting.

do i=1 to 20;
...more SAS statements...
do j=1 to 10;
...more SAS statements...
end;
...more SAS statements...
end;

The DATA step below computes the value of a one-year investment that earns 7.5%
annual interest, compounded monthly.

data work.earn;
Capital=2000;
do month=1 to 12;
Interest=capital*(.075/12) ;
capital+interest;
end;
run;

Assume that the same amount of capital is to be added to the investment each year for 20
years. The new program must perform the calculation for each month during each of the
20 years. To do this, you can include the monthly calculations within another DO loop
that executes 20 times.

data work.earn;

216 Chapter 11 + Processing Data with DO Loops

do year=1 to 20;
Capital+2000;
do month=1 to 12;
Interest=capital*(.075/12) ;
capital+interest;
end;
end;
run;

During each iteration of the outside DO loop, an additional 2,000 is added to the capital,
and the nested DO loop executes 12 times.

data work.earn;
do year=1 to 20;
Capital+2000;
do month=1 to 12;
Interest=capital*(.075/12);
capital+interest;
end;
end;
run;

Remember, in order for nested DO loops to execute correctly, you must do the
following:

* Assign a unique index-variable name in each iterative DO statement.

data work.earn;
do year=1 to 20;
Capital+2000;
do month=1 to 12;
Interest=capital*(.075/12);
capital+interest;
end;
end;
run;

* End each DO loop with an END statement.

data work.earn;
do year=1 to 20;
Capital+2000;
do month=1 to 12;
Interest=capital*(.075/12);
capital+interest;
end;
end;
run;

It is easier to manage nested DO loops if you indent the statements in each DO loop as
shown above.

Iteratively Processing Observations from a Data Set 217

Iteratively Processing Observations from a Data
Set

Previous examples of DATA steps used DO loops to generate one or more observations
from one iteration of the DATA step. It is also possible to write a DATA step that reads a
data set and uses variables in the input data set to compute the value of a new variable.

The SAS data set Work.CDRates contains interest rates for certificates of deposit (CDs)
that are available from several institutions.

Suppose you want to compare how much each CD earns at maturity with an investment
of $5,000. The DATA step below creates a new data set, Work.Compare, that contains
the added variable, Investment.

data work.compare (drop=1i) ;
set work.cdrates;
Investment=5000;
do i=1 to years;

investment+rate*investment;

end;

run;

proc print data=work.compare;

run;

The index variable is used only to execute the DO loop, so it is dropped from the new
data set. Notice that the data set variable Years is used as the stop value in the iterative
DO statement. As a result, the DO loop executes the number of times specified by the
current value of Years.

Here is what happens during each iteration of the DATA step:

* An observation is read from Work.CDRates.

* The value 5000 is assigned to the variable Investment.

» The DO loop executes, based on the current value of Years.

* The value of Investment is incremented (each time that the DO loop executes), using
the current value of Rate.

At the end of the first iteration of the DATA step, the first observation is written to the
Work.Compare data set. Control returns to the top of the DATA step, and the next
observation is read from Work.CDRates. These steps are repeated for each observation
in Work.CDRates. The resulting data set contains the computed values of Investment for
all observations that have been read from Work.CDRates.

Figure 11.3 HTML Output: Work.Compare Data Set

Obs | Institution Rate Years Investment
1 MBMA America 0.0817 5 7404 .64
2 | Metropolitan Bank | 0.0814 3 6323.09

J | Standard Pacific | 0.0806 4 6817.57

218 Chapter 11

Processing Data with DO Loops

Conditionally Executing DO Loops

Overview

The iterative DO statement specifies a fixed number of iterations for the DO loop.
However, there are times when you want to execute a DO loop until a condition is
reached or while a condition exists, but you do not know how many iterations are
needed.

Suppose you want to calculate the number of years required for an investment to reach
$50,000. In the DATA step below, using an iterative DO statement is inappropriate
because you are trying to determine the number of iterations required for Capital to
reach $50,000.

data work.invest;
do year=1 to ? ;
Capital+2000;
capital+capital*.10;
end;

run;

The DO WHILE and DO UNTIL statements enable you to execute DO loops based on
whether a condition is true or false.

Using the DO UNTIL Statement

The DO UNTIL statement executes a DO loop until the expression becomes true.

Syntax, DO UNTIL statement:
DO UNTIL(expression);

...more SAS statements...
END;

expression is a valid SAS expression enclosed in parentheses.

The expression is not evaluated until the bottom of the loop. Therefore, a DO UNTIL
loop always executes at least once. When the expression is evaluated as true, the DO
loop stops.

Assume you want to know how many years it takes to earn $50,000 if you deposit
$2,000 each year into an account that earns 10% interest. The DATA step below uses a
DO UNTIL statement to perform the calculation until $50,000 is reached. Each iteration
of the DO loop represents one year.

data work.invest;
do until (Capital>=50000) ;
capital+2000;
capital+capital*.10;
Year+l;
end;

run;

Here is what happens during each iteration of the DO loop:

Conditionally Executing DO Loops 219

* 2000 is added to the value of Capital to reflect the annual deposit of $2,000.
* 10% interest is added to Capital.
» The value of Year is incremented by 1.

Because there is no index variable in the DO UNTIL statement, the variable Year is
created in a sum statement to count the number of iterations of the DO loop. This
program produces a data set that contains the single observation shown below. To
accumulate more than $50,000 in capital requires 13 years (and 13 iterations of the DO
loop).

Figure 11.4 SAS Data Set Work.Invest: Accumulation of More Than $50,000

Capital Year
1 53545 57 13

Using the DO WHILE Statement

Like the DO UNTIL statement, the DO WHILE statement executes DO loops
conditionally. You can use the DO WHILE statement to execute a DO loop while the
expression is true.

Syntax, DO WHILE statement:
DO WHILE((expression);

...more SAS statements...
END;

expression is a valid SAS expression enclosed in parentheses.

An important difference between the DO UNTIL and DO WHILE statements is that the
DO WHILE expression is evaluated at the top of the DO loop. If the expression is false
the first time it is evaluated, the DO loop never executes. For example, in the following
program the DO loop does not execute because the value of Capital is initially zero,
which is less than 50,000.

data work.invest;
do while (Capital>=50000) ;
capital+2000;
capital+capital*.10;
Year+l;
end;

run;

Suppose you also want to limit the number of years you invest your capital to 10 years.
You can add the UNTIL or WHILE expression to an iterative DO statement to further
control the number of iterations. This iterative DO statement enables you to execute the
DO loop until Capital is greater than or equal to 50000 or until the DO loop executes 10
times, whichever occurs first.

data work.invest;
do year=1 to 10 until (Capital>=50000) ;
capital+2000;
capital+capital*.10;
end;

run;

220 Chapter 11

Processing Data with DO Loops

Figure 11.5 SAS Data Set Work.Invest: Executing DO Loop until Capital >=$50,000

Year Capita
1 10| 3506233

In this case, the DO loop stops executing after 10 iterations, and the value of Capital
never reaches 50000. If you increase the amount added to Capital each year to 4000, the
DO loop stops executing after the eighth iteration when the value of Capital exceeds
50000.

data work.invest;
do year=1 to 10 until (Capital>=50000) ;
capital+4000;
capital+capital*.10;
end;
run;

Figure 11.6 SAS Data Set Work.Invest: Increase Amount Added to Capital Using a DO Loop

year Capita
1 8| 5031791

The UNTIL and WHILE expressions in an iterative DO statement function similarly to
the DO UNTIL and DO WHILE statements. As shown in the following syntax, both
statements require a valid SAS expression that is enclosed in parentheses.

DO index-variable=start TO stop BY increment UNTIL (expression) ;
DO index-variable=start TO stop BY increment WHILE (expression) ;

The UNTIL expression is evaluated at the bottom of the DO loop. Therefore, the DO
loop always executes at least once. The WHILE expression is evaluated before the
execution of the DO loop. As a result, if the condition is initially false, the DO loop
never executes.

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Which statement is false regarding the use of DO loops?
a. They can contain conditional clauses.
b. They can generate multiple observations.
c. They can be used to combine DATA and PROC steps.
d. They can be used to read data.

2. During each execution of the following DO loop, the value of Earned is calculated
and is added to its previous value. How many times does this DO loop execute?

data work.earnings;
Amount=1000;
Rate=.075/12;
do month=1 to 12;
Earned+ (amount+earned) *rate;
end;

Chapter Quiz 221

run;
a. 0
b. 1
c. 12
d. 13

On January 1 of each year, $5,000 is invested in an account. Complete the DATA
step below to determine the value of the account after 15 years if a constant interest
rate of 10% is expected.

data work.invest;
Capital+5000;
capital+ (capital*.10);

end;
run;

a. do count=1 to 15;

b. do count=1 to 15 by 10%;

c. do count=1 to capital;

d. do count=capital to (capital*.10);

In the data set Work.Invest, what would be the stored value for Year?

data work.invest;
do year=1990 to 2004;
Capital+5000;
capital+ (capital*.10) ;
end;
run;

a.
b.

C.

missing
1990
2004

d. 2005
Which of the following statements is false regarding the program shown below?

data work.invest;
do year=1990 to 2004;
Capital+5000;
capital+ (capital*.10);
output;
end;
run;

a. The OUTPUT statement writes current values to the data set immediately.
b. The last value for Year in the new data set is 2005.

c. The OUTPUT statement overrides the automatic output at the end of the DATA
step.

d. The DO loop performs 15 iterations.
How many observations will the data set Work.Earn contain?

data work.earn;

222 Chapter 11 + Processing Data with DO Loops

10.

Value=2000;
do year=1 to 20;
Interest=value*.075;
value+interest;
output;
end;
run;

a. 0
b. 1
c. 19
d. 20

Which of the following would you use to compare the result of investing $4,000 a
year for five years in three different banks that compound interest monthly? Assume
a fixed rate for the five-year period.

a. DO WHILE statement

b. nested DO loops

c. DO UNTIL statement

d. aDO group

Which statement is false regarding DO UNTIL statements?

a. The condition is evaluated at the top of the loop, before the enclosed statements
are executed.

b. The enclosed statements are always executed at least once.
c. SAS statements in the DO loop are executed until the specified condition is true.
d. The DO loop must have a closing END statement.

Select the DO WHILE statement that would generate the same result as the program
below.

data work.invest;
capital=100000;
do until (Capital gt 500000) ;
Year+1;
capital+ (capital*.10);
end;
run;

a. do while(Capital ge 500000) ;
b. do while(Capital=500000) ;
c. do while(Capital le 500000) ;
d. do while(Capital>500000) ;

In the following program, complete the statement so that the program stops
generating observations when Distance reaches 250 miles or when 10 gallons of fuel
have been used.

data work.go250;
set cert.cars;
do gallons=1 to 10 ... ;
Distance=gallons*mpg;
output;

end;
run;

a. while(Distance<=250)
b. when (Distance>250)
c. over(Distance le 250)

d. until (Distance=250)

Chapter Quiz

223

224 Chapter 11+ Processing Data with DO Loops

Chapter 12
SAS Formats and Informats

225

Applying SAS Formats and Informats 225
Temporarily Assigning Formats to Variables 225
Specifying SAS Formatst 227
Field Widthso 227
Decimal Placest 228
Examples: Data Valuesand Formatscoiuin.... 228

The FORMAT Procedure i 229
Definitionso 229
A Word about PROC FORMAT e 229
The PROC FORMAT Statementooniinii i 230
Permanently Storing Your Formats 230

Defining a Unique Format i, 231
The VALUE Statementot e e 231
Specifying Value Ranges i 232

Associating User-Defined Formats with Variables 233
How SAS Finds Format Catalogs, 233
Assigning Formats to Variables i 234
Displaying User-Defined Formats, .. 235

Chapter QUIZ e e 238

Applying SAS Formats and Informats

Temporarily Assigning Formats to Variables

In your SAS reports, formats control how the data values are displayed. To make data
values more understandable when they are displayed in your procedure output, you can
use the FORMAT statement, which associates formats with variables.

Formats affect only how the data values appear in output, not the actual data values as
they are stored in the SAS data set.

226 Chapter 12 + SAS Formats and Informats

Syntax, FORMAT statement:
FORMAT variable(s) format-name;

* variable(s) is the name of one or more variables whose values are to be written according to
a particular pattern

* format-name specifies a SAS format or a user-defined format that is used to write out the
values.

Tip: The FORMAT statement applies only to the PROC step in which it appears.

You can use a separate FORMAT statement for each variable, or you can format several
variables (using either the same format or different formats) in a single FORMAT
statement.

Table 12.1 Formats That Are Used to Format Data

FORMAT Statement Description Example
format date mmddyys8.; associates the format 01/06/17
MMDDYY8. with the variable
Date
format net comma5.o0 associates the format 1,234
gross commas8.2; COMMAS.0 with the variable 5.678.90

Net and the format COMMAS.2
with the variable Gross

format net gross dollar9.2; associates the format $1,234.00
DOLLARY9.2 with both
variables, Net, and Gross $5,678.90

For example, the FORMAT statement below writes values of the variable Fee using
dollar signs, commas, and no decimal places.

proc print data=cert.admit;
var actlevel fee;
where actlevel='HIGH';
format fee dollar4.;

run;

Figure 12.1 FORMAT Statement Output

Obs | ActLevel Fee
1| HIGH 585

2 | HIGH 5125

6 | HIGH 5125

11 | HIGH 5150
14 | HIGH 5125
18 | HIGH 585
20 | HIGH $150

Specifying SAS Formats

Field Widths

Applying SAS Formats and Informats

The table below describes some SAS formats that are commonly used in reports.

Table 12.2 Commonly Used SAS Formats

Format

COMMAw.d

DOLLARw.d

MMDDYYw.

w.d

Sw.

DATEw.

Description

specifies values that contain commas and decimal
places

specifies values that contain dollar signs, commas,
and decimal places

specifies values as date values of the form 09/12/17
(MMDDY'Y8.) or 09/12/2017 (MMDDY'Y 10.)

specifies values that are rounded to the nearest
integer in w spaces

specifies values that are rounded to d decimal
places in w spaces

specifies values as character values in w spaces

specifies values as date values of the form
160CT17 (DATE7.) or 160CT2017 (DATES9.)

Example

commag.2

dollar6.2

mmddyy10.

8.2

$12.

date9.

227

All SAS formats specify the total field width (w) that is used for displaying the values in
the output. For example, suppose the longest value for the variable Net is a four-digit
number, such as 5400. To specify the COMMAw.d format for Net, you specify a field

width of 5 or more. You must count the comma, because it occupies a position in the

output.

Note: When you use a SAS format, specify a field width (w) that is wide enough for the
largest possible value. Otherwise, values might not be displayed properly.

Figure 12.2 Specifying a Field Width (w) with the FORMAT Statement

5

1 2z

format net commab.0;

0

5

228 Chapter 12 + SAS Formats and Informats

Decimal Places

For numeric variables, you can also specify the number of decimal places (d), if any, to
be displayed in the output. Numbers are rounded to the specified number of decimal
places. In the example above, no decimal places are displayed.

Writing the whole number 2030 as 2,030.00 requires eight print positions, including two
decimal places and the decimal point.

Figure 12.3 Whole Number Decimal Places

format qtr3tax comma3s.2;
2,0 3 0 .00

T2 3 4 &5 B 7 8

Formatting 15374 with a dollar sign, commas, and two decimal places requires 10 print
positions.

Figure 12.4 Specifying 10 Decimal Places

format totsales dollar10.2;
$15,374 .00

1 2 3 45 B 7 8 89 10

Examples: Data Values and Formats

This table shows you how data values are displayed when different format, field width,
and decimal place specifications are used.

Table 12.3 Displaying Data Values with Formats

Stored Value Format Displayed Value
38245.3975 COMMA9.2 38,245.40
38245.3975 8.2 38245.40
38245.3975 DOLLARI10.2 $38,245.40
38245.3975 DOLLAR9.2 $38245.40
38245.3975 DOLLARS.2 38245.40

0 MMDDYYS. 01/01/60

0 MMDDYY10. 01/01/1960

The FORMAT Procedure
Stored Value Format Displayed Value
0 DATE7. 01JAN60
0 DATE9. 01JAN1960

If a format is too small, the following message is written to the SAS log:

NOTE: At least one W.D format was too small for the number to be
printed. The decimal might be shifted by the 'BEST' format.

229

The FORMAT Procedure

Definitions

SAS format
determines how variable values are printed according to the data type: numeric,
character, date, time, or timestamp.

SAS informat

determines how data values are read and stored according to the data type: numeric,

character, date, time, or timestamp.

A Word about PROC FORMAT

SAS provides you with formats and informats that you can use to read and write your
data. However, if the SAS formats or informats do not meet your needs, you can use the
FORMAT procedure to define your own formats and informats. PROC FORMAT stores

user-defined formats and informats as entries in a SAS catalog.

The following output of Work.Carsurvey has a value of 1 or 2 for Sex, and values of B,

G, W, and Y for Color. SAS does not provide formats to make the values for Sex and

Color easier to read. You can create your own formats to format the values. You can also

apply a format to the values of Income.

Figure 12.5 Work.Carsurvey Data Set

Obs Age Sex Income | Color

1/ 19 1 14000
2| 45 1 65000
3| 62 2 35000
4 3 1 44000
5| 58 2 83000
6| 68 1 44000
T 17 2 15000
8| 70 2 33000

mo @D s < = o <

230 Chapter 12

SAS Formats and Informats

The PROC FORMAT Statement

To begin a PROC FORMAT step, you use a PROC FORMAT statement.

Syntax, PROC FORMAT statement:
PROC FORMAT <options>;
options includes the following:

» LIBRARY=libref specifies the libref for a SAS library to store a permanent catalog of user-
defined formats

* FMTLIB displays a list of all of the formats in your catalog, along with descriptions of their
values.

Anytime you use PROC FORMAT to create a format, the format is stored in a format
catalog. If the SAS library does not already contain a format catalog, SAS automatically
creates one. If you do not specify the LIBRARY= option, the formats are stored in a
default format catalog named Work.Formats.

The libref Work signifies that any format that is stored in Work.Formats is a temporary
format; it exists only for the current SAS session.

Permanently Storing Your Formats

To store formats in a permanent format catalog named Formtlib.Formats:

* Specify a LIBNAME statement that associates the libref with the permanent SAS
library in which the format catalog is to be stored.

libname formtlib 'c:\sas\formats\lib';

* Specify the LIBRARY= option in the PROC FORMAT statement and specify the
libref formtlib.

PROC FORMAT LIBRARY=formtlib;

The LIBRARY= option accepts a libref and a catalog in the format library.format.
When the LIBRARY= option specifies a libref and not a catalog, PROC FORMAT
uses the catalog Formats.

When you associate a user-defined format with a variable in a subsequent DATA or
PROC step, use the Library libref to reference the location of the format catalog.

Any format that you create in this PROC FORMAT step is now stored in a permanent
format catalog called Formtlib.Formats.

libname formtlib 'C:\Users\Studentl\formats\lib';
proc format library=formtlib;

...more SAS statements...
run;

In the program above, the catalog Formtlib.Formats is located in the SAS library
C:\Users\Studentl\formats\1lib, which is referenced by the libref Formtlib.

Notice that LIB= is an acceptable abbreviation for the LIBRARY= option.

proc format lib=formtlib;

Defining a Unique Format

231

Defining a Unique Format

The VALUE Statement

Use the VALUE statement to define a format for displaying one or more values.

Syntax, VALUE statement:
VALUE format-name

rangel='labell’
range2='"label2’

...more format-names...;

The following are true about format-name:

A format name must begin with a dollar sign ($) if the format applies to character data.
A format name must be a valid SAS name.

A format name cannot be the name of an existing SAS format.

A format name cannot end in a number.

A format name does not end in a period when specified in a VALUE statement.

A numeric format name can be up to 32 characters long.

A character format name can be up to 31 characters long.

Tip: 1f you are running a version of SAS prior to SAS®9, the format name must be a SAS
name up to eight characters long and cannot end in a number.

Notice that the statement begins with the keyword VALUE and ends with a semicolon
after all the labels have been defined. The following VALUE statements create the
GENDER, AGEGROUP, and $COL formats to specify descriptive labels that are later
assigned to the variables Sex, Age, and Color respectively:

proc format;

value gender
1 = 'Male!

2 = 'Female';
value agegroup

13 -< 20 = 'Teen'

20 -< 65 'Adult'’

65 - HIGH = 'Senior';
value S$col

'W' = 'Moon White'

'B' = 'Sky Blue'

'Y' = 'Sunburst Yellow'
'G' = 'Rain Cloud Gray';

run;

The VALUE range specifies the following types of values:

a single value, such as 24 or 's'
a range of numeric values, such as 0-1500

a range of character values enclosed in quotation marks, such as 'aA'-'M'

232 Chapter 12 + SAS Formats and Informats

» alist of unique values separated by commas, such as 90,180,270 or 'B', 'D', 'F'. These
values can be character values or numeric values, but not a combination of character
and numeric values (because formats themselves are either character or numeric).

When the specified values are character values, they must be enclosed in quotation
marks and must match the case of the variable's values. The format's name must also
start with a dollar sign (8$). For example, the VALUE statement below defines the SCOL
format, which displays the character values as text labels.

proc format lib=formtlib;
value S$col

'W' = 'Moon White'

'B' = 'Sky Blue'

'Y' = 'Sunburst Yellow'
'G' = 'Rain Cloud Gray';

run;

When the specified values are numeric values, they are not enclosed in quotation marks,
and the format's name should not begin with a dollar sign ($).

Specifying Value Ranges

You can specify a non-inclusive range of numeric values by using the less than symbol
(<) to avoid any overlapping. In this example, the range of values from 0 to less than 13
is labeled as Child. The next range begins at 13, so the label Teenager would be assigned
to the values 13 to 19.

proc format lib=formtlib;
value agefmt
0-<13='child’
13-<20="teenager’
20-<65="adult"
65-100="'senior citizen';

run;

You can also use the keywords LOW and HIGH to specify the lower and upper limits of
a variable's value range. The keyword LOW does not include missing numeric values.
The keyword OTHER can be used to label missing values as well as any values that are
not specifically addressed in a range.

proc format lib=formtlib;
value agefmt
low-<13="'child"’
13-<20="teenager'
20-<65="adult"
65-high="'senior citizen'
other="'unknown';

run;

If applied to a character format, the keyword LOW includes missing character
values.

When specifying a label for displaying each range, remember to do the following:

* Enclose the label in quotation marks.

e Limit the label to 32,767 characters.

» Use two single quotation marks if you want an apostrophe to appear in the label:

000='employee''s jobtitle unknown';

Associating User-Defined Formats with Variables 233

To define several formats, you can use multiple VALUE statements in a single PROC
FORMAT step. In this example, each VALUE statement defines a different format.

proc format;
value gender
1 = 'Male'
2 = 'Female';

value agegroup

13 -< 20 = 'Teen'

20 -< 65 = 'Adult'

65 - HIGH = 'Senior';
value S$col

'W' = 'Moon White'

'B' = 'Sky Blue'

'Y' = 'Sunburst Yellow'

'G' = 'Rain Cloud Gray';

run;

The SAS log prints notes informing you that the formats have been created.

Log 12.1 SAS Log

146 proc format lib=formtlib;

147 value gender 1 = 'Male'

148 2 = 'Female';

NOTE: Format GENDER is already on the library FORMTLIB.FORMATS.
NOTE: Format GENDER has been output.

149 value agegroup 13 -< 20 = 'Teen'
150 20 -< 65 = 'Adult'
151 65 - HIGH = 'Senior';

NOTE: Format AGEGROUP is already on the library FORMTLIB.FORMATS.
NOTE: Format AGEGROUP has been output.

152 value S$col 'W' = 'Moon White'

153 'B' = 'Sky Blue'

154 'Y' = 'Sunburst Yellow'
155 'G' = 'Rain Cloud Gray';

NOTE: Format $COL is already on the library FORMTLIB.FORMATS.
NOTE: Format $COL has been output.

Associating User-Defined Formats with Variables

How SAS Finds Format Catalogs

To use the GENDER, AGEGROUP, and $COL formats in a subsequent SAS session,
you must assign the libref Formtlib again.

libname formtlib 'C:\Users\Studentl\formats\lib';

SAS searches for the formats GENDER, AGEGROUP, and $COL in two libraries, in
this order:

+ the temporary library referenced by the libref Work
+ apermanent library referenced by the libref Formtlib

SAS uses the first instance of a specified format that it finds.

234 Chapter 12 + SAS Formats and Informats

You can delete formats using PROC CATALOG.

Assigning Formats to Variables

Just as with SAS formats, you associate a user-defined format with a variable in a
FORMAT statement.

data work.carsurvey;

set cert.cars;

format Sex gender. Age agegroup. Color $col. Income Dollar$.;
run;

Remember, you can place the FORMAT statement in either a DATA step or a PROC
step. By placing the FORMAT statement in a DATA step, you permanently associate a
format with a variable. Note that you do not have to specify a width value when using a
user-defined format.

When you submit the PRINT procedure, the output for Work.CarSurvey now shows
descriptive labels instead of the values for Age, Sex, Income, and Color.

proc print data=work.carsurvey;

run;

Output 12.1 Work.CarSuvery Data Set with Formatted Values

Obs | Age Sex | Income | Color

1 Teen Male | $14,000 Sunburst Yellow
2| Adult Male | 565,000 Rain Cloud Gray
3 Adult | Female | 535,000 Moon White

4| Adult Male 544,000 Sunburst Yellow
5| Adult | Female $83.000 Moon White

6 Senior Male = 544,000 Sky Blue

| Teen | Female | 515,000 Rain Cloud Gray
& | Senior | Female | $33,000 Sky Blue

When associating a format with a variable, remember to do the following:

» Use the same format name in the FORMAT statement that you specified in the
VALUE statement.

* Place a period at the end of the format name when it is used in the FORMAT
statement.

If you do not format all of a variable's values, then those that are not listed in the
VALUE statement are printed as they appear in the SAS data set. In the example below,
the value of 2 was not defined in the VALUE statement for GENDER as shown in
observation 3, 5, 7, and 8.

libname formtlib 'C:\Users\Studentl\formats\lib';
proc format lib=formtlib;
value gender

1 = 'Male';
value agegroup
13 -< 20 = 'Teen'

20 -< 65

'Adult’

Associating User-Defined Formats with Variables

65 - HIGH = 'Senior';

value S$col

run;

'W' = 'Moon White'

'B' = 'Sky Blue'

'Y' = 'Sunburst Yellow'
'G' = 'Rain Cloud Gray';

data work.carsurvey;

run;

set cert.cars;

format Sex gender. Age agegroup.Color $col. Income Dollars.;

proc print data=work.carsurvey;

run;

Output 12.2 Work.Carsurvey Data Set with Missing Formatted Values

Obs
1

2
3
4
5
6
[
3

Age
Teen
Adult
Adult
Adult
Adult

Senior

Teen

Senior

Sex
Male
Male

2

Male

Male

Displaying User-Defined Formats

Income
314,000
565,000
535,000
544,000
583,000
544,000
515,000
$33.000

Color

Sunburst Yellow
Rain Cloud Gray
Moon White
Sunburst Yellow
Moon White
Sky Blue

Rain Cloud Gray
Sky Blue

235

When you build a large catalog of permanent formats, it can be easy to forget the exact
spelling of a specific format name or its range of values. Adding the keyword FMTLIB
to the PROC FORMAT statement displays a list of all the formats in your catalog, along
with descriptions of their values.

libname formtlib 'c:\sas\formats\lib';

proc format library=formtlib fmtlib;

run;

When you submit this PROC step, a description of each format in your permanent

catalog is displayed as output.

236 Chapter 12 + SAS Formats and Informats

Output 12.3 Output of the Formtlib Catalog

| FORMAT NAME: AGEGROUP LENGTH:

VALUES: 3
| MIN LENGTH: 1 MAX LENGTH: 40
FuzZ: STD

& NUMBER OF

DEFAULT LENGTH:

6

|STAFIT END LABEL (VER. V7|V8

24JUL2018:10:45:25)

| 13| 20<Teen

| 20| 65<Adult

| 65|HIGH Senior

Associating User-Defined Formats with Variables 237

FORMAT NAME: GENDER LENGTH : 5] NUMBER OF
VALUES: 2
| MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH: &
FUZZ: STD

|STAHT END LABEL (VER. V7|V8
24J4UL2018:10:45:25)

| 1 | 1 |Male

| 2| 2|Female

238 Chapter 12 + SAS Formats and Informats

| ! FORMAT MNAME: $COL LENGTH: 15 NUMBER OF
VALUES: 4

| MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH: 15
FUZZ: 0

|STAHT END LABEL (VER. V7|V&
24JUL2018:10:45:25)

|B |B |sky Blue
|G | |a |Rain Cloud Gray
|w | |w |Moon white
|y : |Y |sunburst Yellow
|
______]

In addition to the name, range, and label, the format description includes the following
details:

* length of the longest label
* number of values defined by this format
» version of SAS that was used to create the format

» date and time of creation

Chapter Quiz
Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. Suppose you do not specify the LIBRARY= option and your formats are stored in
Work.Formats. How long do they exist?

a. only for the current procedure
b. only for the current DATA step
c. only for the current SAS session

d. permanently

Chapter Quiz 239

Which of the following statements store your formats in a permanent catalog?

a. libname formtlib 'C:\Users\Studentl\sas\formats\lib';
proc format lib=formtlib

.

b. libname formtlib 'C:\Users\Studentl\sas\formats\lib';
format lib=formtlib

.

¢. formtlib='C:\Users\Studentl\sas\formats\lib';
proc format formtlib

.

d. formtlib='C:\Users\Studentl\sas\formats\lib';
proc formtlib

.

When you create a format with the VALUE statement, the new format's name cannot
end with a number, cannot end with a period, and cannot be the name of a SAS
format. Which of the following is also true?

a. The name cannot be the name of a data set variable.

b. The name must be at least two characters long.

c. The name must be at least eight characters long.

d. The name must begin with a dollar sign ($) if used with a character variable.
Which of the following FORMAT procedures is written correctly?

a. proc format lib=formtlib
value colorfmt;

1="'Red'
2="'Green'
3='Blue'

run;

b. proc format lib=formtlib;
value colorfmt

1="'Red'
2="'Green'
3='Blue’';

run;

c. proc format lib=formtlib;
value colorfmt;

1="'Red'
2="'Green'
3='Blue'

run;

d. proc format lib=formtlib;
value colorfmt

1='Red';
2="'Green';
3='Blue’';

run;

Which of these statements is false regarding what the ranges in the VALUE
statement can specify?

a. They can specify a single value, such as 24 or 's'.

240 Chapter 12 + SAS Formats and Informats

b. arange of numeric values, such as 0-1500.
c. arange of character values, such as 'A'-'M'.

d. alist of numeric and character values separated by commas, such as 90,'B',

180,'D',270.
6. How many characters can be used in a label?
a. 96
b. 200
c. 256
d. 32,767

7. Which keyword can be used to label missing numeric values as well as any values
that are not specified in a range?

a. LOW

b. MISS

c. MISSING
d. OTHER

8. You can place the FORMAT statement in either a DATA step or a PROC step. What
happens when you place it in a DATA step?

a. You temporarily associate the formats with variables.
b. You permanently associate the formats with variables.
c. You replace the original data with the format labels.
d. You make the formats available to other data sets.

9. Suppose the format JOBFMT was created in a FORMAT procedure. Which
FORMAT statement applies it to the variable JobTitle in the program output?

a. format jobtitle jobfmt;
b. format jobtitle jobfmt.;
c. format jobtitle=jobfmt;
d. format jobtitle='jobfmt';

10. Which keyword, when added to the PROC FORMAT statement, displays all the
formats in your catalog?

a. CATALOG
b. LISTFMT
c. FMTCAT

d. FMTLIB

Chapter 13

241

SAS Date, Time, and
Datetime Values

SASDateand Time Values 241
Definitionso 241
Example: Dateand Time Values i .. 242

Reading Dates and Times with Informats 243
OVEIVIEW . ¢ . ettt e e e e e e e e e e e e e e e e 243
The MMDDYYw. Informat i 243
Example: Reading Dates with Formats and Informats 244
The DATEw. Informat e 245
The TIMEw. Informat i 246
The DATETIMEw. Informat 246

Example: Using Dates and Times in Calculations 247

Displaying Date and Time Values with Formats 248
The WEEKDATEw. Format 248
The WORDDATEw. Format it 249

Chapter QUIZ e 251

SAS Date and Time Values

Definitions

SAS date value
is a value that represents the number of days between January 1, 1960, and a
specified date. SAS can perform calculations on dates ranging from 1582 C.E. to
19,900 C.E.. Dates before January 1, 1960, are negative numbers; dates after are
positive numbers.

Jan. 1, 1858 Jan. 1, 1860 Jan. 1, 1061
< -365 0 166 —»

* SAS date values account for all leap year days, including the leap year day in the
year 2000.

242 Chapter 13 + SAS Date, Time, and Datetime Values

* SAS date values are based on the Gregorian calendar, and they are valid for the
dates supplied above.

January 1, 1582 December 31, 20,000
- SAS Date Values —

* Various SAS language elements handle SAS date values: functions, formats, and
informats.

SAS time value
is a value representing the number of seconds since midnight of the current day. SAS
time values are between 0 and 86400.

(1200 amn 12158 pm 17:00
midnight [for 5:00 prm
1] 44100 61200 —=

SAS datetime value
is a value representing the number of seconds between January 1, 1960, and an hour/
minute/second within a specified date. SAS makes adjustments for leap years, but
ignores leap seconds. SAS does not make adjustments for daylight saving time.

Example: Date and Time Values

SAS stores date values as numbers so that you can easily sort the values or perform
arithmetic computations. You can use SAS date values as you use any other numeric
values.

data work.test;
set cert.temp;
TotDay=enddate-startdate;
run;
proc print data=work.test;

run;

Output 13.1 PROC PRINT Output of Work. Test (partial output)

Obs | Address Startdate Enddate TotDay
1 65 ELM DR 21142 21196 54
2 11 SUN DR 21108 | 21142 34
3 712 HARDWICK STREET | . . . 21145 | 21183 . . . 38
4 5372 WHITEBUD ROAD |~ MOre 21091 21102 MOre 11
5 11 TALYN COURT variables — 550 qq3 V@riables 11
6 101 HYNERIAN DR S 21139 21188 49
7 11 RYGEL ROAD 20668 21048 380
8 121 E. MOYA STREET 21098 21102 4
9 1905 DOCK STREET 21108 | 21112 4
10 1304 CRESCENT AVE 20999 21122 123

Reading Dates and Times with Informats 243

Reading Dates and Times with Informats

Overview

SAS date and time informats read date and time expressions and convert them to SAS
date and time values. Like other SAS informats, date and time informats have several
parts:

e an informat name
» afield width
* aperiod delimiter

SAS informat names indicate the form of date expression that can be read using that
particular informat. This chapter covers commonly used date and time informats such as
these:

* DATEw.

* DATETIMEw.
* MMDDYYw.
 TIMEw.

There are several ways to represent a date. For example, all the following expressions
represent the date October 15, 2017. Each of these common date expressions can be read
using the appropriate SAS date informat.

Table 13.1 Date Expressions and Corresponding SAS Date Informats

Date Expression SAS Date Informat
10/15/17 MMDDYYw.
150ct17 DATEw.

15-10-17 DDMMYYw.
17/10/15 YYMMDDw.

The MMDDYYw. Informat

The informat MMDDY Yw. reads date values in the form mmddyy or mmddyyyy.

Syntax, values read with MMDDY Yw. informat:

mmddyy or mmddyyyy

* mm is an integer between 01 and 12, representing the month.
* ddis an integer between 01 and 31, representing the day.

* yyoryyyy is an integer that represents the year.

244 Chapter 13 + SAS Date, Time, and Datetime Values

In the MMDDY Yw. informat, the month, day, and year fields can be separated by blanks
or delimiters such as - or /. If delimiters are present, they must occur between all fields in
the values. Remember to specify a field width that includes not only the month, day, and

year values, but any delimiters as well. Here are some date expressions that you can read
using the MMDDY Yw. informat:

Table 13.2 Date Expressions and Corresponding SAS Date Informats

Date Expression SAS Date Informat
101517 MMDDYY6 .

10/15/17 MMDDYY8 .

101517 MMDDYY8.
10-15-2017 MMDDYY10.

The DDMMY Yw. informat and the Y YMMDDw. informat are similar in that you can
read the day, month, and year number with or without delimiters. The difference is the
order of day, month, and year.

Example: Reading Dates with Formats and Informats

The following example illustrates reading a CSV file with dates in MMDDY Y 10.
informat.

proc import datafile='C:\Users\Studentl\cert\new hires.csv'
out=newhires
dbms=csv
replace;
getnames=yes;
run;
proc print data=work.newhires;
run;
proc contents data=work.newhires;
run;

Reading Dates and Times with Informats 245

Output 13.2 Partial Output of Work.NewHires

Obs

(5 B N LR S|

95
96
a7
98

100

Name

Gisela 5. Santos
Maxwell L. Cooley
Thane P. Obrien
Minerva C. Canley
Kylee R. Finch

Winifred K. Morales
Thaddeus J. England
Skyler O. George
Kieran H. Tyler
Cairo F. Baldwin
Robin U. Macias

Output 13.3 Partial Output of PROC CONTENTS Work.NewHires

Alphabetic List of Variables and Attributes

| Variable Type Len | Format Informat

3 | Company Char 30 B30. 530.

4 Country Char = 31 §31. 531,

5 | Date_of Birth | Mum 8 MMDDYY10. MMDDYY10.
2 | Hire_Date Mum 8 MMDDYY10. MMDDYY10.
1 MName Char | 20 320. 520.

Hire_Date | Company Country Date_of _Birth
08/12/2017 | Pede Nunc Sed Limited Micronesia 08/21/1971
09/04/2017 | A LLP Somalia 04/30/1975
10/28/2017 | Consectetuer Limited Jamaica 04/23/1988
01/05/2018 | Feugiat Tellus Lorem Institute Fiji 02/18/1975
10/31/2017 | Magna Incorporated Myanmar 05/18/1973
more observations
04/2472018 | Fames Incorporated Italy 11/2511975
03/26/2018 | Semper Auctor Corporation Zambia 12/21/1996
05/16/2018 | At Institute Jamaica 06/02/1986
09/21/2017 | Vulputate Eu Ltd Tuvalu 02/14/1971
05/24/2018 | Amet LLP Palau 08/02/1973
10/09/2017 | Elit Mulla LLP Burkina Faso 05/14/1982

The DATEw. Informat

The DATEw. informat reads date values in the form ddmmmyy or ddmmmyyyy.

Syntax, values read with DATEw. informat:

ddmmmyy or ddmmmyyyy

* dd is an integer from 01 to 31, representing the day.
* mmm is the first three letters of the month's name.

* yyoryyyy is an integer that represents the year.

Blanks or other special characters can appear between the day, month, and year, as long
as you increase the width of the informat to include these delimiters. Here are some date
expressions that you can read using the DATEw. informat:

246 Chapter 13 + SAS Date, Time, and Datetime Values

Table 13.3 Date Expressions and Corresponding SAS Date Informats

Date Expression SAS Date Informat
30Mayl17 DATE?7.

30May2017 DATE®9.
30-May-2017 DATE11.

The TIMEw. Informat

The TIMEw. informat reads values in the form Ah:mm:ss.ss.

Syntax, values read with TIMEw. informat:

hh:mm:ss.ss

* hhis an integer from 00 to 23, representing the hour.

* mm is an integer from 00 to 59, representing the minute.

+ ss.ss is an optional field that represents seconds and hundredths of seconds.

If you do not enter a value for ss.ss, a value of zero is assumed. Here are some examples
of time expressions that you can read using the TIMEw. informat:

Table 13.4 Time Expressions and Corresponding SAS Time Informats

Time Expression SAS Time Informat
17:00:01.34 TIMEL11.
17:00 TIMES.

Note: Five is the minimum acceptable field width for the TIMEw. informat. If you
specify a w value less than 5, you will receive an error message in the SAS log.

The DATETIMEw. Informat

The DATETIMEw. informat reads expressions that consist of two parts, a date value and
a time value, in the form: ddmmmyy hh:mm:ss.ss.

Example: Using Dates and Times in Calculations 247

Syntax, values read with DATETIMEw. informat:

ddmmmyy hh:mm:ss.ss

* ddmmmyy is the date value, the same form as for the DATEw. informat

* The time value must be in the form Ah:mm:ss.ss.

* hhis an integer from 00 to 23, representing the hour.

* mm is an integer from 00 to 59, representing the minute.

* ss.ss is an optional field that represents seconds and hundredths of seconds.

* The date value and time value are separated by a blank or other delimiter.

If you do not enter a value for ss.ss, a value of zero is assumed.

Note: In the time value, you must use delimiters to separate the values for hour,
minutes, and seconds.

Table 13.5 Date and Time Expressions and Corresponding SAS Datetime Informats

Date and Time Expression SAS Datetime Informat
30May2017:10:03:17.2 DATETIMEZ20.
30May17 10:03:17.2 DATETIMEI1S.
30May2017/10:03 DATETIMEIS.

Example: Using Dates and Times in Calculations

Suppose you work in the billing department of a small community hospital. In this
example, you create a new SAS data set from the input data file that is referenced by the
fileref Aprbills. A portion of the data file below shows the following patient data:

+ last name

» date checked in
» date checked out
* daily room rate

* equipment cost

Output 13.4 Unformatted Cert.AprBills Data Set

LastName | Dateln | DateOut | RoomRate | EquipCost |
1 Acron 21277 21282 175 2584
2 Brown 21284 21304 125 3267
3 Cames 21299 21302 125 1742
4 Denizon 21233 21285 175 8741
5 Fields 21287 21255 175 378.9
6 Jamison 21288 21256 125 6.2

248 Chapter 13 + SAS Date, Time, and Datetime Values

data work.aprhospitalbills;

set cert.aprbills;

Days=dateout-datein+1;

RoomCharge=days*roomrate;

Total=roomcharge+equipcost;

run;

proc print data=work.aprhospitalbills;

format DateIn DateOut mmddyys.;

run;

1 Create a new variable named Days and calculate how many days each patient was

/*ER+/
/B /
e

/K /

hospitalized. Since Dateln and DateOut are numeric variables, you can simply
subtract to find the difference. However, the dates should be inclusive because
patients are charged for both the first and last days. Therefore, you must add 1 to the

difference.

2 Create a new variable named RoomCharge by multiplying the number of Days by

the RoomRate value.

3 To calculate the total cost for each patient, create a variable named Total whose value

is the sum of RoomCharge and EquipCost.

4 Use the FORMAT statement to associate the format MMDDY'YS8. to the Dateln and
DateOut variable.

Output 13.5 PROC PRINT Output for Work.AprHospitalBills

Obs | LastName
1 | Akron
Brown
Carnes
Denison

Fields

L=r IS B - FUR R 8

Jamison

Dateln DateOut RoomRate | EquipCost

04/03/18
04/10/18
04/25/18
04/09/18
04/13/18
04/14/18

04/08/18
04/30/18
04/28/18
04/1118
04/21/118
04/22/18

175
125
125
175
175
125

298.40
326.70
174.20

8741
378.90
346.20

Days | RoomCharge

4] 875
20 2500
3 375
2 350
8 1400
8 1000

Total
1173.40
282670

549.20
43741
1775.90
1346.20

Displaying Date and Time Values with Formats

SAS stores date and time values as numeric values. You apply SAS formats to the data
so that meaningful date and time values are displayed in reports.

The WEEKDATEw. Format

Use the WEEKDATEw. format to write date values in a format that displays the day of
the week, month, day, and year.

Output 13.6 PROC PRINT Output for Work.AprHospitalBills

Obs | LastName
1 | Akron

Brown

Cames

Denison

LE I R L

Fields

6 | Jamison

Syntax, WEEKDATEw. format:
WEEKDATEw.

Displaying Date and Time Values with Formats 249

The WEEKDATEw. format writes date values in the form day-of-week, month-name dd, yy (or

).

* dd is an integer between 01 and 31, representing the day.

* yyoryyyy is an integer that represents the year.

Note: If the w value is too small to write the complete day of the week and month, SAS

abbreviates as needed.

proc print data=work.aprhospitalbills;

format datein dateout weekdatel7.;

run;

Dateln DateQut
Tue, Apr 3, 2018 | Sun, Apr 8, 2018
Tue, Apr 10, 2018 | Mon, Apr 30, 2018
Wed, Apr 25, 2018 = Sat, Apr 28, 2018
Mon, Apr 9, 2018 Wed, Apr 11, 2018
Fri, Apr 13, 2018 | Sat, Apr 21, 2018
Sat, Apr 14, 2018 | Sun, Apr 22, 2018

RoomRate | EquipCost Days | RoomCharge

175
125
125
175
175
125

298.40
326.70
174.20

a7.41
378.90
346.20

]
20
3

[= =]

You can vary the results by changing the w value in the format.

FORMAT Statement

format datein weekdate3.;

format datein weekdatelO.;

format datein weekdatel7.;

format datein weekdate3l.;

The WORDDATEw. Format

The WORDDATEw. format is similar to the WEEKDATEw. format, but it does not
display the day of the week or the two-digit year values.

Result

Tue

Tuesday

Tue, Apr 3, 2018

Tuesday, Apr 3, 2018

875
2500
375
350
1400
1000

Total
1173.40
282670

549.20
437.41
1778.90
1346.20

250 Chapter 13

» SAS Date, Time, and Datetime Values

Syntax, WORDDATEw. format:
WORDDATEw.

The WORDDATEw. format writes date values in the form month-name dd, yyyy.

dd is an integer between 01 and 31, representing the day.

yyyy is an integer that represents the year.

Note: If the w value is too small to write the complete month, SAS abbreviates as needed.

proc print data=work.aprhospitalbills;

format datein dateout worddatel2.;

run;

Output 13.7 PROC PRINT Output for Work.AprHospitalBills

Obs

[=r IR T I PR

LastName
Akron
Brown
Carnes
Denison
Fields

Jamison

Dateln DateQOut | RoomRate | EquipCost | Days | RoomCharge | Total
Apr3, 2018 Apr8, 2018 175 298.40 5 875 117340
Apr 10,2018 Apr 30, 2018 125 326.70 20 2500 2826.70
Apr25, 2018 Apr 28, 2018 125 174.20 3 375 54920
Apr 3, 2018 Apr 11, 2018 175 87.41 2 350 43741
Apr 13,2018 Apr 21, 2018 175 378.90 8 1400 | 1778.90
Apr14, 2018 Apr 22, 2018 125 346.20 8 1000 | 1346.20

You can vary the results by changing the w value in the format.

Table 13.6 FORMAT Statements and Corresponding Results

FORMAT Statement Result
format datein worddate3.; Apr

format datein worddate9.; April
format datein worddatel4.; April 3,2018

You can permanently assign a format to variable values by including a FORMAT
statement in the DATA step.

data work.aprhospitalbills;
set cert.aprbills;
Days=dateout-datein+l;
RoomCharge=days*roomrate;
Total=roomcharge+equipcost;
format datein dateout worddatel2.;
run;
proc print data=work.aprhospitalbills;

run;

Chapter Quiz 251

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1.

SAS date values are the number of days since which date?
a. January 1, 1900
b. January 1, 1950
c. January 1, 1960
d. January 1, 1970

What is an advantage of storing dates and times as SAS numeric date and time
values?

a. They can easily be edited.

b. They can easily be read and understood.

c. They can be used in text strings like other character values.
d. They can be used in calculations like other numeric values.

SAS does not automatically make adjustments for daylight saving time, but it does
make adjustments for which one of the following?

a. leap seconds
b. leap years

c. Julian dates
d. time zones

An input data file has date expressions in the form 10222001. Which SAS informat
should you use to read these dates?

a. DATES®.
b. DATES.
c. MMDDYYeé.
d. MMDDYYS.

What is the minimum width of the TIMEw. informat?

a. 4
b. 5
c. 6
d 7

Shown below are date and time expressions and corresponding SAS datetime
informats. Which date and time expression cannot be read by the informat that is
shown beside it?

a. 30May2018:10:03:17.2 DATETIME20.
b. 30Mayl8 10:03:17.2 DATETIME1S.
c. 30May2018/10:03 DATETIME15.

252 Chapter 13 + SAS Date, Time, and Datetime Values

d. 30May2018/1003 DATETIME14.

7. Suppose your program creates two variables from an input file. Both variables are
stored as SAS date values: FirstDay records the start of a billing cycle, and LastDay
records the end of that cycle. What would be the code for calculating the total
number of days in the cycle?

a. TotDays=lastday-firstday;
b. TotDays=lastday-firstday+1;
c. TotDays=lastday/firstday;

d. You cannot use date values in calculations.

Chapter 14

253

Using Functions to
Manipulate Data

The Basics of SASFunctions, 254
Definitiono e 254
Uses of SASFuNnctions oot e e e 254
SAS Functions Categories v vt ettt et 254

SAS Functions Syntax i 255
Arguments and Variable Lists i 255
Example: Multiple Argumentsttt 256
Target Variables 256

Converting Data with Functions 256
A Word about ConvertingDatattt 256
Potential Problems of Omitting INPUT or PUT 256
Automatic Character-to-Numeric Conversionc..ouvuvnen... 257
When Automatic Conversion OCCUISottt 257
Restriction for WHERE Expressions, 258
Explicit Character-to-Numeric Conversionc.uuuninenenn... 259
Automatic Numeric-to-Character Conversionc.coovvuen.n.. 261
Explicit Numeric-to-Character Conversionouvuuenrenennn. 261

Manipulating SAS Date Values with Functions 263
SAS Date FUNCtionsS oottt e e 263
YEAR, QTR, MONTH, and DAY Functionsc.u.u.... 264
WEEKDAY Functioni e e e 266
MDY FUnctioncotti e ettt 268
DATE and TODAY Functionst 271
INTCK FUNCtiono oot e e e e e 272
INTNX FUNCHionot e e ettt 274
DATDIF and YRDIF Functionsu i, 275

Modifying Character Values with Functions 277
SCAN FUNCHON . . . oot e e e e e e 277
SUBSTR Functionttt ettt 280
SCAN versus SUBSTR Functionst 285
LEFT and RIGHT Functionst 286
Concatenation OPerator vt vttt ettt et 287
TRIM FUNCHION . . . oot e et et 287
CATX FUNCHON . . .ottt e e e e e e et e et e 288
INDEX FUNCtionottt et ettt e 289
Finding a String Regardlessof Case, 291
FIND FUunctionoi e et e et e 291

UPCASE Function e e i 293

254 Chapter 14

Using Functions to Manipulate Data

LOWCASE FUnCtion oottt e e e e e e e 294
PROPCASE FUNCtionttt e e e e 294
TRANWRD Functionot e 295
COMPBL FUNCHION . . o ottt e e e e e e e 297
COMPRESS FUNCHION . . . ottt e e e 297
Modifying Numeric Values with Functions 300
CEIL and FLOOR Functions o vi ittt e e 300
INT FUnCtiOnottt e e e e e e e e 301
ROUND FUunctionttt e e e 302
Nesting SAS Functions 303
Chapter Quiz 304

The Basics of SAS Functions

Definition

SAS functions are pre-written routines that perform computations or system
manipulations on arguments and return a value. Functions can return either numeric or
character results. The value that is returned can be used in an assignment statement or
elsewhere in expressions.

Uses of SAS Functions

You can use SAS functions in DATA step programming statements, in WHERE
expressions, in macro language statements, in the REPORT procedure, and in Structured
Query Language (SQL). They enable you to do the following:

+ calculate sample statistics

» create SAS date values

» convert U.S. ZIP codes to state postal codes
» round values

+ generate random numbers

» extract a portion of a character value

» convert data from one data type to another

SAS Functions Categories

SAS functions provide programming shortcuts. The following table shows you all of the
SAS function categories. This book covers selected functions that convert data,
manipulate SAS date values, and modify values of character variables.

Table 14.1 SAS Function Categories

SAS Functions Syntax 255

Functions by Category

Arithmetic Descriptive Numeric* State and ZIP code*
Statistics*

Array Distance Probability Trigonometric

Bitwise Logical External Files Quantile Truncation*

Operations

CAS External Routines Random Number Variable Control

Character* Financial SAS File I/O Variable Information

Character String Hyperbolic Search Web Services

Matching

Combinatorial Macro Sort Web Tools

Date and Time Mathematical* Special*

* Denotes the functions that are covered in this chapter.

SAS Functions Syntax

Arguments and Variable Lists

To use a SAS function, specify the function name followed by the function arguments,
which are enclosed in parentheses.

Syntax, SAS function:
function-name(argument-1<,argument-n>);

Each of the following are arguments:

+ variables: mean(x,y,z)

* constants: mean(456,502,612,498)

+ expressions: mean(37*2,192/5,mean(22,34,56))

Note: Even if the function does not require arguments, the function name must still be
followed by parentheses (for example, function-name()).

When a function contains more than one argument, the arguments are usually separated
by commas.

function-name (argument-1, argument-2, argument-n) ;

256 Chapter 14 + Using Functions to Manipulate Data

Example: Multiple Arguments

Here is an example of a function that contains multiple arguments. Notice that the
arguments are separated by commas.

mean (x1,x2,x3)
The arguments for this function can also be written as a variable list.

mean (of x1-x3)

Target Variables

A target variable is the variable to which the result of a function is assigned. For
example, in the statement below, the variable AvgScore is the target variable.

AvgScore=mean (examl, exam2, exam3) ;

Unless the length of the target variable has been previously defined, a default length is
assigned. The default length depends on the function; the default for character functions
can be as long as 200.

Default lengths can cause character variables to use more space than necessary in
your data set. So, when using SAS functions, consider the appropriate length for any
character target variables. If necessary, add a LENGTH statement to specify a length
for the character target variable before the statement that creates the values of that
variable.

Converting Data with Functions

A Word about Converting Data

The following code automatically converts the variable PayRate from character to
numeric.

data work.newtemp;
set cert.temp;
Salary=payrate*hours;

run;

You can also use the INPUT function before performing a calculation. The INPUT
function converts character data values to numeric values.

You can use the PUT function to convert numeric data values to character values.

Potential Problems of Omitting INPUT or PUT

If you skip INPUT or PUT function when converting data, SAS detects the mismatched
variables and tries an automatic character-to-numeric or numeric-to-character
conversion. However, this action is not always successful. Suppose each value of
PayRate begins with a dollar sign ($). When SAS tries to automatically convert the
values of PayRate to numeric values, the dollar sign blocks the process. The values
cannot be converted to numeric values. Similar problems can occur with automatic
numeric-to-character conversion.

Converting Data with Functions 257

Therefore, it is a recommended best practice to include INPUT and PUT functions in
your programs to avoid data type mismatches and automatic conversion.

Automatic Character-to-Numeric Conversion

By default, if you reference a character variable in a numeric context such as an
arithmetic operation, SAS tries to convert the variable values to numeric. For example,
in the DATA step below, the character variable PayRate appears in a numeric context. It
is multiplied by the numeric variable Hours to create a new variable named Salary.

data work.newtemp;
set cert.temp;
Salary=payrate*hours;
run;

When this step executes, SAS automatically attempts to convert the character values of
PayRate to numeric values so that the calculation can occur. This conversion is
completed by creating a temporary numeric value for each character value of PayRate.
This temporary value is used in the calculation. The character values of PayRate are not
replaced by numeric values.

Whenever data is automatically converted, a message is written to the SAS log stating
that the conversion has occurred.

Log 14.1 SAS Log

9246 data work.temp;

9247 set cert.temp;

9248 salary=payrate*hours;
9249 run;

NOTE: Character values have been converted to numeric values at the places given
by:
(Line) : (Column) .
9248:8
NOTE: There were 10 observations read from the data set CERT.TEMP.
NOTE: The data set WORK.TEMP has 10 observations and 16 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

When Automatic Conversion Occurs
Automatic character-to-numeric conversion occurs in the following circumstances:

* A character value is assigned to a previously defined numeric variable, such as the
numeric variable Rate.

Rate=payrate;

* A character value is used in an arithmetic operation.
Salary=payrate*hours;

* A character value is compared to a numeric value, using a comparison operator.
if payrate>=rate;

* A character value is specified in a function that requires numeric arguments.

NewRate=sum(payrate, raise) ;

258 Chapter 14 + Using Functions to Manipulate Data

The following statements are true about automatic conversion.

» Ituses the w. informat, where w is the width of the character value that is being
converted.

» It produces a numeric missing value from any character value that does not conform
to standard numeric notation (digits with an optional decimal point, leading sign, or
scientific notation).

Table 14.2 Automatic Conversion of Character Variables

Character Value Automatic Conversion Numeric Value
12.47 — 12.47

-8.96 - -8.96
1.243E1 — 12.43
1,742.64 —

Restriction for WHERE Expressions

The WHERE statement does not perform automatic conversions in comparisons. The
simple program below demonstrates what happens when a WHERE expression
encounters the wrong data type. The variable Number contains a numeric value, and the
variable Character contains a character value, but the two WHERE statements specify
the wrong data type.

data work.convtest;
Number=4;
Character='4";

run;

proc print data=work.convtest;
where character=4;

run;

proc print data=work.convtest;
where number='4";

run;

This mismatch of character and numeric variables and values prevents the program from
processing the WHERE statements. Automatic conversion is not performed. Instead, the
program stops, and error messages are written to the SAS log.

Converting Data with Functions 259

Log 14.2 SAS Log

9254 data work.convtest;
9255 Number=4;

9256 Character='4";
9257 run;

NOTE: The data set WORK.CONVTEST has 1 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

9258 proc print data=work.convtest;

9259 where character=4;

ERROR: WHERE clause operator requires compatible variables.
9260 run;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds

cpu time 0.00 seconds

9261 proc print data=work.convtest;

9262 where number='4";

ERROR: WHERE clause operator requires compatible variables.
9263 run;

NOTE: The SAS System stopped processing this step because of errors.

Explicit Character-to-Numeric Conversion

Using the INPUT Function

Use the INPUT function to convert character data values to numeric values. You can
explicitly convert the character values of PayRate to numeric values by using the INPUT
function.

Syntax, INPUT function:
INPUT (source, informat)

* source indicates the character variable, constant, or expression to be converted to a numeric
value.

* anumeric informat must also be specified, as in this example:

input (payrate,2.)

When choosing the informat, be sure to select a numeric informat that can read the form
of the values.

Table 14.3 Character Values and Associated Informats

Character Value Informat

2115233 7.

2,115,233 COMMADJ.

260

Chapter 14 « Using Functions to Manipulate Data

Example: INPUT Function

The function uses the numeric informat COMMADO. to read the values of the character

variable SaleTest. Then the resulting numeric values are stored in the variable Test. Here
is an example of the INPUT function:

Test=input (saletest,comma9.) ;

You can use the INPUT function to convert the character values of PayRate to numeric

values.

Because PayRate has a length of 2, the numeric informat 2. is used to read the values of

the variable.

input (payrate,2.)

In the following program, the function is added to the assignment statement in the DATA

step.

data work.newtemp;
set cert.temp;

Salary=input (payrate,2.) *hours;

run;

After the DATA step is executed, the new data set, which contains the variable Salary, is
created. Notice that no conversion messages appear in the SAS log when the INPUT

function is used.

Log 14.3 SAS Log

9272 data work.newtemp;
9273 set cert.temp;

9275 run;

9274 Salary=input (payrate,2.) *hours;

NOTE: There were 10 observations read from the data set CERT.TEMP.

Payrate | Days | Hours

Output 14.1 PROC PRINT Output of Work.NewTemp (partial output)
Obs | Address Startdate Enddate

165 ELM DR 19NOV2017 | 12JAN2018 | 10

2| 11 SUN DR 160CT2017 | 19NOV2017 &

3| 712 HARDWICK STREET 22NOV2017 | 30DEC2017 | 40

4 5372 WHITEBUD ROAD | more 29SEP2017 | 100CT2017 | 15

5| 11 TALYN COURT variables ovao17 13NOV2017 12

6 101 HYNERIAN DR 16NOV2017 | 04JANZ018 15

7 | 11 RYGEL ROAD 024UG2016 | 1TAUG2017 | 12

8 | 121 E. MOYA STREET 060CT2017 | 100CT2017 | 10

9 1905 DOCK STREET 160CT2017 | 200CT2017 | 10

10 | 1304 CRESCENT AVE 29JUN2017 | 300CT2017 15

1
25
26

88

more
variaples

Dept
DP
PURH
PERS
BK

BK
DP
PUB
DP
DP

Site

26
a7
34
a7
95
44
59
38
44
90

The syntax of the INPUT function is very similar to the syntax of the PUT function
(which performs numeric-to-character conversions).

INPUT (source, informat)
PUT (source, format))

Salary
880
1600
8320
1200
464
960
1152
400
300
375

Converting Data with Functions 261

However, note that the INPUT function requires an informat, whereas the PUT function
requires a format. To remember which function requires a format versus an informat,
note that the INPUT function requires an informat.

Automatic Numeric-to-Character Conversion

The automatic conversion of numeric data to character data is very similar to character-
to-numeric conversion. Numeric data values are converted to character values whenever
they are used in a character context.

For example, the numeric values of the variable Site are converted to character values if
you do the following:

» assign the numeric value to a previously defined character variable, such as the
character variable SiteCode: SiteCode=site;

» use the numeric value with an operator that requires a character value, such as the
concatenation operator: SiteCode=site||dept;

» specify the numeric value in a function that requires character arguments, such as the
SUBSTR function: Region=substr(site,1,4);

Specifically, SAS writes the numeric value with the BEST12. format, and the resulting
character value is right-aligned. This conversion occurs before the value is assigned or
used with any operator or function. However, automatic numeric-to-character conversion
can cause unexpected results. For example, suppose the original numeric value has fewer
than 12 digits. The resulting character value has leading blanks, which might cause
problems when you perform an operation or function.

Automatic numeric-to-character conversion also causes a message to be written to the
SAS log indicating that the conversion has occurred.

Explicit Numeric-to-Character Conversion
Use the PUT function to explicitly convert numeric data values to character data values.

Suppose you want to create a new character variable named Assignment that
concatenates the values of the numeric variable Site and the character variable Dept. The
new variable values must contain the value of Site followed by a slash (/) and then the
value of Dept (for example, 26 /DP).

Figure 14.1 SAS Data Set Cert.Temp (partial data set)

| Dept | Site | Salary Assignment
Dop 26 330 26/DP
FURH 57 1600 57/FPURH
PERS 34 8320 34/PERS
more BK 57 1200 57/BK
variables DF 55 864 95/DP
BK 44 960 44/BK
DOp 59 1152 59/DP
FUE 38 400 38/FUE
DP 44 300 44/DP
DOP 90 175 90/DP

Here is an assignment statement that contains the concatenation operator (||) to indicate
that Site should be concatenated with Dept, using a slash as a separator.

data work.newtemp;

262 Chapter 14

Using Functions to Manipulate Data

set cert.temp;
Assignment=site||'/'||dept;
run;

Note: The slash is enclosed in quotation marks. All character constants must be
enclosed in quotation marks.

Submitting this DATA step causes SAS to automatically convert the numeric values of
Site to character values because Site is used in a character context. The variable Site
appears with the concatenation operator, which requires character values. To explicitly
convert the numeric values of Site to character values, you must add the PUT function to
your assignment statement.

Syntax, PUT function:
PUT (source, format)

* source indicates the numeric variable, constant, or expression to be converted to a character
value

* aformat matching the data type of the source must also be specified, as in this example:

put (site,2.)

Here are several facts about the PUT function.

» The PUT function always returns a character string.

* The PUT function returns the source written with a format.

* The format must agree with the source in type.

* Numeric formats right-align the result; character formats left-align the result.

* When you use the PUT function to create a variable that has not been previously
identified, it creates a character variable whose length is equal to the format width.

When you use a numeric variable as the source, you must specify a numeric format.

To explicitly convert the numeric values of Site to character values, use the PUT
function in an assignment statement, where Site is the source variable. Because Site has
a length of 2, choose 2. as the numeric format. The DATA step adds the new variable
from the assignment statement to the data set.

data work.newtemp;

set cert.temp;

Assignment=put (site,2.)||'/'||dept;
run;
proc print data=work.newtemp;

run;

Manipulating SAS Date Values with Functions 263

Output 14.2 PROC PRINT Output of Work.NewTemp (partial output)

Obs | Address Startdate Enddate Payrate Days | Hours Dept | Site Salary | Assignment
1 65 ELM DR 19NOV2017 | 12JAN2018 10 11 88 DP 26 880 |26DP
2 11 SUNDR 160CT2017 | 19NOV2017 8 25 200 PURH 57 1600 | 57/PURH
3 712 HARDWICK STREET 22NOV2017 | 30DEC2017 | 40 26 208 PERS 34 8320 | 4/PERS
4 5372 WHITEBUD ROAD - - - 29SEP2017 | 100CT2017 15 10 80 - - - BK 57 1200 | 57/BK
5| 11 TALYN COURT more 02NOV2017 13NOV2017 | 12 g 7o MOrE DP 95 864 |95DP

variables variables
6 101 HYNERIAN DR 16NOV2017 | 04JAN2018 15 7 64 BK | 44 950 |44/BK
7 11 RYGEL ROAD S 02AUG2016 | 17AUG2017 | 12 2 e DP 59 1152 |59/DP
8 121E. MOYA STREET 060CT2017 | 100CT2017 10 5 40 PUB = 38 400 |38/PUB
9| 1905 DOCK STREET 160CT2017 | 200CT2017 | 10 5 30 DP 44 300 |440P
10| 1304 CRESCENT AVE 29JUN2017 | 300CT2017 15 5 25 DP 90 375 |90/DP

Notice that no conversion messages appear in the SAS log when you use the PUT
function.

Log 14.4 SAS Log

9355 data work.newtemp;

9356 set cert.temp;

9357 Assignment=put (site,2.)]||'/'||dept;
9358 run;

NOTE: There were 10 observations read from the data set CERT.TEMP.
NOTE: The data set WORK.NEWTEMP has 10 observations and 17 variables.

Manipulating SAS Date Values with Functions

SAS Date Functions

SAS stores date, time, and datetime values as numeric values. You can use several
functions to create these values. For more information about datetime values, see
Chapter 13, “SAS Date, Time, and Datetime Values,” on page 241.

Table 14.4 Typical Use of SAS Date Functions

Function Example Code Result

MDY date=mdy (mon, day, yr) ; SAS date

TODAYDATE now=today () ; today's date as a SAS date
now=date() ;

TIME curtime=time () ; current time as a SAS time

Use other functions to extract months, quarters, days, and years from SAS date values.

264 Chapter 14 -

Using Functions to Manipulate Data

Table 14.5 Selected Functions to Use with SAS Date Values

Function

DAY

QTR

WEEKDAY

MONTH

YEAR

INTCK

INTNX

DATDIF
YRDIF

Example Code

day=day (date) ;

quarter=gtr (date) ;

wkday=weekday (date) ;

month=month (date) ;

yr=year (date) ;

x=intck('day"',d1,d2);
x=intck ('week',d1,d2);
x=intck ('month',dl,d2);
x=intck ('qtr',d1,d2);

x=intck ('year',d1l,d2);

x=intnx ('interval',
start-from, increment) ;

x=datdif (datel,date2, 'ACT/ACT') ;

x=yrdif (datel,date2, 'ACT/ACT') ;

YEAR, QTR, MONTH, and DAY Functions

Result

day of month (1-31)
quarter (1-4)

day of week (1-7)
month (1-12)

year (4 digits)

days from D1 to D2
weeks from D1 to D2
months from D1 to D2
quarters from D1 to D2
years from D1 to D2

date, time, or datetime value

days between datel and date2

years between datel and date2

Overview of YEAR, QTR, MONTH, and DAY Functions

Every SAS date value can be queried for the values of its year, quarter, month, and day.
You extract these values by using the functions YEAR, QTR, MONTH, and DAY. They
each work the same way.

Syntax, YEAR, QTR, MONTH, and DAY functions:

YEAR(date)

QTR(date)

MONTH(date)

DAY (date)

date is a SAS date value that is specified either as a variable or as a SAS date constant.

The YEAR function returns a four-digit numeric value that represents the year (for

example, 2018). The QTR function returns a value of 1, 2, 3, or 4 from a SAS date value
to indicate the quarter of the year in which a date value falls. The MONTH function
returns a numeric value that ranges from 1 to 12, representing the month of the year. The
value 1 represents January, 2 represents February, and so on. The DAY function returns a
numeric value from 1 to 31, representing the day of the month.

Manipulating SAS Date Values with Functions 265

Table 14.6 Selected Date Functions and Their Uses

Function Description Form Sample Value
YEAR Extracts the year value from a SAS date YEAR(date) 2018

value.
QTR Extracts the quarter value from a SAS QTR(date) 1

date value

MONTH Extracts the month value from a SAS MONTH(date) 12
date value.

DAY Extracts the day value from a SAS date DAY (date) 5
value

Example: Finding the Year and Month

Suppose you want to create a subset of the data set Cert. Temp that contains information
about all temporary employees who were hired in November 2017. The data set
Cert.Temp contains the beginning and ending dates for staff employment, but there are
no month or year variables in the data set. To determine the year in which employees
were hired, you can apply the YEAR function to the variable that contains the employee
start date, StartDate. Here is a way to write the YEAR function:

year (startdate)

Likewise, to determine the month in which employees were hired, you apply the
MONTH function to StartDate.

month (startdate)

To create the new data set, you include these functions in a subsetting IF statement
within a DATA step. The subsetting IF statement specifies the new data set include only
the observations where the YEAR function extracts a value of 2017 and the MONTH
function extracts a value of 11. The value of 11 stands for November.

data work.novl7;
set cert.temp;
if year(startdate)=2017 and month (startdate)=11;

run;
When you add a PROC PRINT step to the program, you can view the new data set.

proc print data=work.novl7;
format startdate enddate birthdate date9.;

run;

The new data set contains information about only those employees who were hired in
November 2017.

266 Chapter 14 + Using Functions to Manipulate Data

Output 14.3 PROC PRINT Output of Work.Nov17 (partial output)

Obs | Address Startdate Enddate
1 65ELMDR o 19MOV2017 | 12JAN2018
2 712 HARDWICK STREET | more 22MOV2017 | 30DEC2017 mare
3|11 TALYN COURT variables |onoyooi7 | 13novee17 Variables
4 101 HYNERIAN DR T 16NOV2017 | 04JANZ2018

Example: Finding the Year

Suppose you want to create a subset of the data set Cert. Temp that contains information
about all temporary employees who were hired during a specific year, such as 2016.
Cert.Temp contains the dates on which employees began work with the company and
their ending dates, but there is no year variable.

To determine the year in which employees were hired, you can apply the YEAR function
to the variable that contains the employee start date, StartDate. You write the YEAR
function as follows:

year (startdate)

To create the new data set, you include this function in a subsetting IF statement within a
DATA step. This subsetting IF statement specifies that only observations in which the
YEAR function extracts a value of 2016 are placed in the new data set.

data work.templ6;

set cert.temp;

if year(startdate)=2016;
run;

When you add a PROC PRINT step to the program, you can view the new data set.

data work.templ6;
set cert.temp;
where year (startdate)=2016;
run;
proc print data=work.templé6;
format startdate enddate birthdate date9.;
run;

The new data set contains information for only those employees who were hired in 2016.

Output 14.4 PROC PRINT Output of Work. Temp16 (partial output)

Obs | Address City State | Zip Phone Startdate Enddate .. .more
1 11 RYGEL ROAD CHAPEL HILL NC 27514 9972070 | 02AUG2016 | 17aUG2017 Variables. ..

WEEKDAY Function

Overview of the WEEKDAY Function

The WEEKDAY function enables you to extract the day of the week from a SAS date
value.

Manipulating SAS Date Values with Functions 267

Syntax, WEEKDAY function:
WEEKDAY (date)

date is a SAS date value that is specified either as a variable or as a SAS date constant.

The WEEKDAY function returns a numeric value from 1 to 7. The values represent the
days of the week.

Table 14.7 Values for the WEEKDAY Function

Value Equals Day of the Week
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

Example: WEEKDAY Function

For example, suppose the data set Cert.Sch contains a broadcast schedule. The variable
AirDate contains SAS date values. To create a data set that contains only weekend
broadcasts, you use the WEEKDAY function in a subsetting IF statement. You include
only observations in which the value of AirDate corresponds to a Saturday or Sunday.

data work.schwkend;

set cert.sch;

if weekday(airdate)in(1,7);
run;
proc print data=work.schwkend;

run;

Output 14.5 PROC PRINT Output of Weekday Function

Obs | Program Producer AirDate
1 | River to River NPR 04/01/2000
2 | World Cafe WXPM 04/08/2000
3 | Classical Music | NPR 04/08/2000
4 | Symphony Live | NPR 04/01/2000
5 | Symphony Live | NPR 04/16/2000
6 | World Cafe WWXPMN 04/08/2000

268 Chapter 14

MDY Function

Using Functions to Manipulate Data

Note: In the example above, the statement if weekday (airdate) in (1,7); is
the same as if weekday (airdate)=7 or weekday(airdate)=1;

Overview of the MDY Function
The MDY function returns a SAS date value from month, day, and year values.

Syntax, MDY function:
MDY (month, day, year)

* month specifies a numeric constant, variable, or expression that represents an integer from 1
through 12.

* day specifies a numeric constant, variable, or expression that represents an integer from 1
through 31.

* year specifies a numeric constant, variable, or expression with a value of a two-digit or four-
digit integer that represents that year.

Example: MDY Function
In the data set Cert.Dates, the values for month, day, and year are stored in the numeric

variables Month, Day, and Year. It is possible to write the following MDY function to
create the SAS date values:

mdy (month, day, year)

To create a new variable to contain the SAS date values, place this function in an
assignment statement.

data work.datestemp;
set cert.dates;
Date=mdy (month, day, year) ;
run;
proc print data=work.datestemp;
format date mmddyyl0.;

run;

Manipulating SAS Date Values with Functions 269

Output 14.6 PROC PRINT Output of Work.Datestemp

Obs | year | month | day date
12018 1 22)01/22/2018
22018 2 9 02/09/2018
32018 3 51 03/05/2018
42018 4 27| 04/2772018
52018 51 10051072018
6| 2018 6 6 | 06/06/2018
T|2018 T 23|07/2372018
82018 g 11081172018
92018 9 3 09/03/2018
10 | 2018 10 51 10/05/2018
11| 2018 11 23| 11/23/2018
12 | 2015 12 13 12/13/2018

The MDY function can also add the same SAS date to every observation. This might be
useful if you want to compare a fixed beginning date with different end dates. Just use
numbers instead of data set variables when providing values to the MDY function.

data work.datestemp;
set cert.dates;
DateCons=mdy (6,17,2018) ;
run;
proc print data=work.datestemp;
format DateCons mmddyyl0.;
run;

Output 14.7 PROC PRINT Output of Work.Datestemp

Obs | year month | day | DateCons
12018 1 22| 06/M17/2018
2 2018 2 9 06/17/2018
3 2018 3 51 06/M17/2018
4 2018 4 27) 06/17/2018
5 2018 5 10 06/17/2018
6 2018 6 6| 06/17/2018
T 2018 7 23)06/M17r2018
8 2018 g 11)06/17/2018
9 2018 9 31 06/M17/2018
10 2018 10 5| 06/17/2018
11 2018 11 23| 06/17/2018
12 2018 12 13| 06/17/2018

270 Chapter 14

Using Functions to Manipulate Data

To display the years clearly, format SAS dates with the DATEY. format. This forces the
year to appear with four digits, as shown above in the Date and DateCons variables of
the Work.DatesTenp output.

Example: Finding the Date

The data set Cert.Review2018 contains a variable named Day. This variable contains the
day of the month for each employee's performance appraisal. The appraisals were all
completed in December of 2018.

The following DATA step uses the MDY function to create a new variable named
ReviewDate. This variable contains the SAS date value for the date of each performance
appraisal.

data work.review2018 (drop=Day) ;
set cert.review2018;
ReviewDate=mdy (12,day,2018) ;

run;

proc print data=work.review2018;
format ReviewDate mmddyylO0.;

run;

Output 14.8 PROC PRINT Output of Work.Review2018

Obs | Name Rate | Site ReviewDate
1| Mitchell, K. | A2 | Westin 12/12/2018
2 | Worton, M. | A5 Stockton 12/03/2018
3 Smith, A. | B1 | Center City | 12/17/2018
4 Kales,H. | A3 | Stockton 12/04/2018
5 Khalesh, P. A1 | Stockton 12/07/2018
6 Samuel, P. B4 Center City | 12/05/2018
7| Daniels, B. C1 | Westin 12/07/2018
& Mahes, K. | B2 | Center City | 12/04/2013
9 | Hunter, D. B2 | Westin 12/10/2018
10 Moon, D. AZ Stockton 12/05/2018
11| Crane, M. | B1 Stockton 12/03/2018

Note: If you specify an invalid date in the MDY function, SAS assigns a missing value
to the target variable.

data work.review2018 (drop=Day) ;
set cert.review2018;
ReviewDate=mdy (15,day,2018) ;

run;

proc print data=work.review2018;
format ReviewDate mmddyylO0.;

run;

Manipulating SAS Date Values with Functions 271

DATE and TODAY Functions

Overview of the DATE Function
The DATE function returns the current date as a numeric SAS date value.

Note: If the value of the TIMEZONE= system option is set to a time zone name or time
zone ID, the return values for date and time are determined by the time zone.

Syntax, DATE function:
DATE ()

The DATE function does not require any arguments, but it must be followed by parentheses.

The DATE function produces the current date in the form of a SAS date value, which is
the number of days since January 1, 1960.

Overview of the TODAY Function

The TODAY function returns the current date as a numeric SAS date value.

Note: If the value of the TIMEZONE= system option is set to a time zone name or time
zone ID, the return values for date and time are determined by the time zone.

Syntax, TODAY function:
TODAY ()

The TODAY function does not require any arguments, but it must be followed by parentheses.

The TODAY function produces the current date in the form of a SAS date value, which
is the number of days since January 1, 1960.

Example: The DATE and TODAY Functions

The DATE and TODAY functions have the same form and can be used interchangeably.
To add a new variable, which contains the current date, to the data set Cert. Temp. To
create this variable, write an assignment statement such as the following:

EditDate=date() ;

After this statement is added to a DATA step and the step is submitted, the data set that
contains EditDate is created. To display these SAS date values in a different form, you
can associate a SAS format with the values. For example, the FORMAT statement below
associates the DATE9. format with the variable EditDate. The output that is created by
this PROC PRINT step appears below.

Note: For this example, the SAS date values shown below were created by submitting
this program on July 20, 2018.

data work.tempdate;
set cert.dates;
EditDate=date() ;

run;

proc print data=work.tempdate;
format EditDate date9.;

run;

272 Chapter 14

INTCK Function

Using Functions to Manipulate Data

Output 14.9 PROC PRINT Output of Work. TempDate

Obs

=R T- T -~ T - Y T S R SURN B T P

- k|
[I

year month | day | EditDate
2018 1 22)20JUL2018
2018 2 91 20JuL2018
2018 3 5120JuL2018
2018 4| 27|20JUL2018
2018 51 10§ 20JuL2018
2018 6 6 20JUL2018
2018 T 23]20JuL2018
2018 g 11]20JuL2018
2018 9 3] 20JUL2018
2018 10 5120JuLz018
2018 11 23| 20JUL2018
2018 12 13] 20JUL2018

Overview of the INTCK Function

The INTCK function returns the number of interval boundaries of a given kind that lie
between two dates, times, or datetime values. You can use it to count the passage of
days, weeks, months, and so on.

Syntax, INTCK function:
INTCK (‘interval’ , from, to)

* ‘interval’ specifies a character constant or a variable. Interval can appear in uppercase or
lowercase. The value can be one of the following:

DAY
WEEKDAY
WEEK
TENDAY
SEMIMONTH
MONTH

QTR
SEMIYEAR
YEAR

» from specifies a SAS date, time, or datetime value that identifies the beginning of the time
span.

* to specifies a SAS date, time, or datetime value that identifies the end of the time span.

Note:

The type of interval (date, time, or datetime) must match the type of value in from.

Manipulating SAS Date Values with Functions 273

Details

The INTCK function counts intervals from fixed interval beginnings, not in multiples of
an interval unit from the from value. Partial intervals are not counted. For example,
WEEK intervals are counted by Sundays rather than seven-day multiples from the from
argument. MONTH intervals are counted by day 1 of each month, and YEAR intervals
are counted from 01JAN, not in 365-day multiples.

Consider the results in the following table. The values that are assigned to the variables
Weeks, Months, and Years are based on consecutive days.

Table 14.8 Examples of SAS Statements and Their Values

Example Code Value
Weeks=intck ('week', '31dec2017'd, '01jan2018'd) ; 0
Months=intck ('month', '31dec2017'd, '01jan2018'd) ; 1
Years=intck('year', '31dec2017'd, '01jan2018'd) ; 1

Because December 31, 2017, is a Sunday, no WEEK interval is crossed between that day
and January 1, 2018. However, both MONTH and YEAR intervals are crossed.

Examples: INTCK Function
The following statement creates the variable Years and assigns it a value of 2. The

INTCK function determines that two years have elapsed between June 15, 2016, and
June 15, 2018.

Years=intck('year', '15jun2016'd, '15jun2018'd) ;

Note: As shown here, the from and to dates are often specified as date constants.
Likewise, the following statement assigns the value 24 to the variable Months.
Months=intck ('month', '15jun2016'd, '15jun2018'd) ;

However, the following statement assigns 0 to the variable Years, even though 364 days
have elapsed. In this case, the YEAR boundary (01JAN) is not crossed.

Years=intck('year', '01jan2018'd, '31dec2018'd) ;

Example: The INTCK Function and Periodic Events
A common use of the INTCK function is to identify periodic events such as due dates
and anniversaries.

The following program identifies mechanics whose 20th year of employment occurs in
the current month. It uses the INTCK function to compare the value of the variable
Hired to the date on which the program is run.

data work.anniversary;
set cert.mechanics(keep=id lastname firstname hired) ;
Years=intck('year', hired, today()) ;
if years=20 and month (hired)=month (today()) ;
run;
proc print data=work.anniversary;
title '20-Year Anniversaries';

run;

274 Chapter 14

INTNX Function

Using Functions to Manipulate Data

The following output is created when the program is run in July 2018.

Output 14.10 PROC PRINT Output of Work.Anniversary
20 Year Anniversaries This Month

Obs ID LastName | FirstName Hired | years

11499 BAREFOOT | JOSEPH | 23JUL98 20
1065 CHAPMAN | MEIL 23JUL98 20
1406 FOSTER GERALD | 10JUL98 20
1423 OSWALD LESLIE 16JUL98 20

| L RS

Overview of the INTNX Function

The INTNX function is similar to the INTCK function. The INTNX function applies
multiples of a given interval to a date, time, or datetime value and returns the resulting
value. You can use the INTNX function to identify past or future days, weeks, months,
and so on.

Syntax, INTNX function:

INTNX('interval',start-from,increment, <alignment'>)

* 'interval’ specifies a character constant or variable.
 start-from specifies a starting SAS date, time, or datetime value.

* increment specifies a negative or positive integer that represents time intervals toward the
past or future.

» ‘alignment' (optional) forces the alignment of the returned date to the beginning, middle, or
end of the interval.

Note: The type of interval (date, time, or datetime) must match the type of value in start-from
and increment.

Details
When you specify date intervals, the value of the character constant or variable that is
used in interval can be one of the following:

« DATETIME

- DAY

- QTR

- MONTH

« SEMIMONTH
« SEMIYEAR

« TENDAY

- TIME

« WEEK

Manipulating SAS Date Values with Functions 275

« WEEKDAY
* YEAR

Example: INTNX Function
For example, the following statement creates the variable TargetYear and assigns it a
SAS date value of 22281, which corresponds to January 1, 2021.

TargetYear=intnx('year', '20Jull8'd,3);

Likewise, the following statement assigns the value for the date July 1, 2018, to the
variable TargetMonth.

TargetMonth=intnx ('semiyear', '01Janl8'd,1);

SAS date values are based on the number of days since January 1, 1960. Yet the INTNX
function can use intervals of weeks, months, years, and so on.

The purpose of the optional alignment argument is to specify whether the returned value
should be at the beginning, middle, or end of the interval. When specifying date
alignment in the INTNX function, use the following values or their corresponding
aliases:

* BEGINNING Alias: B

* MIDDLE Alias: M

+ END Alias: E

* SAME Alias: SAMEDAY or S

The best way to understand the alignment argument is to see its effect on identical
statements. The following table shows the results of three INTNX statements that differ
only in the value of alignment.

Table 14.9 Alignment Values for the INTNX Function

Example Code Date Value
MonthX=intnx ('month', '01jan2018'd,5, 'b') ; 21336 (June 1, 2018)
MonthX=intnx ('month', '01jan2018'4d,5, 'm') ; 21350 (June 15, 2018)
MonthX=intnx ('month', '01jan2018'd,5, 'e') ; 21365 (June 30, 2018)

These INTNX statements count five months from January, but the returned value
depends on whether alignment specifies the beginning, middle, or end day of the
resulting month. If alignment is not specified, the beginning day is returned by default.

DATDIF and YRDIF Functions

The DATDIF and YRDIF functions calculate the difference in days and years between
two SAS dates, respectively. Both functions accept start dates and end dates that are
specified as SAS date values. Also, both functions use a basis argument that describes
how SAS calculates the date difference.

276 Chapter 14

Using Functions to Manipulate Data

Syntax, DATDIF, and YRDIF functions:

DATDIF (start_date,end_date,basis))
YRDIF(start _date,end_date,basis))

» start_date specifies the starting date as a SAS date value.
* end_date specifies the ending date as a SAS date value.

* basis specifies a character constant or variable that describes how SAS calculates the date
difference.

There are two character strings that are valid for basis in the DATDIF function, and four
character strings that are valid for basis in the YRDIF function. These character strings
and their meanings are listed in the table below.

Table 14.10 Character Strings in the DATDIF Function

Valid in Valid in
Character String Meaning DATDIF YRDIF
'30/360" specifies a 30-day month and a 360-day yes yes
year
'ACT/ACT' uses the actual number of days or years yes yes
between dates
'ACT/360" uses the actual number of days between no yes
dates in calculating the number of years
(calculated by the number of days divided
by 360)
'ACT/365' uses the actual number of days between no yes

dates in calculating the number of years
(calculated by the number of days divided
by 365)

The best way to understand the different options for the basis argument is to see the
different effects that they have on the value that the function returns. The table below
lists four YRDIF functions that use the same start date and end date. Each function uses
one of the possible values for basis, and each one returns a different value.

Table 14.11 Examples of the YRDIF Function

Example Code Returned Value
data null ; 2.3333333333
x=yrdif ('16feb2016'd, '16jun2018'd, '30/360") ;
put x;
run;
data null ; 2.3291114604

x=yrdif ('16feb2016'd, '16jun2018'd, 'ACT/ACT');
put x;

run;

Modifying Character Values with Functions 277

Example Code Returned Value

data _null_; 2.3638888889
x=yrdif ('16feb2016'd, '16jun2018'd, 'ACT/360');
put x;

run;

data null ; 2.3315068493
x=yrdif ('16feb2016'd, '16jun2018'd, 'ACT/365');
put x;

run;

Modifying Character Values with Functions

SCAN Function

Overview of the SCAN Function
The SCAN function returns the nth word from a character string. The SCAN function
enables you to separate a character value into words and to return a specified word.

Figure 14.2 SCAN Function

specifies the number of
the word, n, in the
character string to select

}

Six = scan(Sentence, 6 , " "):

\

specifies the delimiter to
use as a word separator
in the character string

Note: In SAS 9.4 or later, if the variable has not yet been given a length, then the SCAN
function returns the value and assigns the variable the given length of the first
argument. In SAS 9.3 or earlier, by default, the variable is assigned a length of 200.

Syntax, SCAN function:

SCAN(argument,n<,<delimiters>>)

» argument specifies the character variable or expression to scan.
* n specifies which word to return.

* delimiters are special characters that must be enclosed in single quotation marks (''). If you
do not specify delimiters, default delimiters are used.

278 Chapter 14

Using Functions to Manipulate Data

Details

* Leading delimiters before the first word in the character string do not affect the
SCAN function.

+ If'there are two or more contiguous delimiters, the SCAN function treats them as
one.

» Ifnis greater than the number of words in the character string, the SCAN function
returns a blank value.

» Ifnisnegative, the SCAN function selects the word in the character string starting
from the end of the string.

Example: Create New Name Variables

Use the SCAN function to create your new name variables for Cert.Staff. First, examine
the values of the existing Name variable to determine which characters separate the
names in the values.

LastName=scan (name, 1) ;

Notice that blanks and commas appear between the names and that the employee's last
name appears first, then the first name, and then the middle name.

To create the LastName variable to store the employee's last name, you write an
assignment statement that contains the following SCAN function:

LastName=scan (name,1,' ,');

Note that a blank and a comma are specified as delimiters. You can also write the
function without listing delimiters, because the blank and comma are default delimiters.

LastName=scan (name, 1) ;

Here is the complete DATA step that is needed to create LastName, FirstName, and
MiddleName. Notice that the original Name variable is dropped from the new data set.

data work.newnames (drop=name) ;
set cert.staff;
LastName=scan (name, 1) ;
FirstName=scan (name,2) ;

run;

Specifying Delimiters

The SCAN function uses delimiters to separate a character string into words. Delimiters
are characters that are specified as word separators. For example, if you are working
with the character string below and you specify the comma as a delimiter, the SCAN
function separates the string into three words.

LOoWy MODERATE HIGH
s

3

Then the function returns the word that you specify. In this example, if you specify the
third word, the SCAN function returns the word HIGH.

Here is another example that uses the comma as a delimiter, and specifies that the third
word be returned.

209 RADCLIFFE ROAD, CENTER CITY, NY, 92716

Modifying Character Values with Functions 279

In this example, if you specify the third word, the word returned by the SCAN function
is NY (NY contains a leading blank).

Specifying Multiple Delimiters

When using the SCAN function, you can specify as many delimiters as needed to
correctly separate the character expression. When you specify multiple delimiters, SAS
uses any of the delimiters, singly or in any combination, as word separators. For
example, if you specify both the slash and the hyphen as delimiters, the SCAN function
separates the following text string into three words:

607555-1273

T

1 2 a3

The SCAN function treats two or more contiguous delimiters, such as the parenthesis
and slash below, as one delimiter. Also, leading delimiters have no effect.

¥ w
(345)5672/TRAILER
B

3

Default Delimiters
If you do not specify delimiters when using the SCAN function, default delimiters are
used. Here are the default delimiters:

blank . < (+ | & ! $*) ; * -/, %

Specifying Variable Length

If a variable is not assigned a length before it is specified in the SCAN function, the
variable is given the length of the first argument. This length could be too small or too
large for the remaining variables.

You can add a LENGTH statement to the DATA step, and specify an appropriate length
for all three variables. The LENGTH statement is placed before the assignment
statement that contains the SCAN function so that SAS can specify the length the first
time it encounters the variable.

data work.newnames (drop=name) ;
set cert.staff;
length LastName FirstName $ 12;
LastName=scan (name, 1) ;
FirstName=scan (name, 2) ;
MiddleInitial=scan (name, 3) ;

run;

proc print data=newnames;

run;

280 Chapter 14 « Using Functions to Manipulate Data

Output 14.11 PROC PRINT Output of Work.NewNames (partial output)

Obs | ID DOB | WageCategory WageRate | Bonus | LastName | FirstName | Middle_Initial

11351 4685 S 3392.50 1187.38 |Farr Sue

2 161 5114 S 5093.75 1782.81 | Cox Kay B
3212 2415 S 1813.30 634.65 | Maore Ron

4 2512 2819 S 1572.50 550.37 | Ruth G H
52532 780 H 1348 500.00 | Hobbs Roy

more observations.

21 5002 832 S £910.75 2068.76 | Welch W B
22 5112 4146 S 404585 1416.05 | Delgado Ed

23 511 822 S 448050 1568.18 | Vega Julie

24 5132 3129 S 685590 239957 | Overby | Phil

25 5151 10209 S 3163.00 1107.05 | Coxe Susan

26 1351 4685 S 339250 1187.38 | Farr Sue

SUBSTR Function

Overview of the SUBSTR Function

The SUBSTR function extracts a substring from an argument, starting at a specific
position in the string.

Figure 14.3 SUBSTR Function

specifies a numeric
expression that is the
beginning character position

Features = substr(VIN , 4 , 5);

specifies a numeric
expression that is the length
of the substring to extract

The SUBSTR function can be used on either the right or left of the equal sign to replace
character value constants.

Syntax, SUBSTR function:
SUBSTR(argument, position <,n>)

* argument specifies the character variable or expression to scan.

* position is the character position to start from.

+ n specifies the number of characters to extract. If » is omitted, all remaining characters are

included in the substring.

Example: SUBSTR Function

Modifying Character Values with Functions

This example begins with the task of extracting a portion of a value. In the data set

Cert.AgencyEmp, the names of temporary employees are stored in three name variables:

LastName, FirstName, and MiddleName.

Obs | Agency 1D LastName |FirstName [MiddleName
1 | Adminstrative Support, Inc. | F274 | CICHOCK ELIZABETH | MARIE
2 | Adminstrative Support, Inc. | F101 | BENINCASA | HANMNAH LEE
3 | OD Consulting, Inc. F054 | SHERE BRIAM THOMAS
4 | New Time Temps Agency | FO77 | HODMOFF |RICHARD JLEE

However, suppose you want to modify the data set to store only the middle initial instead
of the full middle name. To do so, you must extract the first letter of the middle name
values and assign these values to the new variable Middlelnitial.

Obs | Agency 1D LastName | FirstName |Middlelnitial
1 | Adminstrative Support, Inc. | F274 | CICHOCK ELIZABETH | M
2 | Adminstrative Support, Inc. | F101 | BENINCASA | HANMAH L
3 | OD Consulting, Inc. FO&s4 | SHERE BRIAM T
4 | New Time Temps Agency | FO77 | HODMNOFF | RICHARD L

Using the SUBSTR function, you can extract the first letter of the MiddleName value to
create the new variable Middlelnitial.

You write the SUBSTR function as the following:
substr (middlename,1,1)

This function extracts a character string from the value of MiddleName. The string to be
extracted begins in position 1 and contains one character. This function is placed in an
assignment statement in the DATA step.

data work.agencyemp (drop=middlename) ;
set cert.agencyemp;
length MiddleInitial $ 1;
MiddleInitial=substr (middlename,1,1) ;

run;

proc print data=work.agencyemp;

run;

The new Middlelnitial variable is given the same length as MiddleName. The
MiddleName variable is then dropped from the new data set.

282 Chapter 14

Using Functions to Manipulate Data

Obs | Agency 1D LastName | FirstName |Middlelnitial
1 | Adminstrative Support, Inc. | F274 | CICHOCK ELIZABETH | M
2 | Adminstrative Support, Inc. | F101 | BENINCASA | HANMAH L
3 | OD Consulting, Inc. FO&s4 | SHERE BRIAM T
4 | Mew Time Temps Agency | FO77 HODWOFF | RICHARD |L

You can use the SUBSTR function to extract a substring from any character value if you
know the position of the value.

Replacing Text Using SUBSTR

There is a second use for the SUBSTR function. This function can also be used to
replace the contents of a character variable. For example, suppose the local phone
exchange 622 was replaced by the exchange 433. You need to update the character
variable Phone in Cert.Temp to reflect this change.

Obs | Address Phone

1 65 ELM DR (6224549

2 11 SUNDR (228251

3 712 more 9974743 | more
HARDWICK b e
STREET | variables variables

4| 5372 o 6970540
WHITEBUD
ROAD

5 11 TALYN 3633618
COURT

more observations

You can use the SUBSTR function to complete this modification. The syntax of the
SUBSTR function, when used to replace a variable's values, is identical to the syntax for
extracting a substring.

SUBSTR (argument, position, n)

However, in this case, note the following:

» The first argument specifies the character variable whose values are to be modified.
* The second argument specifies the position at which the replacement is to begin.

* The third argument specifies the number of characters to replace. If is omitted, all
remaining characters are replaced.

Positioning the SUBSTR Function

SAS uses the SUBSTR function to extract a substring or to modify a variable's values,
depending on the position of the function in the assignment statement.

When the function is on the right side of an assignment statement, the function returns
the requested string.

Modifying Character Values with Functions 283

MiddleInitial=substr (middlename,1,1) ;

But if you place the SUBSTR function on the left side of an assignment statement, the
function is used to modify variable values.

substr(region,1,3)="'NNW';

When the SUBSTR function modifies variable values, the right side of the assignment
statement must specify the value to place into the variable. For example, to replace the
fourth and fifth characters of a variable named Test with the value 92, you write the
following assignment statement:

substr(test,4,2)='92";
Test Test

S7381K2 - S7392K2
S7381K7 - S7392K7

It is possible to use the SUBSTR function to replace the 622 exchange in the variable
Phone. This assignment statement specifies that the new exchange 433 should be placed
in the variable Phone, starting at character position 1 and replacing three characters.

data work.temp2;

set cert.temp;

substr (phone,1,3)="433";
run;
proc print data=work.temp2;

run;

However, executing this DATA step places the value 433 into all values of Phone.

Obs | Address Phone
1 65 ELM DR 4334549
2 11 5UNDR 4333251
3 712 HARDWICK 4334749
STREET
4 5372 WHITEBLUD _more 4330540 . _more
ROAD . .
variables variables
5 11 TALYN 4333618
COURT T
6 101 HYNERIAN 4336732
DR
7 11 RYGEL ROAD 4332070
8 121 E. MOYA 4333020
STREET
9 1905 DOCK 4335303
STREET
10 | 1304 CRESCENT 4331557
AVE

284 Chapter 14 + Using Functions to Manipulate Data

You need to replace only the values of Phone that contain the 622 exchange. To extract
the exchange from Phone, add an assignment statement to the DATA step. Notice that
the SUBSTR function is used on the right side of the assignment statement.

data work.temp2 (drop=exchange) ;
set cert.temp;
Exchange=substr (phone, 1,3) ;
substr (phone,1,3)="'433";

run;
proc print data=work.temp2;

run;
Now the DATA step needs an IF-THEN statement to verify the value of the variable
Exchange. If the exchange is 622, the assignment statement executes to replace the
value of Phone.

data work.temp2 (drop=exchange) ;

set cert.temp;
Exchange=substr (phone, 1,3) ;
if exchange='622"' then substr(phone,1,3)='433";

run;
proc print data=work.temp2;

run;

After the DATA step is executed, the appropriate values of Phone contain the new

exchange.

Modifying Character Values with Functions 285

Figure 14.4 PROC PRINT Output of Work.Temp2 (partial output)

Obs Address Phone

1| 65 ELM DR 549
2 11 SUNDR 251

3712 9974749
HARDWICK
STREET ...more . ..more
4 5372 variables EO970540 variables

WHITEBUD
ROAD

5|11 TALYN 3633618
COURT

6| 101 9976732
HYMNERIAN
DR

7|11 RYGEL 9972070
ROAD

g 11 E. 3633020
MOYA
STREET

9 1905 DOCK 6565303
STREET

10 | 1304 4341557
CRESCENT
AVE

To summarize, when the SUBSTR function is on the right side of an assignment
statement, the function extracts a substring.

MiddleInitial=substr (middlename,1,1);

When the SUBSTR function is on the left side of an assignment statement, the function
replaces the contents of a character variable.

substr (region,1,3)="'NNW';

SCAN versus SUBSTR Functions

The SUBSTR function is similar to the SCAN function. Here is a brief comparison. Both
the SCAN and SUBSTR functions can extract a substring from a character value:

* SCAN extracts words within a value that is marked by delimiters.
+ SUBSTR extracts a portion of a value by starting at a specified location.

The SUBSTR function is best used when you know the exact position of the string that
you want to extract from the character value. It is unnecessary to mark the string by
delimiters. For example, the first two characters of the variable ID identify the class
level of college students. The position of these characters does not vary within the values
of ID.

286 Chapter 14 + Using Functions to Manipulate Data

The SUBSTR function is the best choice to extract class level information from ID. By
contrast, the SCAN function is best used during the following actions:

* You know the order of the words in the character value.
» The starting position of the words varies.

» The words are marked by some delimiter.

LEFT and RIGHT Functions

Overview of the LEFT and RIGHT Functions

» The LEFT function left-aligns a character expression.
LEFT returns an argument with leading blanks moved to the end of the value.
* The RIGHT function right-aligns a character expression.

RIGHT returns an argument with trailing blanks moved to the start of the value.

Syntax, LEFT and RIGHT function:

LEFT (argument)
RIGHT (argument)

argument specifies a character constant, variable, or expression.

Example: LEFT Function

The following example uses the LEFT function to left-align character expressions.

data null ;
a='DUE DATE';
b="' DUE DATE';
c=left(a);
d=left (b);
put c $8.;
put d $12.;

run;

The following is displayed in the SAS log. The LEFT function returns the argument with
leading blanks moved to the end of the value. In the example, b has three leading blanks
and, in the output, the leading blanks are moved to the end of DUE DATE. DUE DATE
is left-aligned.

DUE DATE
DUE DATE

Example: RIGHT Function

The following example uses the RIGHT function to right-align character expressions.

data null ;
a='DUE DATE';
b="'DUE DATE d;
c=right(a);
d=right (b) ;
put c $8.;

Modifying Character Values with Functions 287

put d $12.;
run;

The following is displayed in the SAS log. The RIGHT function returns the argument
with leading blanks moved to the front of the value. In the example, b has three trailing
blanks and, in the output, the trailing blanks are moved before DUE DATE. DUE DATE
is right-aligned.

DUE DATE

DUE DATE

Concatenation Operator

TRIM Function

The concatenation operator concatenates character values. The operator can be expressed
as || (two vertical bars), | | (two broken vertical bars), or !!(two exclamation points).

FullName = First || Middle || Last;
The length of the resulting variable is the sum of the lengths of each variable or constant

in the concatenation operation. You can also use a LENGTH statement to specify a
different length for the new variable.

The concatenation operator does not trim leading or trailing blanks. If variables are
padded with trailing blanks, use the TRIM function to trim trailing blanks from values
before concatenating them.

Overview of the TRIM Function
The TRIM function removes trailing blanks from character expressions and returns one
blank if the expression contains missing values.

FullName = trim(First) || trim(Middle) || Last;

The TRIM function is useful for concatenating because the concatenation operator does
not remove trailing blanks.

If the TRIM function returns a value to a variable that was not yet assigned a length, by
default, the variable length is determined by the length of the argument.

Syntax, TRIM function:

TRIM(argument)

argument can be any character expression. Here are examples:
* acharacter variable: trim(address)

 another character function: trim(left(id))

Example: TRIM Function
data work.nametrim;
length Name $ 20 First Middle Last $ 10;
Name= 'Jones, Mary Ann, Sue';
First = left(scan(Name, 2, ','));
Middle = left(scan(Name, 3, ','));

288 Chapter 14

CATX Function

Using Functions to Manipulate Data

Last = scan(name, 1, ',');
FullName = trim(First) || trim(Middle) ||Last;
drop Name;

run;

proc print data=work.nametrim;

run;

Figure 14.5 TRIM Function

Obs First Middle Last |FullName
1 Mary Ann Sue Jones | Mary AnnSuedones

\ I J T

10 bytes 30 bytes

Overview of the CATX Function

The CATX function enables you to concatenate character strings, remove leading and
trailing blanks, and insert separators. The CATX function returns a value to a variable, or
returns a value to a temporary buffer. The results of the CATX function are usually

equivalent to those that are produced by a combination of the concatenation operator and
the TRIM and LEFT functions.

In the DATA step, if the CATX function returns a value to a variable that has not
previously been assigned a length, then the variable is given the length of 200. To save
storage space, you can add a LENGTH statement to your DATA step, and specify an
appropriate length for your variable. The LENGTH statement is placed before the
assignment statement that contains the CATX function so that SAS can specify the
length the first time it encounters the variable.

If the variable has not previously been assigned a length, the concatenation operator (||)
returns a value to a variable. The variable’s given length is the sum of the length of the
values that are being concatenated. Otherwise, you can use the LENGTH statement
before the assignment statement containing the TRIM function to assign a length.

Recall that you can use the TRIM function with the concatenation operator to create one
address variable. The address variable contains the values of the three variables Address,
City, and Zip. To remove extra blanks from the new values, use the DATA step shown
below:

data work.newaddress (drop=address city state zip);
set cert.temp;
NewAddress=trim(address) ||', '||trim(city)||', '||zip;

run;

You can accomplish the same concatenation using only the CATX function.

Modifying Character Values with Functions 289

Syntax, CATX function:
CATX(separator,string-1 <,...string-n>)

» separator specifies the character string that is used as a separator between concatenated
strings

+ string specifies a SAS character string.

Example: Create New Variable Using CATX Function

You want to create the new variable NewAddress by concatenating the values of the
Address, City, and Zip variables from the data set Cert. Temp. You want to strip excess
blanks from the old variable’s values and separate the variable values with a comma and
a space. The DATA step below uses the CATX function to create NewAddress.

data work.newaddress (drop=address city state zip);
set cert.temp;
NewAddress=catx (', ', address,city,zip);

run;

proc print data=work.newaddress;

run;

The revised DATA step creates the values that you would expect for NewAddress.

Output 14.12 SAS Data Set Work.NewAddress (partial output)

Obs Phone NewAddress
1 6224549 65 ELM DR, CARY, NC, 27513
2| 6223251 11 SUN DR, CARY, NC, 27513
39974749 . . . 712 HARDWICK STREET, CHAPEL HILL, NC, 27514
4| 6970540 ﬂfﬂf"-‘% 5372 WHITEBUD ROAD, RALEIGH, NC, 27612
5 3633618 V3 TADLIES | 1a VN COURT, DURHAM, NC, 27713
6 9976732 101 HYNERIAN DR, CARRBORO, NC, 27510
79972070 11 RYGEL ROAD, CHAPEL HILL, NC, 27514
8 3633020 121 E. MOYA STREET, DURHAM, NC, 27713
9 | 6565303 1905 DOCK STREET, CARY, NC, 27513
10 | 4341557 1304 CRESCENT AVE, RALEIGH, NC, 27612

INDEX Function

Overview of the INDEX Function

The INDEX function enables you to search a character value for a specified string. The
INDEX function searches values from left to right, looking for the first occurrence of the
string. It returns the position of the string's first character. If the string is not found, it
returns a value of 0.

290 Chapter 14

Using Functions to Manipulate Data

Syntax, INDEX function:
INDEX(source, excerpt)
+ source specifies the character variable or expression to search.

* excerpt specifies a character string that is enclosed in quotation marks (").

Example: Search for Occurrences of a Phrase

Suppose you want to search the values of the variable Job, which lists job skills. You
want to create a data set that contains the names of all temporary employees who have
word processing experience. The following figure shows a partial output of the
Cert.Temp data set.

Figure 14.6 Cert. Temp (partial output)

Obs | Address Job

1|65 ELM DR word processing
2|11 SUN DR Filing Admin_Duties
3| 712 HARDWICK STREET Organizational Dev. Specialis
4 | 5372 WHITEBUD ROAD MrOre Bookkeeping word processing M05e
5|11 TALYN COURT variables word processing sec. work variables
& | 101 HYNERIAN DR Bookkeeping word processing
7| 11 RYGEL ROAD word processing
8121 E. MOYA STREET word processing sec. work
9| 1905 DOCK STREET word processing

10 | 1304 CRESCENT AVE word processing

To search for the occurrences of the phrase “word processing” in the values of the

variable Job, you write the INDEX function as shown below. Note that the character
string is enclosed in quotation marks.

index (job, 'word processing')

To create the new data set, include the INDEX function in a subsetting IF statement.
Only those observations in which the function locates the string and returns a value
greater than 0 are written to the data set.

data work.datapool;

set cert.temp;

where index(job, 'word processing') > 0;
run;
proc print data=work.datapool;

run;

Here is the data set that shows the temporary employees who have word processing
experience. The program processed all of the observations in the Cert. Temp data set.

Modifying Character Values with Functions 291
Output 14.13 Work.DataPool (partial output)
Obs | Address Job
1 65ELM DR word processing
2 | 5372 WHITEBUD ROAD Bookkeeping word processing
3 11 TALYMN COURT word processing sec. work -
4 101 HYNERIAN DR M'HE, Bookkeeping word processing mmf
variables variables
5 11 RYGEL ROAD word processing
6 121 E. MOYA STREET word processing sec. work
T 1905 DOCK. STREET word processing
& 1304 CRESCENT AVE word processing

Note that the INDEX function is case sensitive, so the character string that you search
for must be specified exactly as it is recorded in the data set. For example, the INDEX
function shown below would not locate any employees who have word-processing
experience.

index (job, 'WORD PROCESSING')

Finding a String Regardless of Case

FIND Function

To ensure that all occurrences of a character string are found, you can use the UPCASE
or LOWCASE function with the INDEX function. The UPCASE and LOWCASE
functions enable you to convert variable values to uppercase or lowercase letters. You
can then specify the character string in the INDEX function accordingly.

index (upcase (job) , 'WORD PROCESSING')

index (lowcase (job) , 'word processing')

Overview of the FIND Function
The FIND function enables you to search for a specific substring of characters within a
specified character string.

* The FIND function searches the string, from left to right, for the first occurrence of
the substring, and returns the position in the string of the substring’s first character.

+ If the substring is not found in the string, the FIND function returns a value of 0.

» If there are multiple occurrences of the substring, the FIND function returns only the
position of the first occurrence.

292 Chapter 14

Using Functions to Manipulate Data

Syntax, FIND function:
FIND(string,substring<,modifiers><,startpos>)
+ string specifies a character constant, variable, or expression that is searched for substrings.

* substring is a character constant, variable, or expression that specifies the substring of
characters to search for in string.

* modifiers is a character constant, variable, or expression that specifies one or more
modifiers.

* startpos is an integer that specifies the position at which the search should start and the
direction of the search. The default value for startpos is 1.

Note: If string or substring is a character literal, you must enclose it in quotation marks.

Details
The modifiers argument enables you to specify one or more modifiers for the function,
as listed below.

* The modifier i causes the FIND function to ignore character case during the search.
If this modifier is not specified, FIND searches for character substrings with the
same case as the characters in substring.

* The modifier t trims trailing blanks from string and substring.
Here are several facts about modifiers and constants.

+ If the modifier is a constant, enclose it in quotation marks.

» Specify multiple constants in a single set of quotation marks.
* Modifier values are not case sensitive.

If startpos is not specified, FIND starts the search at the beginning of the string and
searches the string from left to right. If startpos is specified, the absolute value of
startpos determines the position at which to start the search. The sign of startpos
determines the direction of the search. That is, when startpos is positive, FIND searches
from startpos to the right, When startpos is negative, FIND searches from startpos to the
left.

Example: Find Word Processing Jobs in a Data Set

The values of the variable Job are all lowercase. Therefore, to search for the occurrence
of word processing in the values of the variable Job, you write the FIND function as
shown below. Note that the character substring is enclosed in quotation marks.

find (job, 'word processing')

To create the new data set, include the FIND function in a subsetting IF statement. Only
those observations in which the function locates the string and returns a value greater
than 0 are written to the data set.

data work.datapool;

set cert.temp;

where find(job, 'word processing') > 0;
run;
proc print data=work.datapool;

run;

Modifying Character Values with Functions 293

Output 14.14 Work.DataPool (partial output)

Obs | Address Job
1 65ELM DR word processing
2 | 5372 WHITEBUD ROAD Bookkeeping word processing
3 11 TALYMN COURT - word processing sec. work -
4 101 HYNERIAN DR M'HE, Bookkeeping word processing mmf
variables variables
5 11 RYGEL ROAD L word processing
6 121 E. MOYA STREET word processing sec. work
T 1905 DOCK. STREET word processing
& 1304 CRESCENT AVE word processing

UPCASE Function

The UPCASE function converts all letters in a character expression to uppercase.

Syntax, UPCASE function:
UPCASE (argument)

argument can be any SAS character expression, such as a character variable or constant.

In this example, the function is placed in an assignment statement in a DATA step. You
can change the values of the variable Job in place.

data work.upcasejob;
set cert.temp;
Job=upcase (job) ;
run;
proc print data=work.upcasejob;
run;

The new data set contains the converted values of Job.

Output 14.15 Work.UpcasedJob (partial output)

Obs | Address Job
1 65 ELM DR WORD PROCESSING
2 11 SUNDR FILING ADMIM.DUTIES
3 712 HARDWICK STREET ORGANIZATIONAL DEV. SPECIALIS
4 8372 WHITEBUDROAD | =~ 7 BOOKKEEPING WORD PROCESSING |~ © ~
more more
5 11 TALYN COURT variables | WORD PROCESSING SEC. WORK variables
6 101 HYNERIAN DR ... BOOKKEEPRING WORD PROCESSING
T 11 RYGEL ROAD WORD PROCESSING
8 121 E. MOYA STREET WORD PROCESSING SEC. WORK
9 1905 DOCK STREET WORD PROCESSING
10 1304 CRESCENT AVE WORD PROCESSING

294 Chapter 14

Using Functions to Manipulate Data

LOWCASE Function

The LOWCASE function converts all letters in a character expression to lowercase.

Syntax, LOWCASE function:
LOWCASE((argument)

argument can be any SAS character expression, such as a character variable or constant.

In this example, the function converts the values of the variable Contact to lowercase
letters.

data work.lowcasecontact;
set cert.temp;
Contact=1lowcase (contact) ;
run;
proc print data=work.lowcasecontact;

run;

Output 14.16 Work.LowcaseContact (partial output)

Obs Address Contact

1| 65 ELM DR word processor

2|11 SUNDR admin. asst.

3 | 712 HARDWICK STREET consultant

4 5372 WHITEBUD ROAD . . .more bookkeeperasst. | .. .more
5 11 TALYN COURT variables | o processor | Variables
6 101 HYMERIAN DR bookkeeper asst.

7 11 RYGEL ROAD word processor

& 121 E. MOYA STREET word processor

9 | 1905 DOCK STREET word processar
10 | 1304 CRESCENT AVE word processor

PROPCASE Function

The PROPCASE function converts all words in an argument to proper case (so that the
first letter in each word is capitalized).

Syntax, PROPCASE function:
PROPCASE (argument<,delimiter(s)>)
* argument can be any SAS expression, such as a character variable or constant.

 delimiter(s) specifies one or more delimiters that are enclosed in quotation marks. The
default delimiters are blank, forward slash, hyphen, open parenthesis, period, and tab.

Note: If you specify delimiter(s), then the default delimiters are no longer in effect.

» The PROPCASE function first converts all letters to lowercase letters and then
converts the first character of words to uppercase.

Modifying Character Values with Functions

295

» The first character of a word is the first letter of a string or any letter preceded by a
default list of delimiters.

Default delimiter List: blank / — (. tab

list.

Delimiters can be specified as a second argument, instead of using the default

In this example, the function converts the values of the variable named Contact to proper
case and uses the default delimiters.

data work.propcasecontact;

set cert.temp;
Contact=propcase (contact) ;

run;

proc print data=work.propcasecontact;

run;

After the DATA step executes, the new data set is created.

Output 14.17 Work.PropcaseContact (partial output)

Obs

[=r I % B — R SR 8

TRANWRD Function

Address

65 ELM DR

11 SUN DR

712 HARDWICK STREET
5372 WHITEBUD ROAD
11 TALYN COURT

101 HYNERIAN DR

11 RYGEL ROAD

more
variables

121 E. MOYA STREET
1906 DOCK STREET
1304 CRESCENT AVE

Overview of the TRANWRD Function

The TRANWRD function replaces or removes all occurrences of a word in a character
string. The translated characters can be located anywhere in the string.

Contact
Word Processor
Admin. Asst.

Consultant

Bookkeeper Asst.

Word Processor

Bookkeeper Asst.

Word Processor
Word Processor
Word Processor

Word Processor

more
variables

296 Chapter 14

Using Functions to Manipulate Data

Figure 14.7 TRANWRD Function

The target specifies
the string searched for
in the source.

|

NewSentencel=tranwrd(Sentence, 'hard', 'easy');

\

The replacement
specifies the string
that replaces the
target.

Syntax, TRANWRD function:

TRANWRD(source, target,replacement)

* source specifies the source string that you want to translate.
* target specifies the string that SAS searches for in source.

» replacement specifies the string that replaces farget.

Note: target and replacement can be specified as variables or as character strings. If you
specify character strings, be sure to enclose the strings in quotation marks (' 'or " ").

In a DATA step, if the TRANWRD function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes. To
save storage space, you can add a LENGTH statement to the DATA step and specify an
appropriate length for the variable. SAS sets the length of a new character variable the
first time it is encountered in the DATA step. Be sure to place the LENGTH statement
before the assignment statements that contain the TRANWRD function.

Example: Update Variables in Place Using TRANWRD Function

You can use TRANWRD function to update variables in place. In this example, the
function updates the values of Name by changing every occurrence of the string Monroe
to Manson.

name=tranwrd (name, 'Monroe', 'Manson')

Another example of the TRANWRD function is shown below. In this case, two
assignment statements use the TRANWRD function to change all occurrences of Miss or
Mrs. to Ms.

data work.after;
set cert.before;
name=tranwrd (name, 'Miss', 'Ms. ') ;
name=tranwrd (name, 'Mrs."', 'Ms. ') ;
run;
proc print data=work.after;

run;

The new data set is created. The TRANWRD function changes all occurrences of Miss
or Mrs. to Ms.

Modifying Character Values with Functions 297

Figure 14.8 PROC PRINT Output of the TRANWRD Function

Obs Name
1| Ms. Millicent Garrett Fawcett
Ms. Charlotte Despard

Ms_ Emmeline Pankhurst

| L | P

Ms. Sylvia Pankhurst

COMPBL Function

The COMPBL function removes multiple blanks from a character string by translating
each occurrence of two or more consecutive blanks into a single blank.

Syntax, COMPBL function:
COMPBL(source)

* source specifies a character constant, variable, or expression to compress.

If a variable is not assigned a length before the COMPBL function returns a value to the
variable, then the variable is given the length of the first argument.

The following SAS statements produce these results:

SAS Statement Result
el —-2--
data null_; Hey Diddle Diddle

string='Hey

Diddle Diddle';
string=compbl (string) ;
put string;

run;

data null ; 125 E Main
string='125 E Main St';
length address $10;
address=compbl (string) ;
put address;

run;

COMPRESS Function

Overview of the COMPRESS Function

The COMPRESS function returns a character string with specified characters removed
from the original string. Null arguments are allowed and treated as a string with a length
of zero.

298 Chapter 14 + Using Functions to Manipulate Data

Syntax, COMPRESS function:
COMPRESS(source<, characters> <, modifier(s)>)

source specifies a character constant, variable, or expression from which specified characters are removed.
characters specifies a character constant, variable, or expression that initializes a list of characters.

By default, the characters in this list are removed from the source argument. If you specify the K modifier in the third
argument, then only the characters in this list are kept in the result.

Note: You can add more characters to this list by using other modifiers in the third argument. Enclose a literal string
of characters in quotation marks.

modifier specifies a character constant, variable, or expression in which each non-blank character modifies the action
of the COMPRESS function. Blanks are ignored.

aorA
Adds alphabetic characters to the list of characters.

corC

Adds control characters to the list of characters.
dorD

Adds digits to the list of characters.
forF

Adds the underscore character and English letters to the list of characters.
gorG

Adds graphic characters to the list of characters.
h or H

Adds a horizontal tab to the list of characters.
iorl

Ignores the case of the characters to be kept or removed.
k or K

Keeps the characters in the list instead of removing them.
lorL

Adds lowercase letters to the list of characters.

norN
Adds digits, the underscore character, and English letters to the list of characters.

oor O
Processes the second and third arguments once rather than every time the COMPRESS function is called. You can
use the O modifier to make the COMPRESS function more efficient when you call it in a loop, where the second
and third arguments do not change.

porP
Adds punctuation marks to the list of characters

sorS
Adds space characters (blank, horizontal tab, vertical tab, carriage return, line feed, and form feed) to the list of
characters.

tor T
Trims trailing blanks from the first and second arguments.

uor U
Adds uppercase letters to the list of characters.

wor W
Adds printable characters to the list of characters.

x or X
Adds hexadecimal characters to the list of characters.

Modifying Character Values with Functions 299

If the modifier is a constant, enclose it in quotation marks. Specify multiple
constants in a single set of quotation marks. Modifier can also be expressed as a
variable or an expression.

Based on the number of arguments, the COMPRESS functions works as follows:

Number of Arguments Result

only the first argument, source All blanks have been removed from the
argument. If the argument is completely
blank, then the result is a string with a length
of zero. If you assign the result to a character
variable with a fixed length, then the value of
that variable is padded with blanks to fill its
defined length.

the first two arguments, source and chars All characters that appear in the second
argument are removed from the result.

three arguments, source, chars, and The K modifier (specified in the third

modifier(s) argument) determines whether the characters
in the second argument are kept or removed
from the result.

The COMPRESS function compiles a list of characters to keep or remove, comprising
the characters in the second argument plus any types of characters that are specified by
the modifiers. For example, the D modifier specifies digits. Both of the following
function calls remove digits from the result:

compress (source, "1234567890") ;
compress (source, , "d");

To remove digits and plus or minus signs, you can use either of the following function
calls:

compress (source, "1234567890+-");
compress (source, "+-", "d");

Example: Compress a Character String
data _null ;
a='A B CD';
b=compress (a) ;
put b=;
run;

Log 14.5 SAS Log

b=ABCD

Example: Compress a Character String Using a Modifier
The following example uses the I modifier to ignore the case of the characters to
remove.

data null_;
x='919-000-000 nc 610-000-000 pa 719-000-000 CO 419-000-000 Oh';
y=compress (x, 'ACHONP', 'i');

300 Chapter 14 - Using Functions to Manipulate Data

put y=;
run;

The following is printed to the SAS log.

Log 14.6 SAS Log

y=919-000-000 610-000-000 719-000-000 419-000-000

Modifying Numeric Values with Functions

SAS provides additional functions to create or modify numeric values. These include
arithmetic, financial, and probability functions. This book covers the following selected
functions.

CEIL and FLOOR Functions

To return integers that are greater than or equal to the argument, use these functions:

* The CEIL function returns the smallest integer that is greater than or equal to the
argument.

* The FLOOR function returns the largest integer that is less than or equal to the
argument.

Syntax, CEIL and FLOOR function:

CEIL(argument)
FLOOR((argument)

argument is a numeric variable, constant, or expression.

If the argument is within 1E-12 of an integer, the function returns that integer.

The following SAS statements produce this result:

Table 14.12 CEIL and FLOOR Functions

SAS Statement Result
CEIL Function Examples
data _null_; a=3
varl=2.1; be-2
var2=-2.1;

a=ceil (varl) ;
b=ceil (var2) ;
put "a=" a;
put "b=" b;

run;

INT Function

SAS Statement

data _null_;
c=ceil (1+1.e-11);
d=ceil (-1+1le-11) ;
e=ceil(1+1.e-13)
put "c=" ¢;
put "d=" d;
put "e=" e;

run;

data _null_;
f=ceil (223.456) ;
g=ceil (763);
h=ceil (-223.456) ;
put "f=" f;
put "g=" g;
put "h=" h;

run;

data _null_;
varl=2.1;
var2=-2.1;

a=floor (varl) ;
b=floor (var2) ;
put "a=" a;

put "b=" b;
run;
data _null_;

c=floor(l+l.e-11);
d=floor(-1+le-11);
e=floor(1l+l.e-13)
put "c=" c;

put "d=" d;

put "e=" e;

run;

data null ;
f=floor(223.456) ;
g=floor(763) ;
h=floor (-223.456) ;

put "f=" f;

put ng: n g;

put "h=" h;
run;

To return the integer portion of a numeric value, use the INT function. Any decimal

Modifying Numeric Values with Functions

Result

£=224
g=763

h=-223

FLOOR Function Examples

b=-3

£=223
g=763

h=-224

portion of the INT function argument is discarded.

301

302 Chapter 14 - Using Functions to Manipulate Data

Syntax, INT function:
INT (argument)

argument is a numeric variable, constant, or expression.

The two data sets shown below give before-and-after views of values that are truncated
by the INT function.

data work.creditx;
set cert.credit;
Transaction=int (transaction) ;
run;
proc print data=work.creditx;

run;

Output 14.18 INT Function Comparison

Data Set Cert.Credit Data Set Work.CreditX
(Before INT Function) (After INT Function)

Obs | Account | Name Type | Transaction Obs | Account | Name Type | Transaction
11118 ART CONTUCK D 57.69 11118 ART CONTUCK D 57
2| 2287 MICHAEL WINSTOME D 14589 2 2287 MICHAEL WINSTONE | D 145
36201 MARY WATERS C 45.00 3 6201 MARY WATERS C 45
4| 7821 MICHELLE STANTOM A 304.45 47821 MICHELLE STANTON A 304
5| 6621 WALTER LUND C 234.76 5 6621 WALTER LUND C 234
6| 1086 KATHERINE MORRY A 64.98 6 1086 KATHERINE MORRY A 64
70556 LEE McDONALD D 70.82 7 0556 LEE McDONALD D 70
8| 7621 ELIZABETH WESTIN C 188.23 8 7821 ELIZABETH WESTIN C 188
9 0265 JEFFREY DOMNALDSON C 78.90 9 0265 JEFFREY DONALDSON | C 78
10 1010 MARTIN LYNMN D 150.55 10 1010 MARTIM LYMMN D 150

ROUND Function

To round values to the nearest specified unit, use the ROUND function.

Syntax, ROUND function:
ROUND(argument,round-off-unit)
* argument is a numeric variable, constant, or expression.

* round-off-unit is numeric and nonnegative.

If a rounding unit is not provided, a default value of 1 is used, and the argument is
rounded to the nearest integer. The two data sets shown below give before-and-after
views of values that are modified by the ROUND function. The first ROUND function
rounds the variable AccountBalance to the nearest integer. The second ROUND function
rounds the variable InvoicedAmount to the nearest tenth decimal place. The third
ROUND function rounds the variable AmountRemaining to the nearest hundredth
decimal place.

data work.rounders;

set cert.rounders;

AccountBalance=round (AccountBalance, 1);

InvoicedAmount=round (InvoicedAmount, 0.1);

AmountRemaining=round (AmountRemaining, 0.02);

Nesting SAS Functions 303

format AccountBalance InvoicedAmount PaymentReceived AmountRemaining dollar9.2;

run;

proc print data=work.rounders;

run;

Output 14.19 Before and After ROUND Function

Data Set Cert.Rounders,

Obs | Account
1118
2287
6201
7821
6621
1086
2556
7821
5265
1010

=T T~ N - - T I - - T, - [Uy = 3

=

Data

Obs | Account
1118
2287
6201
7821
6621
1086
2556
7821
5265
1010

(=T T- T - - T A - A T - (O Uy

=

before the ROUND function

AccountBalance | InvoicedAmount | PaymentReceived | AmountRemaining

6246.34
3687.14
1607.93
7391.62
T017.50

556.36
6388.10
10872.96
1057 46
6387.13

967.84
607.30
137.41
1069.37
9334.08
1637.28
357782
Jogh.08
637.42
0.00

121418
4294 44
T00.00
5000.00
8351.58
130028
6900.82
10872.96
1200.00
3193.57

221418
0.00
1045.34
3460.993
8000.00
793.36
3065.10
Jogh.08
494 38
3193.56

Set Work.Rounders,

atter the ROUND function

AccountBalance | InvoicedAmount | PaymentReceived | AmountRemaining

$6.246.00
$3.687.00
$1,608.00
57,392.00
57.018.00

$556.00
$6,388.00
$10873.00
$1,057.00
56,387.00

5967.80
5607.30
5137.40
$1.069.40
$9.334.10
$1,537.30
53,577.80
53.885.10
5637.40
50.00

$1.214.18
54,284 44

5700.00
$5.000.00
58.351.58
$1,300.28
56,900.82
510872.96
$1,200.00
$3,193.57

52.214.18
30.00
51,045.34
$3.461.00
58.000.00
5793.36
$3,065.10
53.885.08
5494 88
$3,193.56

Nesting SAS Functions

To write more efficient programs you can nest functions as appropriate. You can nest any
functions as long as the function that is used as the argument meets the requirements for

304 Chapter 14 - Using Functions to Manipulate Data

the argument. For example, you can nest the SCAN function within the SUBSTR
function in an assignment statement to compute the value for Middlelnitial:

MiddleInitial=substr(scan(name,3),1,1);

This example of nested numeric functions determines the number of years between June
15,2018, and today:

Years=intck('year', '15jun2018'd, today()) ;

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1.

3.

Within the data set Cert. Temp, PayRate is a character variable and Hours is a
numeric variable. What happens when the following program is run?

data work.temp;
set cert.temp;
Salary=payrate*hours;

run;

a. SAS converts the values of PayRate to numeric values. No message is written to
the log.

b. SAS converts the values of PayRate to numeric values. A message is written to
the log.

c. SAS converts the values of Hours to character values. No message is written to
the log.

d. SAS converts the values of Hours to character values. A message is written to the
log.

A typical value for the character variable Target is 123, 456. Which statement
correctly converts the values of Target to numeric values when creating the variable
TargetNo?

a. TargetNo=input (target,commaé.) ;
b. TargetNo=input (target,comma7.) ;
c. TargetNo=put (target,commaé6.) ;
d. TargetNo=put (target,comma?7.)

A typical value for the numeric variable SiteNum is 12.3. Which statement correctly
converts the values of SiteNum to character values when creating the variable
Location?

a. Location=dept||'/'||input (sitenum,3.1);
b. Location=dept||'/'||input (sitenum,4.1);
c. Location=dept||'/'||put(sitenum,3.1);
d. Location=dept||'/'||put(sitenum,4.1);

The variable Address2 contains values such as Piscataway, NJ. How do you
assign the two-letter state abbreviations to a new variable named State?

a. State=scan(address2,2);

Chapter Quiz 305

b. State=scan(address2,13,2);
C. State=substr (address2,2);
d. State=substr(address2,13,2);

5. The variable IDCode contains values such as 123FA and 321MB. The fourth
character identifies sex. How do you assign these character codes to a new variable
named Sex?

a. Sex=scan(idcode,4) ;

b. Sex=scan(idcode, 4,1);
C. Sex=substr(idcode, 4) ;
d. Sex=substr(idcode,4,1);

6. Because of the growth within the 919 area code, the telephone exchange 555 is being
reassigned to the 920 area code. The data set Clients.Piedmont includes the variable
Phone, which contains telephone numbers in the form 919-555-1234. Which of
the following programs correctly changes the values of Phone?

a. data work.piedmont (drop=areacode exchange) ;
set cert.piedmont;
Areacode=substr (phone, 1,3);
Exchange=substr (phone, 5, 3) ;
if areacode='919' and exchange='555"

then scan(phone,1,3)='920";

run;

b. data work.piedmont (drop=areacode exchange) ;
set cert.piedmont;
Areacode=substr (phone, 1,3) ;
Exchange=substr (phone, 5, 3) ;
if areacode='919' and exchange='555"

then phone=scan('920',1,3);

run;

c. data work.piedmont (drop=areacode exchange) ;
set cert.piedmont;
Areacode=substr (phone, 1,3) ;
Exchange=substr (phone, 5, 3) ;
if areacode='919' and exchange='555"

then substr (phone,1,3)='920";

run;

d. data work.piedmont (drop=areacode exchange) ;
set cert.piedmont;
Areacode=substr (phone, 1,3) ;
Exchange=substr (phone, 5, 3) ;
if areacode='919' and exchange='555"

then phone=substr('920',1,3);

run;

7. Suppose you need to create the variable FullName by concatenating the values of
FirstName, which contains first names, and LastName, which contains last names.
What is the best way to remove extra blanks between first names and last names?

a. data work.maillist;
set cert.maillist;
length FullName $ 40;
fullname=trim firstname||' '||lastname;

306 Chapter 14 - Using Functions to Manipulate Data

run;

b. data work.maillist;
set cert.maillist;
length FullName $ 40;
fullname=trim(firstname) ||' '||lastname;

run;

c. data work.maillist;
set cert.maillist;
length FullName $ 40;
fullname=trim(firstname) ||' '||trim(lastname);

run;

d. data work.maillist;
set cert.maillist;
length FullName $ 40;
fullname=trim(firstname||' '||lastname) ;

run;

8. Within the data set Cert.Bookcase, the variable Finish contains values such as ash,
cherry, teak, matte-black. Which of the following creates a subset of the
data in which the values of Finish contain the string walnut? Make the search for
the string case-insensitive.

a. data work.bookcase;
set cert.bookcase;
if index(finish,walnut) = 0;

run;

b. data work.bookcase;
set cert.bookcase;
if index(finish, 'walnut') > 0;

run;

c. data work.bookcase;
set cert.bookcase;
if index(lowcase (finish),walnut) = 0;

run;

d. data work.bookcase;
set cert.bookcase;
if index(lowcase(finish), 'walnut') > 0;

run;

Chapter 15

307

Producing Descriptive

Statistics

The MEANS Procedure e 307
What Does the MEANS Procedure Do? 307
MEANS Procedure Syntaxttt 308
Example: Default PROC MEANS Outputo, 308
Specifying Descriptive Statistics Keywords 309
Example: Specifying Statistic Keywords 311
Limiting Decimal Places with MAXDEC=Option........................ 312
Specifying Variables Using the VAR Statement 313
Group Processing Using the CLASS Statement 313
Group Processing Using the BY Statement 314
Creating a Summarized Data Set Using the OUTPUT Statement 316

The FREQ Procedure 317
What Does the FREQ Procedure Do?, 317
FREQ Procedure Syntaxouiinint i ieie e 318
Example: Creating a One-Way Frequency Table (Default) 320
Specifying Variables Using the TABLES Statement 322
Example: Creating a One-Way Table for One Variable 322
Example: Determining the Report Layout. 323
Create Two-Way and N-Way Tables, 324
Example: Creating Two-Way Tables, 325
Examples: Creating N-Way Tables 325
Creating Tables Using the LISTOptionttt 326
Example: Using the LISTOptiont 327
Example: Using the CROSSLIST Option, 327
Suppressing Table Information 329
Example: Suppressing Percentages 330

Chapter QUIZ e e 331

The MEANS Procedure

What Does the MEANS Procedure Do?

The MEANS procedure provides data summarization tools to compute descriptive
statistics for variables across all observations and within groups of observations. For
example, PROC MEANS does the following:

calculates descriptive statistics based on moments

308 Chapter 15 < Producing Descriptive Statistics

» estimates quantiles, which includes the median
» calculates confidence limits for the mean

* identifies extreme values

» performs a ¢ test

By default, PROC MEANS displays output.

MEANS Procedure Syntax

The MEANS procedure can include many statements and options for specifying
statistics.

Syntax, MEANS procedure:

PROC MEANS <DATA=SAS-data-set>
<statistic-keyword(s)> <option(s)>;

RUN;

* SAS-data-set is the name of the data set to be analyzed.

 statistic-keyword(s) specify the statistics to compute.

* option(s) control the content, analysis, and appearance of output.

Example: Default PROC MEANS Output

In its simplest form, PROC MEANS prints the n-count (number of non missing values),
the mean, the standard deviation, and the minimum and maximum values of every
numeric variable in a data set.

proc means data=cert.survey;
run;

Output 15.1

Variable N

[tem1
[tem2
[tem3
[temd
[tem5
[temb
[tem?
[temd
[temd
[tem10
[tem11
[tem12
[tem13
[tem14
[tem15
[tem16
[tem17
[tem18

PN CE - - - - N A A A I

The MEANS Procedure 309

PROC MEANS Output of Cert.Survey

The MEANS Procedure

Mean

3.7500000
3.0000000
4.2500000
3.5000000
3.0000000
3.7500000
3.0000000
2.7500000
3.0000000
3.2500000
3.0000000
2.7500000
2.7500000
3.0000000
3.0000000
2.5000000
3.0000000
3.2500000

Std Dev

1.2583057
1.6329932
0.5000000
1.2909944
1.6329932
1.2583057
1.8257419
1.5000000
1.4142136
1.2583057
1.8257419
0.5000000
1.5000000
1.4142136
1.6329932
1.9148542
1.1547005
1.2583057

Specifying Descriptive Statistics Keywords

Minimum

2.0000000
1.0000000
4.0000000
2.0000000
1.0000000
2.0000000
1.0000000
1.0000000
2.0000000
2.0000000
1.0000000
2.0000000
1.0000000
2.0000000
1.0000000
1.0000000
2.0000000
2.0000000

Maximum

5.0000000
5.0000000
5.0000000
5.0000000
5.0000000
5.0000000
5.0000000
4.0000000
5.0000000
5.0000000
5.0000000
3.0000000
4.0000000
5.0000000
5.0000000
5.0000000
4.0000000
5.0000000

The default statistics in the MEANS procedure are n-count (number of nonmissing
values), the mean, the standard deviation, and the minimum and maximum values of
every numeric variable in a data set. However, you might need to compute a different
statistic such as median or range of the values. Use the statistic keyword option in the
PROC MEANS statement to specify one or more statistics to display in the output.

Here are the available keywords in the PROC statement:

Table 15.1 Descriptive Statistics Keywords

Keyword

CLM

CSS

CcvV

KURTOSIS | KURT

LCLM

MAX

MEAN

MIN

Description

The two-sided confidence limit for the mean.

The sum of squares corrected for the mean.

The percent coefficient of variation.

Measures the heaviness of tails.

The one-sided confidence limit below the
mean.

The maximum value.

The arithmetic mean or average of all the
values.

The minimum value.

310 Chapter 15

Producing Descriptive Statistics

Keyword
MODE

N

NMISS

RANGE

SKEWNESS | SKEW

STDDEV | STD

STDERR | STDMEAN

SUM

SUMWGT

UCLM

UsS

VAR

Table 15.2 Quantile Statistic Keywords

Keyword
MEDIAN | P50
Pl

P5

P10

Q1| P25

Q3| P75

P90

P95

Description
The value that occurs most frequently.

The number of observations with nonmissing
values.

The number of observations with missing
values.

Calculated as the difference between the
maximum value and the minimum value.

Measures the tendency of the deviations to be
larger in one direction than in the other.

Is the standard deviation s and is computed as
the square root of the variance.

The standard error of the mean.

Sum

The sum of the weights.

The one-sided confidence limit above the
mean

The value of the uncorrected sum of squares.

Variance.

Description

The middle value or the 50th percentile.

1st percentile.

Sth percentile.

10th percentile.

The lower quartile or 25th percentile.

The upper quartile or 75th percentile.

90th percentile.

95th percentile.

Keyword

P99

QRANGE

Table 15.3 Hypothesis Testing Keywords

Keyword

PROBT | PRT

Example: Specifying Statistic Keywords

The MEANS Procedure 311

Description
99th percentile.

The interquartile range and is calculated as the
difference between the upper and lower
quartile, Q3 — Q1.

Description

The two-tailed p-value for Student's ¢ statistic,
T, with n — 1 degrees of freedom. This value
is the probability under the null hypothesis of
obtaining a more extreme value of T than is
observed in this sample.

The Student’s ¢ statistic to test the null
hypothesis that the population mean is equal

X — up
to pg and is calculated as
Ho " 813w

To determine the median and range of Cert.Survey numeric values, add the MEDIAN

and RANGE keywords as options.

proc means data=cert.survey median range;

run;

312 Chapter 15

Producing Descriptive Statistics

Output 15.2 PROC MEANS Output of Cert.Survey Displays Only Median and Range

Variable Median Range

ltem 4.0000000 3.0000000
[tem2 3.0000000 4.0000000
ltem3 4.0000000 1.0000000
[temd 3.5000000 3.0000000
[temb 3.0000000 4.0000000
[temb 4.0000000 3.0000000
ltem7 3.0000000 4.0000000
[temd 3.0000000 3.0000000
[tem3 2.5000000 3.0000000
[tem10 3.0000000 3.0000000
ltem11 3.0000000 4.0000000
ltem12 3.0000000 1.0000000
[tem13 3.0000000 3.0000000
[tem14 2.5000000 3.0000000
ltem15 3.0000000 4.0000000
ltem16 2.0000000 4.0000000
ltem17 3.0000000 2.0000000
[tem18 3.0000000 3.0000000

Limiting Decimal Places with MAXDEC= Option

By default, PROC MEANS uses the BESTw. format to display numeric values in the
report.

When there is no format specification, SAS chooses the format that provides the most
information about the value according to the available field width. At times, this can
result in unnecessary decimal places, making your output hard to read. To limit decimal
places, use the MAXDEC= option in the PROC MEANS statement, and set it equal to
the length that you prefer.

Syntax, PROC MEANS statement with MAXDEC= option:

PROC MEANS <DATA=SAS-data-set>
<statistic-keyword(s)> MAXDEC=n;

n specifies the maximum number of decimal places.

proc means data=cert.diabetes min max maxdec=0;

run;

Output 15.3 PROC MEANS Output of Cert.Diabetes with the MAXDEC= Option

Variable Minimum | Maximum

D 1128 9723
Age 15 63
Height 61 75
Weight 102 240
Pulse 65 100
FastGluc 152 568

PostGluc 206 625

The MEANS Procedure 313

Specifying Variables Using the VAR Statement

By default, the MEANS procedure generates statistics for every numeric variable in a
data set. But the typical focus is on just a few variables, particularly if the data set is
large. It also makes sense to exclude certain types of variables. The values of a numeric
identifier variable ID, for example, are unlikely to yield useful statistics.

To specify the variables that PROC MEANS analyzes, add a VAR statement and list the
variable names.

Syntax, VAR statement:
VAR variable(s);

variable(s) lists numeric variables for which to calculate statistics.

proc means data=cert.diabetes min max maxdec=0;
var age height weight;
run;

Output 15.4 Specifying Variables in the PROC MEANS Output of Cert.Diabetes

Variable | Minimum | Maximum

Age 15 63
Height 61 75
Weight 102 240

In addition to listing variables separately, you can use a numbered range of variables.

proc means data=cert.survey mean stderr maxdec=2;
var iteml-item5;
run;

Output 15.5 PROC MEANS Output of Cert.Survey with Variable Range

Variable Mean | S5td Error

[tem 3.75 0.63
[tem2 3.00 0.82
[tem3 4.25 0.25
[tem4 3.50 0.65
[tem5 3.00 0.82

Group Processing Using the CLASS Statement

You often want statistics for groups of observations, rather than for the entire data set.
For example, census numbers are more useful when grouped by region than when
viewed as a national total. To produce separate analyses of grouped observations, add a
CLASS statement to the MEANS procedure.

314 Chapter 15 < Producing Descriptive Statistics

Syntax, CLASS statement:
CLASS variable(s);

variable(s) specifies category variables for group processing.

CLASS variables are used to categorize data. CLASS variables can be either character or
numeric, but they should contain a limited number of discrete values that represent
meaningful groupings. If a CLASS statement is used, then the N Obs statistic is
calculated. The N Obs statistic is based on the CLASS variables, as shown in the output
below.

The output of the program shown below is grouped by values of the variables Survive
and Sex. The order of the variables in the CLASS statement determines their order in the
output table.

proc means data=cert.heart maxdec=1;
var arterial heart cardiac urinary;
class survive sex;

run;

Output 15.6 PROC MEANS Output Grouped by Values of Variables

Survive | Sex N Obs Variable | N | Mean Std Dev Minimum @ Maximum

DIED 1 4 Arterial 4 925 10.5 83.0 103.0
Heart 4 111.0 534 54.0 183.0

Cardiac | 4 176.8 75.2 95.0 260.0

Urinary | 4 98.0 186.1 0.0 3770

2 6 Arterial 6 942 27.3 72.0 145.0

Heart 6 103.7 16.7 81.0 130.0

Cardiac | 6 3183 102.6 156.0 424.0

Urinary 6 1003 1857 0.0 405.0

SURV 1 5 | Arterial 51 112 12.2 61.0 88.0
Heart 511090 32.0 7.0 149.0

Cardiac | 5 298.0 139.8 66.0 410.0

Urinary 51008 60.2 440 200.0

2 5 | Arterial 5 T88 6.8 2.0 ar.0

Heart 511000 134 84.0 111.0

Cardiac | 5 3302 87.0 256.0 471.0

Urinary 5 1112 162 4 12.0 3770

Group Processing Using the BY Statement
Like the CLASS statement, the BY statement specifies variables to use for categorizing

observations.

Syntax, BY statement:
BY variable(s);

variable(s) specifies category variables for group processing.

But BY and CLASS differ in two key ways:

The MEANS Procedure 315

Unlike CLASS processing, BY-group processing requires that your data already be
sorted or indexed in the order of the BY variables. Unless data set observations are
already sorted, you must run the SORT procedure before using PROC MEANS with
any BY group.

CAUTION:
If you do not specify an output data set by using the OUT= option, PROC SORT
overwrites the initial data set with newly sorted observations.

The layout of BY-group results differs from the layout of CLASS group results. Note
that the BY statement in the program below creates four small tables; a CLASS
statement would produce a single large table.

proc sort data=cert.heart out=work.heartsort;
by survive sex;

run;

proc means data=work.heartsort maxdec=1;
var arterial heart cardiac urinary;
by survive sex;

run;

Figure 15.1 BY Groups Created by PROC MEANS

Survive=DIED Sex=1

Variable N Mean | Std Dev | Minimum Maximum
Arterial 4 8925 10.4 83.0 103.0
Heart 4 111.0 534 540 183.0
Cardiac 4| 176.8 752 95.0 260.0
Urinary 4 980 186.1 0.0 377
Survive=DIED Sex=2
Variable | N | Mean | 5td Dev | Minimum | Maximum
Arterial 6 942 273 720 145.0
Heart 6 1037 16.7 81.0 130.0
Cardiac 6 3183 102.6 156.0 42410
Urinary 6 1003 1867 0.0 405.0
Survive=SURY Sex=1
Variable N Mean | 5td Dev | Minimum | Maximum
Arterial 5 T7.2 12.2 61.0 a8.0
Heart 5 109.0 320 7.0 149.0
Cardiac 5 2980 139.8 66.0 410.0
Urinary 51008 602 440 200.0
Survive=SURV Sex=2
Variable N | Mean | Std Dev | Minimum | Maximum
Arterial 5 7848 6.8 72.0 ar.o
Heart 51000 13.4 84.0 111.0
Cardiac 53302 ar.o 256.0 471.0
Urinary 5 1112 162 4 12.0 3770

316 Chapter 15 < Producing Descriptive Statistics

The CLASS statement is easier to use than the BY statement because it does
not require a sorting step. However, BY-group processing can be more efficient
when your categories might contain many levels.

Creating a Summarized Data Set Using the OUTPUT Statement

To write summary statistics to a new data set, use the OUTPUT statement in the
MEANS procedure.

Syntax, OUTPUT statement:
OUTPUT OUT=S4S-data-set statistic=variable(s);

OUT= specifies the name of the output data set.
statistic= specifies which statistic to store in the output data set.

variable(s) specifies the names of the variables to create. These variables represent the
statistics for the analysis variables that are listed in the VAR statement.

Tip: You can use multiple OUTPUT statements to create several OUT= data sets.

The OUTPUT statement writes statistics to a new SAS data set. By default, the default
summary statistics are produced for all numeric variables or for the variables specified in
the VAR statement. To specify specific statistics to be produced in the new SAS data set,
specify output-statistic-specification= variable-name in the OUTPUT statement.

The following example creates a PROC MEANS report.

proc means data=cert.diabetes;

var age height weight; /*E*/
class sex; /B /
output out=work.diabetes by gender VA 3

mean=AvgAge AvgHeight AvgWeight
min=MinAge MinHeight MinWeight;

run;

proc print data=work.diabetes by gender noobs; /*m*/
titlel 'Diabetes Results by Gender';

run;

Specify the analysis variables. The VAR statement specifies that PROC MEANS
calculate the default statistics on the Age, Height, and Weight variables.

Specify subgroups for the analysis. The CLASS statement separates the analysis by
the values of Sex.

Specify the output data set options. The OUTPUT statement creates the
Work.Diabetes By Gender data set and writes the mean value to the new variables
AvgAge, AvgHeight, and AvgWeight. The statement also writes the min value to the
new variables, MinAge, MinHeight, and MinWeight.

Print the output data set Work.Diabetes By Gender. The NOOBS option suppresses
the observation numbers.

The FREQ Procedure 317

The following output is of Cert.Diabetes from the MEANS procedure.

Output 15.7 PROC MEANS Output of Cert.Diabetes

Sex | N Obs Variable | N Mean Std Dev Minimum | Maximum

F 11| Age 11 48.9090909 13.3075508 | 16.0000000 | 63.0000000
Height 11 63.909090% 21191765 | 61.0000000 | 68.0000000
Weight 11 1504545455 184464828 | 102.0000000 | 168.0000000

I 9| Age 9 44.0000000 12.3895117 15.0000000 54.0000000
Height 9 70.6666BGT 2.6457513 66.0000000 75.0000000
Weight 9 2042222222 ' 30.2893454 140.0000000 240.0000000

In addition to the variables that you specify, PROC MEANS adds the following
variables to the output set.

FREQ
contains the number of observations that a given output level represents.

_STAT
contains the names of the default statistics if you omit statistic keywords.

TYPE
contains information about the class variables. By default TYPE is a numeric
variable. If you specify CHARTYPE in the PROC statement, then TYPE isa
character variable. When you use more than 32 class variables, TYPE is
automatically a character variable.

The following output is of Work.Diabetes By Gender from the PRINT procedure.

Output 15.8 PROC PRINT Output of Work.Diabetes_By Gender

Diabetes Results By Gender

Sex _TYPE_ _FREQ_ | AvgAge | AvgHeight | AvgWeight | MinAge MinHeight MinWeight

0 20| 46.7000 66.9500 174.650 15 61 102
1 11 48.9091 63.9091 160.455 16 61 102
il 1 9| 44.0000 T0.6667 204.222 15 66 140

You can use the NOPRINT option in the PROC MEANS statement to suppress
the default report.

The FREQ Procedure

What Does the FREQ Procedure Do?

PROC FREQ is a procedure that is used give descriptive statistics about a SAS data set.
The procedure creates one-way, two-way, and n-way frequency tables. It also describes
data by reporting the distribution of variable values. The FREQ procedure creates
crosstabulation tables to summarize data for two or more categorical values by
displaying the number of observations for each combination of variable values.

318 Chapter 15 < Producing Descriptive Statistics

It is a best practice that you use the TABLES statement with PROC FREQ.

FREQ Procedure Syntax

The FREQ procedure can include many statements and options for controlling frequency
output.

Syntax, FREQ procedure:

PROC FREQ <options>;
RUN;

The following table lists the options that are available in the PROC FREQ statement.

Table 15.4 PROC FREQ Statement Options

Option Description

COMPRESS Begins the display of the next one-way
frequency table on the same page as the
preceding one-way table if there is enough
space to begin the table. By default, the next
one-way table begins on the current page only
if the entire table fits on that page.

Note: The COMPRESS option is not valid
with the PAGE option.

DATA=S4S-data-set Names the SAS-data-set to be analyzed by
PROC FREQ. If you omit the DATA= option,
the procedure uses the most recently created
SAS data set.

Option

FORMCHAR(,2,7)="formchar-string'

NLEVELS

NOPRINT

The FREQ Procedure 319

Description

Defines the characters to be used for
constructing the outlines and dividers for the
cells of crosstabulation table displays. The
formchar-string should be three characters
long. The characters are used to draw the
vertical separators (position 1), the horizontal
separators (position 2), and the vertical-
horizontal intersections (position 7). If you do
not specify the FORMCHAR= option, PROC
FREQ uses FORMCHAR(1,2,7)='-+' by
default.

Position 1
Default: |

The characters are used to draw vertical
separators.

Position 2
Default: —

The characters are used to draw horizontal
separators.

Position 7
Default: +

The characters are used to draw
intersections of vertical and horizontal
separators.

Specifying all blanks for formchar-string
produces crosstabulation tables with no
outlines or dividers—for example,
FORMCHAR(1,2,7)="". You can use any
character in formchar-string, including
hexadecimal characters. If you use
hexadecimal characters, you must put an x
after the closing quotation mark.

Displays the "Number of Variable Levels"
table, which provides the number of levels for
each variable named in the TABLES
statements.

Suppresses the display of all output. You can
use the NOPRINT option when you want to
create only an output data set.

320 Chapter 15 < Producing Descriptive Statistics

Option Description
<ORDER=DATA | FORMATTED | FREQ | Specifies the order of the variable levels in the
INTERNAL>= frequency and crosstabulation tables, which

you request in the TABLES statement.

The ORDER= option can take the following
values:

DATA
order of appearance in the input data set

FORMATTED
external formatted value, except for
numeric variables with no explicit format,
which are sorted by their unformatted
(internal) value

FREQ
descending frequency count; levels with
the most observations come first in the
order

INTERNAL
unformatted value

Note: The ORDER= option does not apply to
missing values, which are always ordered
first.

PAGE Displays only one table per page. Otherwise,
PROC FREQ displays multiple tables per
page as space permits.

Note: The PAGE option is not valid with the
COMPRESS option.

Example: Creating a One-Way Frequency Table (Default)

By default, the FREQ procedure creates a one-way table that contains the frequency,
percent, cumulative frequency, and cumulative percent of every value of every variable
in the input data set. In the following example, the FREQ procedure creates
crosstabulation tables for each of the variables.

proc freq data=cert.usa;
run;

Output 15.9 PROC FREQ Output of Cert.Usa

Cumulative | Cumulative
Dept Frequency Percent Frequency Percent
ADM10D 5 33.33 g 33.33
ADM20 4 26.67 9 60.00
ADM30D 2 13.33 11 7333
CAM10 3 20.00 14 93.33
CAM20 1 6.67 15 100.00

The FREQ Procedure 321

Cumulative | Cumulative

Percent
6.67
100.00

Cumulative
Percent

6.67
13.33
20.00
26.67
33.33
40.00
46.67
53.33
60.00
6667
73.33
60.00
86.67
93.33

100.00

Cumulative | Cumulative

WageCat | Frequency Percent Frequency
H 1 6.67 1
5 14 93.33 15
Cumulative
WageRate | Frequency | Percent | Frequency
13.65 1 6.67 1
1572.5 1 6.67 2
1813.3 1 6.67 3
2960 1 6.67 4
3392.5 1 6.67 5
3420 1 6.67 B
3819.2 1 6.67 7
4045.8 1 6.67 8
4480.5 1 6.67 g
4522.5 1 6.67 10
5260 1 6.67 11
5910.8 1 6.67 12
6855.9 1 6.67 13
6862.5 1 6.67 14
9073.8 1 6.67 15
Manager | Frequency Percent | Frequency
Coxe 5 3333 5
Delgado 5 3333 10
Overby 5 33.33 15

Percent
3333
66.67

100.00

322 Chapter 15 < Producing Descriptive Statistics

Cumulative Cumulative

JobType | Frequency Percent| Frequency Percent
1 1 6.67 1 6.67

3 1 6.67 2 13.33

5 1 6.67 3 20.00
10 1 6.67 4 26.67
20 2 13.33 6 40.00
50 2 13.33 8 53.33
240 4 26.67 12 80.00
420 2 13.33 14 93.33
440 1 6.67 15 100.00

Specifying Variables Using the TABLES Statement

By default, the FREQ procedure creates frequency tables for every variable in a data set.
But this is not always what you want. A variable that has continuous numeric values
(such as DateTime) can result in a lengthy and meaningless table. Likewise, a variable
that has a unique value for each observation (such as FullName) is unsuitable for PROC
FREQ processing. Frequency distributions work best with variables whose values are
categorical, and whose values are better summarized by counts rather than by averages.

To specify the variables to be processed by the FREQ procedure, include a TABLES
statement.

Syntax, TABLES statement:
TABLES variable(s);

variable(s) lists the variables to include.

Example: Creating a One-Way Table for One Variable

The TABLES statement tells SAS the specific frequency tables that you want to create.
The following example creates only one frequency table for the variable Sex as specified
in the TABLES statement. The other variables are suppressed.

proc freq data=cert.diabetes;
tables sex;
run;

Output 15.10 One-Way Table for the Variable Sex

Cumulative | Cumulative
Sex | Frequency | Percent Frequency Percent

F 11 55.00 1 55.00
M 9 45.00 20 100.00

The FREQ Procedure 323

Example: Determining the Report Layout

The order in which the variables appear in the TABLES statement determines the order
in which they are listed in the PROC FREQ report.

Consider the SAS data set Cert.Loans. The variables Rate and Months are categorical
variables, so they are the best choices for frequency tables.

proc freq data=cert.loans;
tables rate months;
run;

Output 15.11 Frequency Tables for Rate and Months

Cumulative | Cumulative

Rate Frequency Percent Frequency Percent
9.50% 2 2222 2 2222
9.75% 1 1111 3 3333

10.00% 2 2222 5 5556
10.50% 4 44 44 9 100.00

Cumulative | Cumulative

Months | Frequency Percent | Frequency Percent
12 1 M1 1 M1

24 1 1.1 2 2222

36 1 1.1 3 33.33

48 1 1M1 4 44 .44

60 2 2222 6 66.67

360 3 33.33 9 100.00

In addition to listing variables separately, you can use a numbered range of variables.

proc freq data=cert.survey;
tables iteml-item3;

run;

324 Chapter 15 < Producing Descriptive Statistics

Output 15.12 Frequency Tables for Item1-Item3

Cumulative Cumulative

Item1 Frequency | Percent | Frequency Percent
2 1 25.00 1 25.00
4 2 50.00 3 75.00
5 1 25.00 4 100.00

Cumulative | Cumulative

Item2 Frequency | Percent | Frequency Percent
1 1 25.00 1 25.00
3 2 50.00 3 75.00
5 1 25.00 4 100.00

Cumulative | Cumulative

Item3 | Frequency | Percent | Frequency Percent
4 3 75.00 3 75.00
5 1 25.00 4 100.00

To suppress the display of cumulative frequencies and cumulative percentages in
one-way frequency tables and in list output, add the NOCUM option to your
TABLES statement. Here is the syntax:

TABLES variable(s) | NOCUM;

Create Two-Way and N-Way Tables

The simplest crosstabulation is a two-way table. To create a two-way table or n-way
table, join the variables with an asterisk (*) in the TABLES statement in a PROC FREQ
step. For a two-way table, one table is created. For n-way tables, a series of tables are
produced with a table for each level of the variables.

Syntax, TABLES statement for crosstabulation:
TABLES variable-1 *variable-2 <* ... variable-n>;
Here are the options for two-way tables:

* variable-1 specifies table rows.

* variable-2 specifies table columns.

Tip: You can include up to 50 variables in a single multi-way table request.

When crosstabulations are specified, PROC FREQ produces tables with cells that
contain the following frequencies:

+ cell frequency
+ cell percentage of total frequency
» cell percentage of row frequency

» cell percentage of column frequency

The FREQ Procedure 325

Example: Creating Two-Way Tables

In the following example, you can create a two-way table to see the frequency of fasting
glucose levels for each value for the variable Sex.

proc freq data=cert.diabetes;
tables sex*fastgluc;
run;

Output 15.13 Two-Way Table Output Cert.Diabetes (partial output)

Frequency Table of Sex by FastGluc
Percent
Row Pct FastGluc
Col Pct Sex 152 155 156 166 177 193 447 486 492 568 Total
F 1 1 0 1 1 1 0 0 0 1 11
5.00 5.00 0.00 5.00 5.00 5.00 0.00 0.00 0.00 500 5500
909 909 0.00 9.09 9.09 909 . . 0.00 0.00 0.00 9.09
100.00 100.00 0.00 100.00 100.00 100.00 more 0.00 0.00 0.00 100.00
M 0 0 1 0 0 0 variables 1 1 1 0 9
0.00 0.00 5.00 0.00 0.00 000 . . . 5.00 5.00 5.00 0.00 4500
0.00 000 MMM 0.00 0.00 0.00 M1 1111 111 0.00
0.00 0.00 100.00 0.00 0.00 0.00 100.00 100.00 100.00 0.00
Total 1 1 1 1 1 1 1 1 1 1 20
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 100.00

Note that the first variable, Sex, forms the table rows, and the second variable, FastGluc,
forms the columns. Reversing the order of the variables in the TABLES statement would
reverse their positions in the table. Note also that the statistics are listed in the legend
box.

Examples: Creating N-Way Tables

The following example creates a series of two-way tables with a table for each level of
the other variables. The variables WhiteCells and AG are the rows and columns that are
crosstabulated by the variable Survived.

proc format;
value Survive 0='Dead'
1='Alive';
run;
proc freq data=cert.leukemia;
tables Survived*AG*WhiteCells;
format Survived survive.;

run;

326 Chapter 15 < Producing Descriptive Statistics

Output 15.14 N-Way Tables (partial output)

Frequency Table 1 of AG by WhiteCells
Percent . S
Row Pct ‘Controlllng for Sur\n\red—[}ead‘
Col Pct WhiteCells
750 1500 2300 2600 3000 31000 | 32000 35000 52000 79000 1000000 Total
Absent 0 1 0 0 0 1 0 0 0 0 1 12
0.00 556 0.00 0.00 0.00 556 0.00 0.00 0.00 000 556 B6.67
0.00 633 000 000 000 . . . 833 000 0.00 0.00 0.00 8.33
100.00 . . . more 100.00 . 0.00 0.00 . 33.33
Present| 0 0 o o o variables 0 0 1 1 0 2 B
0.00 0.00 000 000 000 , ., . 0.00 0.00 5.56 556 0.00 1111 33.33
0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.67 16.67 0.00 33.33
0.00 . . . 0.00 . 100.00 | 100.00 . 66.67
Total 0 1 0 0 0 1 0 1 1 0 3 18
0.00 566 0.00 000 0.00 556 0.00 5.56 556 0.00 16.67 | 100.00
Frequency Table 2 of AG by WhiteCells
Percent = —
Row Pct Controlling for Sur\rwed—AIwe|
Col Pct WhiteCells
750 1500 | 2300 2600 3000 31000 | 32000 35000 52000 79000 1000000 Total
Absent 0 0 0 0 1 0 0 0 0 1 1 4
0.00 000 000 000 667 0.00 000 000 000 667 6.67 26.67
0.00 000 000 000 2500 . . . 0.00 000 000 000 2500 25.00
0.00 -0 0,00 000 100.00 pore . 0.00 . . 100.00 50.00
Present 1 0 1 1 0 variables 0 1 0 0 0 1 1
6.67 000 667 667 000 . 0.00 667 0.00 000 0.00 6.67 73.33
9.09 000 909 909 0.00 0.00 909 0.00 000 0.00 9.09
100.00 .1 100.00 100.00 0.00 . 1100.00 . . 0.00 50.00
Total 1 0 1 1 1 0 1 0 0 1 2 15
6.67 000 667 667 667 0.00 667 000 000 667 13.33 100.00

Creating Tables Using the LIST Option

When three or more variables are specified, the multiple levels of n-way tables can
produce considerable output. Such bulky, often complex crosstabulations are often easier
to read when they are arranged as a continuous list. Although this arrangement
eliminates row and column frequencies and percentages, the results are compact and
clear.

The LIST option is not available when you also specify statistical options.

To generate list output for crosstabulations, add a slash (/) and the LIST option to the
TABLES statement in your PROC FREQ step.

Syntax, TABLES statement:

TABLES variable-1 *variable-2 <* ... variable-n> | LIST;
Here are the options for two-way tables:

* variable-1 specifies table rows.

* variable-2 specifies table columns.

Tip: You can include up to 50 variables in a single multi-way table request.

The FREQ Procedure 327

Example: Using the LIST Option

As in the previous example, the following example creates a series of two-way tables
with a table for each level of the other variables. The variables WhiteCells and AG are
the rows and columns that are crosstabulated by the variable Survived. Use the LIST
option in the TABLES statement to make the PROC FREQ output easier to read. The
output is generated in a continuous list.

proc format;
value survive 0='Dead'
1="Alive"';
run;
proc freq data=cert.leukemia;
tables Survived*AG*WhiteCells / list;
format Survived survive.;

run;

Output 15.15 PROC FREQ Output in List Format (partial output)

Cumulative | Cumulative

Survived AG WhiteCells | Frequency | Percent | Frequency Percent
Dead | Absent 1500 1 3.03 1 3.03
Dead | Absent 4000 1 3.03 2 6.06
Dead | Absent 3300 1 3.03 3 9.09
Dead | Absent 9000 1 3.03 4 12.12
Dead | Absent 10000 1 3.03 5 15.15

more observatrions.

Alive | Present 9400 1 3.03 29 87.88
Alive | Present 10000 1 3.03 30 909
Alive | Present 10500 1 3.03 N 93.94
Alive | Present 32000 1 3.03 32 96.97
Alive | Present 1000000 1 3.03 33 100.00

Example: Using the CROSSLIST Option

The CROSSLIST option displays crosstabulation tables in ODS column format instead
of the default crosstabulation cell format. In a CROSSLIST table display, the rows
correspond to the crosstabulation table cells, and the columns correspond to descriptive
statistics such as Frequency and Percent. The CROSSLIST table displays the same
information as the default crosstabulation table, but uses an ODS column format instead
of the table cell format

proc format;
value survive 0='Dead'
1="Alive"';
run;
proc freq data=cert.leukemia;
tables Survived*AG*whitecells / crosslist;
format Survived survive.;

run;

328 Chapter 15 < Producing Descriptive Statistics
Output 15.16 Table Created by the CROSSLIST Option Survived=Dead (partial output)
Table of AG by WhiteCells

Controlling for Survived=Dead

Row Column

AG WhiteCells = Frequency | Percent | Percent | Percent
Absent 750 0 0.00 0.00
1500 1 5.56 8.33 100.00
2300 0 0.00 0.00
2600 0 0.00 0.00
3000 0 0.00 0.00

more observations.

Total 12 66.67 10000
Present 750 0 0.00 0.00
1500 0 0.00 0.00 0.00
2300 0 0.00 0.00
2600 0 0.00 0.00
3000 0 0.00 0.00
more observations.
Total 6 3333 10000
Total 750 0 0.00
1500 1 556 100.00
2300 0 0.00
2600 0 0.00
3000 0 0.00
more observations.
35000 1 5.56 100.00
52000 1 5.56 100.00
79000 0 0.00
1000000 3 16.67 100.00

Total 16 100.00

The FREQ Procedure 329
Output 15.17 Table Created by the CROSSLIST Option Survived=Alive (partial output)
Table of AG by WhiteCells

Controlling for Survived=Alive

Row Column

AG WhiteCells Frequency | Percent Percent | Percent

Absent 730 0 0.00 0.00 0.00
1500 0 0.00 0.00
2300 0 0.00 0.00 0.00
2600 0 0.00 0.00 0.00
3000 1 6.67 25.00 | 100.00

more observations.

Total 4 26.67 | 100.00

Present 750 1 6.67 909 10000
1500 0 0.00 0.00
2300 1 6.67 9.09 10000
2600 1 6.67 9.09 100.00
3000 0 0.00 0.00 0.00

more observarions.

Total 11 7333 100.00

Total 730 1 6.67 100.00
1500 0 0.00
2300 1 6.67 100.00
2600 1 6.67 100.00
3000 1 6.67 100.00

more observations.

35000 0 0.00

52000 0 0.00

79000 1 6.67 100.00
1000000 2 13.33 100.00

Total 15 100.00

Suppressing Table Information

Another way to control the format of crosstabulations is to limit the output of the FREQ
procedure to a few specific statistics. Remember that when crosstabulations are run,
PROC FREQ produces tables with cells that contain these frequencies:

+ cell frequency

+ cell percentage of total frequency

330 Chapter15 -

Producing Descriptive Statistics

cell percentage of row frequency

cell percentage of column frequency

You can use options to suppress any of these statistics. To control the depth of
crosstabulation results, add any combination of the following options to the TABLES
statement:

NOFREQ suppresses cell frequencies

NOPERCENT suppresses cell percentages

NOROW suppresses row percentages

NOCOL suppresses column percentages

Example: Suppressing Percentages

You can suppress frequency counts, rows, and column percentages by using the
NOFREQ, NOROW, and NOCOL options in the TABLES statement.

Output 15.18 Suppressing Percentage Information (partial output)

Percent
AG 750
Absent | 0.00
Present 0.00
Total 0
0.00
Percent
AG 750
Absent | 0.00

Present 6.67

Total 1
6.67

proc format;

value survive

run;

0="'Dead'
1="'Alive';

proc freq data=cert.leukemia;

tables Survived*AG*whitecells / nofreq norow nocol;

format Survived survive.;

run;

1500
5.56
0.00

1
5.56

1500
0.00
0.00

0
0.00

2300
0.00
0.00

0
0.00

Controlling for Survived=Alive

2300
0.00
6.67

1
6.67

Table 1 of AG by WhiteCells

Controlling for Survived=Dead

2600
0.00
0.00

0
0.00

Table 2 of AG by WhiteCells

2600
0.00
6.67

1
6.67

WhiteCells
3000

0.00
more

variables

0.00

0.00

WhiteCells
3000

66T
0.00 maore

1 variables

6.67

31000 32000

5.56
0.00

1
5.56

0.00
0.00

0
0.00

31000 | 32000

0.00
0.00

0
0.00

0.00
6.67

1
6.67

35000
0.00
5.56

1
5.56

35000
0.00
0.00

0
0.00

52000
0.00
5.56

1
5.56

52000
0.00
0.00

0
0.00

79000 1000000 | Total

0.00
0.00

0
0.00

79000
6.67
0.00

1
6.67

556 | BB.67
1111 33.33

3 18
16.67 | 100.00

1000000 | Total
6.67 26.67
6.67 73.33

2 15
13.33 100.00

Chapter Quiz 331

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in
the appendix.

1. The default statistics produced by the MEANS procedure are n-count, mean,
minimum, maximum, and which one of the following statistics:

a. median

b. range

c. standard deviation

d. standard error of the mean

2. Which statement limits a PROC MEANS analysis to the variables Boarded, Transfer,
and Deplane?

a. by boarded transfer deplane;
b. class boarded transfer deplane;
C. output boarded transfer deplane;
d. var boarded transfer deplane;

3. The data set Cert.Health includes the following numeric variables. Which is a poor
candidate for PROC MEANS analysis?

a. IDnum
b. Age

c. Height
d. Weight

4. Which of the following statements is true regarding BY-group processing?
a. BY variables must be either indexed or sorted.
b. Summary statistics are computed for BY variables.

c. BY-group processing is preferred when you are categorizing data that contains
few variables.

d. BY-group processing overwrites your data set with the newly grouped
observations.

5. Which group processing statement produced the PROC MEANS output shown
below?

332 Chapter 15 -

Survive | Sex N Obs Variable

DIED 1 4 Arterial
Heart
Cardiac

Urinary

Arterial
Heart
Cardiac
Urinary

SURV 1 5 Arterial
Heart
Cardiac

Urinary

Arterial
Heart
Cardiac
Urinary

N
4
4
4
4
4]
4]
6
6
3
]
]
]
]
]
3
3

Mean

92.5000000
111.0000000
176.7500000

96.0000000

94.1666667
103.6666667
318.3333333
100.3333333

77.2000000
109.0000000
298.0000000
100.8000000

78.8000000
100.0000000
330.2000000
111.2000000

a. class sex survive;

b. class survive sex;

C. by sex survive;

d. by survive sex;

Producing Descriptive Statistics

The MEANS Procedure

Std Dev

104721854
53.4103610
75.2257713
186.1343601

27.3160514
16.6573307
102.6034437
155.7134120

12.1942609
31.9667347
139.8499196
50.1722527

5.8337398
13.3790882
86.9639066

152.4096454

Minimum

83.0000000
54.0000000
95.0000000

0

72.0000000
81.0000000
156.0000000
0

51.0000000
77.0000000
56.0000000
44.0000000

72.0000000
84.0000000
256.0000000
12.0000000

Maximum

103.0000000
183.0000000
260.0000000
377.0000000

145.0000000
130.0000000
4240000000
405.0000000

86.0000000
149.0000000
410.0000000
200.0000000

87.0000000
111.0000000
471.0000000
377.0000000

6. Which program can be used to create the following output?

Sex N Obs Variable N Mean Std Dev Minimum

F 11 Age 11 48.9090909 13.3075508 16.0000000
Height 11 639090909 21191765 61.0000000
Weight |11 1504545455 18.4464828 102.0000000 1

M 9 Age 9| 440000000 12.3895117 15.0000000
Height 0| 706666667 26457513 66.0000000
Weight 9 204.2222222 30.2893454 140.0000000

a. proc means data=cert.diabetes;

class sex;

var age height weight;

output out=work.sum gender

mean=AvgAge AvgHeight AvgWeight;

run;

b. proc freq data=cert.diabetes;

tables height weight sex;

run;

C. proc means data=cert.diabetes noprint;

var age height weight;

class sex;

output out=work.sum gender

mean=AvgAge AvgHeight AvgWeight;

run;

Maximum

53.0000000
68.0000000
68.0000000

54.0000000
75.0000000

240.0000000

d.

Chapter Quiz 333

Both a and b.

7. By default, PROC FREQ creates a table of frequencies and percentages for which
data set variables?

a.
b.
c.

d.

character variables
numeric variables
both character and numeric variables

none: variables must always be specified

8. Frequency distributions work best with variables that contain which types of values?

a.
b.
c.

d.

continuous values
numeric values
categorical values

unique values

9. Which PROC FREQ step produced this two-way table?

The FREQ Procedure
Frequency Table of Weight by Height
Percent Height
Row Pct
Col Pct Weight <5'5" 5'5-10" | > 510" Total
<140 2 0 0 2
10.00 0.00 000 1000
100.00 0.00 0.00
2857 0.00 0.00
140-180 5 5 0 10
2500 2500 000 5000
5000 5000 0.00
7143 6250 0.00
> 180 0 3 5 8
000 1500 2500 4000
0.00 3750 6250
0.00 3750 100.00
Total 7 8 5 20
3500 4000 2500 100.00
proc freq data=cert.diabetes;

tables height weight;
format height htfmt. weight wtfmt.;

run;

proc freq data=cert.diabetes;
tables weight height;
format weight wtfmt. height htfmt.;

run;

proc freq data=cert.diabetes;
tables height*weight;
format height htfmt. weight wtfmt.;

run;

334 Chapter 15 < Producing Descriptive Statistics

d. proc freq data=cert.diabetes;
tables weight*height;
format weight wtfmt. height htfmt.;
run;

10. Which PROC FREQ step produced this table?

The FREQ Procedure

Percent Table of Sex by Weight
Weight
Sex <140 140-180 =180
F 10.00, 4500 0.00
M 0.00 500 40.00

Total 2 10 8
10.00 50,00 40.00

a. proc freq data=cert.diabetes;
tables sex weight / list;
format weight wtfmt.;

run;

b. proc freq data=cert.diabetes;
tables sex*weight / nocol;
format weight wtfmt.;

run;

c. proc freq data=cert.diabetes;
tables sex weight / norow nocol;
format weight wtfmt.;

run;

d. proc freq data=cert.diabetes;
tables sex*weight / nofreq norow noco
format weight wtfmt.;
run;

Total
55.00
45.00

20
100.00

1;

Chapter 16

335

Creating Output

The Output Delivery System (ODS) 336
Overview of ODS 336
Opening and Closing ODS Destinationsoiuereinrnen ... 336
Using Statements to Open and Close ODS Destinations 337

Creating HTML Output withODS 338
The ODS HTML Statementttt e 338
Example: Creating Output with PROCPRINT 339
Creating HTML Output with a Tableof Contents 340
Using Options to Specify Linksand Paths 343
Changing the Appearance of HTML Output................. 346

Creating PDF Output with ODS 347
The ODS PDF Statementttt e et 347
The ODS Printer Family of Statements 348
Opening and Closing the PDF Destinationovvuin.... 348
Working with the Tableof Contents, 348
Example: Creating PDF Output Using the FILE=Option................... 349
Example: Creating a Printable Table of Contents 350
Changing the Appearance of PDF OQutput 351

Creating RTF Output withODS 352
The ODS RTF Statement 352
Opening and Closing the RTF Destinationcoouou.... 353
Understanding How RTF Formats Outputccoiunn.. 353
ODS RTF and Graphics e 353
Example: Using the STYLE= Option (FestivalPrinter Style) 354

Creating EXCEL Output with ODS 354
The ODS EXCEL Statementttt i, 354
Details about the Excel ODS Destinationc.iuiuinean.... 355
Example: Customizing Your Excel Output............... 355

The EXPORT Procedure i 356
The Basics 0f PROC EXPORT i 356
PROC EXPORT Syntaxovvitte et ettt ee e 357
Example: Exporting a Subset of Observationtoa CSV File................. 358

Chapter QUIZ e e e 359

336 Chapter 16 -« Creating Output

The Output Delivery System (ODS)

Overview of ODS

The SAS Output Delivery System (ODS) gives you flexibility in generating, storing, and
reproducing SAS procedure and DATA step output along with a wide range of
formatting options.

ODS enables you to create reports for popular software applications. For example, use
the ODS PDF statement to create PDF files for viewing with Adobe Acrobat or for
printing. With ODS, you easily create output in a variety of formats, including Microsoft
Excel and Power Point, HTML, PDF, and RTF.

Opening and Closing ODS Destinations

You use ODS statements to specify destinations for your output. Each destination creates
a specific type of formatted output. The following table lists some of the ODS
destinations that are currently supported.

Destination Result

Document a hierarchy of output objects that enables you to render
multiple ODS output without rerunning procedures.

EXCEL writes Excel spreadsheet files that are compatible with
Microsoft Office 2010 and later versions.

HTML output that is formatted in Hypertext Markup Language
(HTML). You do not have to specify the ODS HTML
statement to produce basic HTML output.

Markup Languages Family output that is formatted using markup languages such as
Extensible Markup Language (XML).

Output SAS data sets.

Printer Family (PDF, and so output that is formatted for a high-resolution printer such as
on) PostScript (PS), Portable Document Format (PDF), or Printer
Control Language (PCL) files.

RTF Rich Text Format output.

This book covers the EXCEL, HTML, PDF, and RTF destinations.

Note: SAS Studio has user interface controls to create and save HTML, PDF, and RTF
ODS output.

The Output Delivery System (ODS) 337

Using Statements to Open and Close ODS Destinations

Syntax

For each type of formatted output that you want to create, you use an ODS statement to
open the destination. At the end of your program, you use another ODS statement to
close the destination so that you can access your output.

Syntax, ODS statement to open and close destinations:

ODS open-destination;
ODS close-destination CLOSE;

* open-destination is a keyword, and any required options for the type of output that you want
to create. Here are examples:

* HTML FILE="htmli-file-pathname’
« LISTING

* close-destination is a keyword for the type of output.

You can issue ODS statements in any order, depending on whether you need to open or
close the destination. Most ODS destinations are closed by default. You open them at the
beginning of your program and close them at the end. The exception is the HTML
destination, which is open by default.

Figure 16.1 Default ODS Destination

Default Setting Destination Qutput

—e— I — @
Qutput Object

closed 4{ [Listing

Closing Multiple ODS Destinations at Once
You can produce output in multiple formats at once by opening each ODS destination at
the beginning of the program.

il
(]

100000

0oooo

When you have more than one open ODS destination, you can use the keyword ALL
in the ODS CLOSE statement to close all open destinations at once.

Closing the HTML Destination

Because open destinations use system resources, it is a good idea to close the HTML
destination at the beginning of your program if you do not want to produce HTML
output. Here is an example:

338 Chapter 16 -« Creating Output

ods html close;

The HTML destination remains closed until you end your current SAS session or until
you re-open the destination. It is good programming practice to reset the ODS
destination to HTML output (the default setting) at the end of your programs.

ods html path="%gsysfunc (pathname (work))";

Creating HTML Output with ODS

The ODS HTML Statement

To create simple HTML output files in the default location using the default file-naming
conventions, you do not have to specify the ODS HTML statement. However, to create
HTML output with options specified, you open the HTML destination using the ODS
HTML statement.

Note: You do not have to specify the ODS HTML statement to produce basic HTML
output unless the HTML destination is closed.

Syntax, ODS HTML statement:

ODS HTML BODY = file-specification;
ODS HTML CLOSE ;

* file-specification identifies the file that contains the HTML output. The specification can be
any of the following:

a quoted string that contains the HTML filename (use only the filename to write the file
to your current working directory, such as C: \Users\Studentl\Documents
and Settings\username\My Documents\My SAS Files). Example:
ODS HTML BODY= “myreport.html”;

a quoted string that contains the complete directory path and HTML filename (include
the complete pathname if you want to save the HTML file to a specific location other
than your working directory). Example: ODS HTML BODY= “c:\Users

\Student I\reportdir\myreport. html”;

a fileref (unquoted file shortcut) that has been assigned to an HTML file using the
FILENAME statement. Example: FILENAME MYHTML “c:\reportdir\myreport.html”;
ODS HTML BODY=MYHTML;

a SAS catalog entry in the form entry-name.html. Note that the catalog name is specified
in the PATH= option and the entry-name.html value for the BODY= option is unquoted.
Example: ODS HTML PATH=work.mycat BODY=myentry
BODY=bodyfile.html;

FILE= can also be used to specify the file that contains the HTML output. FILE=

is an alias for BODY=.

You can also use the PATH= option to explicitly specify a directory path for your

file.

Creating HTML Output with ODS 339

Example: Creating Output with PROC PRINT

The following program creates PROC PRINT output in an HTML file. The ODS HTML
BODY= option specifies the file C: \Users\Studentl\cert\admit.html in the
Windows operating environment as the file that contains the PROC PRINT results.

ods html body='C:\Users\Studentl\cert\admit.html';
proc print data=cert.admit label;
var sex age height weight actlevel;
label actlevel='Activity Level';
run;
ods html close;
ods html path="%gsysfunc (pathname (work))";

The HTML file admit.html contains the results of all procedure steps between the ODS
HTML statement and ODS HTML CLOSE statement.

340 Chapter 16 -« Creating Output

Output 16.1 HTML Output

Obs Sex Age Height Weight Activity

Level
1M 27 T2 168 HIGH
2 F 34 66 152 HIGH
3 F 31 61 123 LOW
4 F 43 63 137 MOD
5§ M 51 71 158 LOW
6 M 29 76 193 HIGH
7 F 32 67 151 MOD
8 M 35 70 173 MOD
9 M 34 73 154 LOW

10 | F 49 64 172 LOW
1| F 44 66 140 HIGH
12 | F 28 62 118 LOW
13 | M 30 69 147 MOD
14 | F 40 69 163 HIGH
15 | M 47 T2 173 MOD
16 | M B0 71 191 LOW
17 | F 43 65 123 MOD
18 M 25 75 188 HIGH
19 | F 22 63 139 LOW
20 F 41 67 141 HIGH
21 | M 54 71 183 MOD

Creating HTML Output with a Table of Contents

Overview

The BODY= specification is one way to create an HTML file containing procedure
output. To create an HTML file that has a table of contents with links to the output of
each specific procedure, specify additional files in the ODS HTML statement.

Creating HTML Output with ODS 341

Syntax, ODS HTML statement to create a linked table of contents:
ODS HTML

BODY=body-file-specification
CONTENTS=contents-file-specification
FRAME=frame-file-specification;

ODS HTML CLOSE;

body-file-specification is the name of an HTML file that contains the procedure output.

contents-file-specification is the name of an HTML file that contains a table of contents with
links to the procedure output.

frame-file-specification is the name of an HTML file that integrates the table of contents and
the body file. If you specify FRAME=, you must also specify CONTENTS=.

To direct the HTML output to a specific storage location, specify the complete
pathname of the HTML file in the file-specification.

Here is an example that does the following:

Frame —=

The BODY= specification creates the file data.html in C: \Users
\Studentl\cert\ directory. The body file contains the results of the two
procedures.

The CONTENTS= specification creates the file toc.html in the C: \Users
\Studentl\cert)\ directory. The table of contents file has links to each procedure
output in the body file.

The FRAME= specification creates the file frame.html in the C: \Users

\Studentl\cert\ directory. The frame file integrates the table of contents and the
body file.

Tahle of Body File
Caontents

ods html body='C:\Users\Studentl\cert\data.html'
contents='C:\Users\Studentl\cert\toc.html'
frame='C:\Users\Studentl\cert\frame.html';
proc print data=cert.admit (obs=10) label;
var id sex age height weight actlevel;
label actlevel='Activity Level';
run;
proc print data=cert.stress2 (obs=10);
var id resthr maxhr rechr;
run;

ods html close;

342 Chapter 16

Creating Output

ods html path="%gsysfunc (pathname (work))";

Viewing Frame Files

The Results window does not display links to frame files. In the Windows environment,
only the body file automatically appears in the internal browser or your preferred web
browser.

To view the frame file that integrates the body file and the table of contents, select File
= Open from within the internal browser or your preferred web browser. Then open the
frame file that you specified using FRAME=. In the example above, this file is
frame.html, which is stored in the Cert directory in the Windows environment.

The frame file, frame.html, is shown below.

Figure 16.2 Frame File, frame.html (partial output)

= | I .
£ | &\Wsers\Student1 \cerfframe.html O ~ -3 \,—_‘|.=-? SAS Qutput Frarne

Table of Contents The SAS System
1. The Print Procedure

-Data Set CLINIC ADMIT Obs ID Sex Age Height Weight Activity

2. The Print Procedure Level

-Data Set CLINIC.STRESS?2 1| 2458 M 27 72 168 HIGH

2 2462 F 34 66 152 HIGH

3 2501 F 31 B1 123 | LOW

4 | 2523 F 43 63 137 | MOD

§ 2538 M 51 Il 168 LOW

6 2544 M 28 76 193 HIGH

7T 2552 F 32 67 151 MOD

8 2555 M 35 70 173 MOD

9 2563 M 34 73 154 LOW

10 2568 F 49 64 172 | LOW

T

\ CONTENTS=toc_html BODY =data.html

FRAME=frame.html

Using the Table of Contents

The table of contents that was created by the CONTENTS= option contains a numbered
heading for each procedure that creates output. Below each heading is a link to the
output for that procedure.

Creating HTML Output with ODS 343

On some browsers, you can select a heading to contract or expand the table of
contents.

Figure 16.3 Table of Contents

2 | C:\Users\Student 1\certiframe. hitml j:- - G

Table of Contents
1. The Print Procedure
link to BODY file # -Data Set CLINIC.ADMIT
procedure —— 2. The Print Procedure
heading -Data Set CLINIC.STRESS2

Using Options to Specify Links and Paths

Overview

When ODS generates HTML files for the body, contents, and frame, it also generates
links between the files using HTML filenames that you specify in the ODS HTML
statement. If you specify complete pathnames, ODS uses those pathnames in the links
that it generates.

The following ODS statement creates a frame file that links to C: \Users
\Studentl\cert\toc.html and C:\Users\Studentl\cert\data.html, and
a contents file that has links to C: \Users\Studentl\cert\data.html.

ods html body='C:\Users\Studentl\cert\data.html'
contents='C:\Users\Studentl\cert\toc.html'
frame='C:\Users\Studentl\cert\frame.html';

A portion of the source code for the HTML file frame.html is shown below. Notice that
the links have the complete pathnames from the file specifications for the contents and
body files.

Example Code 1 Source Code for the HTML File Frame.htm!

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC="C:\Users\Studentl\cert\toc.html"
NAME="contents" SCROLLING=auto>

<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC="C:\Users\Studentl\cert\data.html"
NAME="body" SCROLLING=auto>

These links work when you are viewing the HTML files locally. If you want to place
these files on a web server so that others can access them, then the link needs to include
either the complete URL for an absolute link or the HTML filename for a relative link.

The URL= Suboption

To provide a URL that ODS uses in all the links that it creates to the file, specify the
URL= suboption in the BODY= or CONTENTS= file specification. You can use the
URL= suboption in any ODS file specification except FRAME= (because no ODS file
references the frame file).

344 Chapter 16 - Creating Output

Syntax, URL= suboption in a file specification:
(URL= “Uniform-Resource-Locator”;

* Uniform-Resource-Locator is the name of an HTML file or the full URL of an HTML file.
ODS uses this URL instead of the file specification in all the links and references that it
creates that point to the file.

The URL= suboption is useful for building HTML files that might be moved
from one location to another. If the links from the contents and page files are
constructed with a simple URL (one name), they work as long as the contents, page,
and body files are all in the same location.

Example: Relative URLs

In this ODS HTML statement, the URL= suboption specifies only the HTML filename.
This is the most common style of linking between files because maintenance is easier.
The files can be moved as long as they all remain in the same directory or storage
location.

ods html body='C:\Users\Studentl\cert\data.html' (url='data.html')
contents='C:\Users\Studentl\cert\toc.html' (url='toc.html')
frame='C:\Users\Studentl\cert\frame.html';

The source code for frame.html has only the HTML filename as specified in the URL=
suboptions for the body and contents files.

Example Code 2 Source Code for the HTML File Frame.htm|

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC="toc.html"
NAME="contents" SCROLLING=auto>

<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC="data.html"
NAME="body" SCROLLING=auto>

Example: Absolute URLs
Alternatively, in this ODS HTML statement, the URL= suboptions specify complete
URLs using HTTP. These files can be stored in the same or different locations.

ods html body='C:\Users\Studentl\cert\data.html'
(url="http://mysite.com/cert/data.html')
contents="'C:\Users\Studentl\cert\toc.html"'
(url="http://mysite.com/cert/toc.html')
frame='C:\Users\Studentl\cert\frame.html';

As you would expect, the source code for Frame.html has the entire HTTP addresses that
you specified in the URL= suboptions for the body and contents file.

Example Code 3 Source Code for the HTML File Frame.htm|

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC="http://mysite.com/cert/data.html"
NAME="contents" SCROLLING=auto>

<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC="http://mysite.com/cert/toc.html"
NAME="body" SCROLLING=auto>

When you use the URL= suboption to specify a complete URL, you might need
to move your files to that location before you can view them.

Creating HTML Output with ODS 345

The PATH= Option
Use the PATH= option to specify the location of the files.

Syntax, PATH= option with the URL= suboption:
PATH=file-location-specification<(URL=NONE | “Uniform-Resource-Locator”>

* file-location-specification identifies the location where you want HTML files to be saved. It
can be one of the following:

+ the complete pathname to an aggregate storage location, such as a directory or partitioned
data set

+ afileref (file shortcut) that has been assigned to a storage location
* a SAS catalog (libname.catalog)

* Uniform-Resource-Locator provides a URL for links in the HTML files that ODS generates.
If you specify the keyword NONE, no information from the PATH= option appears in the
links or references.

If you do not use the URL= suboption, information from the PATH= option is added to links
and references in the files that are created.

Note: In the z/OS operating environment, if you store your HTML files as members in a
partitioned data set, the PATH=value must be a PDSE, not a PDS. You can allocate a
PDSE within SAS as shown in this example:

filename pdsehtml '.example.htm!'
dsntype=1library dsorg=po
disp=(new, catlg, delete);

You should specify valid member names for the HTML files (without extensions).

Example: PATH= Option with URL=NONE

In the following program, the PATH= option directs the files data.html, toc.html, and
frame.html to the C: \Users\Studentl\cert) directory in the Windows operating
environment. The links from the frame file to the body and contents files contain only
the HTML filenames data.html and toc.html.

ods html path='C:\Users\Studentl\cert\' (url=none)
body='data.html'
contents="'toc.html'
frame="'frame.html';

proc print data=cert.admit;

run;

proc print data=cert.stress2;

run;

ods html close;

ods html path="%gsysfunc (pathname (work))";

This program generates the same files and links as the previous example in which you
learned how to use the URL= suboption with the BODY= and CONTENTS= file
specifications. However, it is simpler to specify the path once in the PATH= option and
to specify URL=NONE.

If you plan to move your HTML files, you should specify URL=NONE with the
PATH= option to prevent information from the PATH= option from creating URLs
that are invalid or incorrect.

346 Chapter 16

Creating Output

Example: PATH= Option without the URL= Suboption

In the following program, the PATH= option directs the files data.html, toc.html, and
frame.html to the C: \Users\Studentl\cert\ directory in the Windows operating
environment. The links from the frame file to the body and contents files contain the
complete pathnames, C: \Users\Studentl\cert\data.html and C:\Users
\Studentl\cert\toc.html:

ods html path='C:\Users\Studentl\cert\'
body="'data.html'
contents='toc.html'
frame='frame.html';

proc print data=cert.admit;

run;

proc print data=cert.stress2;

run;

ods html close;

ods html path="%gsysfunc (pathname (work))";

Example: PATH= Option with a Specified URL

In the following program, the PATH= option directs the files data.html, toc.html, and
frame.html to the C: \Users\Studentl\cert) directory in the Windows operating
environment. The links from the frame file to the body and contents files contain the
specified URLs, http://mysite.com/cert/data.html, and http://mysite.com/cert/toc.html:

ods html path='C:\Users\Studentl\cert\ (url='http://mysite.com/cert/"'
body="'data.html'
contents="'toc.html'
frame='frame.html';

proc print data=cert.admit;

run;

proc print data=cert.stress2;

run;

ods html close;

ods html path="%gsysfunc (pathname (work))";

Changing the Appearance of HTML Output

Style Templates

You can change the appearance of your HTML output by specifying a style in the
STYLE= option in the ODS HTML statement. Here are some of the style templates that
are currently available:

e Banker

* BarrettsBlue

e Default
e HTMLblue
e Minimal

» Statistical
To see a list of styles that SAS supplies, submit the following code:

proc template;

Creating PDF Output with ODS 347

list styles/store=sashelp.tmplmst;

run;

Syntax, STYLE= option:
STYLE=style-name;

» style-name is the name of a valid SAS or user-defined style template.

Do not enclose style-name in quotation marks.

Example: The STYLE= Option (Banker Style)
In the following program, the STYLE= option applies the Banker style to the output for
the PROC PRINT step:

ods html body='C:\Users\Studentl\cert\data.html'
style=banker;

proc print data=cert.admit label;
var sex age height weight actlevel;

run;

ods html close;

ods html path="%gsysfunc (pathname (work))";

Figure 16.4 PROC PRINT Output with Banker Style Applied (partial output)

Obs||Sex|Age|Height| Weight| ActLevel
1M 27 72 168 || HIGH
2||F 34 66 152 | HIGH
3[F 31 61 123|LOW
4|F 43 63 137|MOD
5(M 51 71 158|LOW
6lM 29 76 193 | HIGH

Note: Your site might have its own, customized, style templates.

Creating PDF Output with ODS

The ODS PDF Statement

To open, manage, or close the PDF destinations that produce PDF output, use the ODS
PDF statement:

348 Chapter 16 -« Creating Output

Syntax, ODS PDF statement:
ODS PDF <(<ID=>identifier)> <action>;

* (<ID=>identifier) enables you to open multiple instances of the same destination at the same
time. Each instance can have different options.

* identifier can be numeric or can be a series of characters that begin with a letter or an
underscore. Subsequent characters can include letters, underscores, and numerals.

* action can be one of the following:
* CLOSE action closes the destination and any files that are associated with it.

* EXCLUDE exclusions| ALL | NONE action excludes one or more output objects from
the destination.

Note: The default is NONE. A destination must be open for this action to take effect.

* SELECT selections| ALL | NONE action selects output objects for the specified
destination.

Note: The default is ALL. A destination must be open for this action to take effect.

* SHOW action writes the current selection list or exclusion list for the destination to the
SAS log.

Note: If the selection or exclusion list is the default list (SELECT ALL), then SHOW also
writes the entire selection or exclusion list. The destination must be open for this action
to take effect.

In SAS Studio, the PDF destination is open by default. In SAS Studio, you must use the
ODS PDF statement with at least one action or option. When you do this, it opens
another instance of a PDF destination and creates PDF output.

The ODS Printer Family of Statements

The ODS PDF statement is part of the ODS printer family of statements. Statements in
the printer family open the PCL, PDF, PRINTER, or PS destination, producing output

that is suitable for a high-resolution printer. The ODS PCL, ODS PRINTER, and ODS
PS statements are also members of the ODS printer family of statements.

Opening and Closing the PDF Destination

You can modify an open PDF destination with many ODS PDF options. However, the
FILE= and SAS options perform the following actions on an open PDF destination:

* close the open destination referred to in the ODS PDF statement
» close any files associated with the open PDF destination
* open a new instance of the PDF destination

Note: If you use one of these actions, you should explicitly close the destination
yourself.

Working with the Table of Contents
The ODS PDF destination provides the following navigation tools:

» The default table of contents (TOC), which is a clickable bookmark tree that is not
printed.

Creating PDF Output with ODS 349

Figure 16.5 PDF Output Default Bookmark Tree

E_l Bookmarks Em
B & B

EP The Freq Procedure

=

/,f,g =[P Table Origin * Type
@ Cross-Tabular Freq Table
é.;"' =P The Print Procedure

[Data Set SASHELP.CARS

* A printable table of contents, which is generated using the CONTENTS=YES option
in the ODS PDF FILE= statement. The output that is created this way is static and
does not count toward the page count of the PDF file. The text “Table of Contents” is
customizable using PROC TEMPLATE, and the text of each of the entries is
customizable with the ODS PROCLABEL statement and CONTENTS= options in
some of the PROC statements.

Figure 16.6 PDF Output Default Table of Contents Page

Table of Contents
TheFreqProcedure L L L L L L L i e 1
Table Ongin® TYRS . - . . . L L L L e e e e e e e e e e e e e e e e e e e 1
Cross-TabularFreqTable L L L e e e e e 1
The PrimtProcedure . . . L . L L o e e e e e e e e e e e e e e e e e e 2
Data Set SASHELP.CARS . © © _ _ . L L L L e e 2

The text displayed by the nodes of each tool is controlled with the following:

» the ODS PROCLABEL statement

» the CONTENTS=, the DESCRIPTION=, and the OBJECTLABEL= options
* the DOCUMENT destination and procedure

» the TEMPLATE procedure

Example: Creating PDF Output Using the FILE= Option

This example opens an instance of the PDF destination to create PDF output. The FILE=
option specifies the PDF filename.

ods html close;

ods pdf file="SamplePDF";

proc freq data=sashelp.cars;
tables origin*type;

run;

ods pdf close;

350 Chapter 16 -

Creating Output

Figure 16.7 PDF Output of FREQ Procedure

Bookmarks [[]

52

EP The Freq Procedure
B Table Origin * Type
[P Cross-Tabular Freq Table

Create a Table of Contents 1
The FREQ Procedure
Frequency Table of Origin by Type
Percent
Row Pct Type
Col Pct

Origin | Hybrid | SUV | Sedan | Sports | Truck | Wagon Total

Asia 3 25 94 17 8 1 158
070 | 584 | 2196 397 1.87 257 | 3692
1.90 | 15.82 | 59.49 10.76 5.06 6.96

100.00 | 41.67 | 35.88 3469 | 3333 36.67

Europe 0 10 78 23 0 12 123
000 | 234 | 1822 5.37 0.00 280 | 2874
000 | 813 | 6341 18.70 0.00 9.76
0.00 | 16,67 | 2977 46.94 0.00 40.00

USA 0 25 90 9 16 7 147
0.00 | 584 | 21.03 2.10 3.74 164 | 3435
0.00 | 17.01 | 61.22 6.12 | 10.88 476
0.00 | 4167 | 3435 18.37 | 66.67 2333

Total 3 60 262 49 24 30 428
0.70 | 14.02 | 61.21 1145 5.61 7.01 | 100.00

Example: Creating a Printable Table of Contents

By default, ODS PDF does not create a printable table of contents, only a click-able
bookmark tree. This example shows you how to create a printable table of contents.

ods html close;
title "Create a Table of Contents";
options nodate;
ods pdf file="MyDefaultToc.pdf" contents=yes bookmarklist=hide;
proc freq data=sashelp.cars;
tables origin*type;
run;
proc print data=sashelp.cars (obs=15);
run;
ods pdf close;
ods html path="%gsysfunc (pathname (work))";

The ODS PDF statement uses the following options:

The FILE= option specifies the PDF filename.
The CONTENTS=YES option specifies that a table of contents is created.

The BOOKMARKLIST=HIDE option specifies that a bookmark tree is created, but
hidden.

Figure 16.8 Printable Table of Contents for PDF Output

Table of Contents
TheFreqProcedure L L L Lol 1
Table OAgin*Type L 1
Cross-TabularFreg Table L . e e e 1
The Print Procedure . . © _ . © _ L L L Lo 2

Data 5et SASHELP.CARS o . oo 2

Creating PDF Output with ODS 351

Changing the Appearance of PDF Output

Style Templates

You can change the appearance of your PDF output by specifying a style in the STYLE=
option in the ODS PDF statement. The default style for PDF output is Pearl. Here are the
style templates that are currently available:

» FancyPrinter

» FestivalPrinter

* GrayscalePrinter

* Journal

* MeadowPrinter

* MonoChromePrinter
* Monospace

e NormalPrinter

e Pearl
e Printer
» Sapphire

e SasDocPrinter

e SeasidePrinter

Example: The STYLE= Option (FestivalPrinter Style)
In the following program, the STYLE= option applies the FestivalPrinter style to the
output for the ODS PDF statement:

ods html close;
ods pdf file="SamplePDF" style=FestivalPrinter;
proc freq data=sashelp.cars;
tables origin*type;
run;
ods pdf close;

352 Chapter 16 -« Creating Output

Figure 16.9 ODS PDF Output with the FestivalPrinter Style Applied

Bookmarks E II‘
The SAS System 09:51 Monday, November 27, 2017 1
= B
=P Freq The FREQ Procedure
E{F Table Origin * Type e
Frequency Table of Origin by Type
[F Cross-Tabular Percent
Freq Table Row Pct Type
a Gol Pet Origin | Hybrid SUV Sedan Sports Truck /Wagon Total
Asia 3 25 94 17 8 11 158
070 584 219 397 187 257 3692
190 1582 5949 10.76 506 6.96
1000014167 3588 3469 3333 3667
Europe 0 10 78 23 0 12 123
000 234 182 537 000 280 2874
000 B13] 634 18.70 0.00 976
000 1667 2977 4694 000 4000
UsA 0 25 %0 9 16 7 147
000 584 21.03 210 374 164 3435
000 1701 6122 612 1088 476
000 4167 23435 18.37 6667 2333
Total 3 60 262 49 24 30 428
070 1402 61.21 1145 561 7.01 100.00
250x11.00in < >

Creating RTF Output with ODS

The ODS RTF Statement

To open, manage, or close the RTF destinations that produces output that is written in
Rich Text Format for use with Microsoft Word, use the ODS RTF statement:

Syntax, ODS RTF statement:
ODS RTF <(<ID=>identifier)> <action>;

* (<ID=>identifier) enables you to open multiple instances of the same destination at the same
time. Each instance can have different options.

* identifier can be numeric or can be a series of characters that begin with a letter or an
underscore. Subsequent characters can include letters, underscores, and numerals.

* action can be one of the following:
* CLOSE action closes the destination and any files that are associated with it.

* EXCLUDE exclusions| ALL | NONE action excludes one or more output objects from
the destination.

Note: The default is NONE. A destination must be open for this action to take effect.

* SELECT selections| ALL | NONE action selects output objects for the specified
destination.

Note: The default is ALL. A destination must be open for this action to take effect.

* SHOW action writes the current selection list or exclusion list for the destination to the
SAS log.

Note: If the selection or exclusion list is the default list (SELECT ALL), then SHOW also
writes the entire selection or exclusion list. The destination must be open for this action
to take effect.

Creating RTF Output with ODS 353

Opening and Closing the RTF Destination

You can modify an open RTF destination with many ODS RTF options. However, the
FILE= option performs the following actions on an open RTF destination:

* close the open destination referred to in the ODS RTF statement
* close any files associated with the open RTF destination
* open a new instance of the RTF destination

If you use the FILE= option, you should explicitly close the destination yourself.

Understanding How RTF Formats Output

RTF produces output for Microsoft Word. Although other applications can read RTF
files, the RTF output might not work successfully with the other applications.

The RTF destination enables you to view and edit the RTF output. ODS does not define
the vertical measurement, which means that SAS does not determine the optimal place to
position each item on the page. For example, page breaks are not always fixed because
you do not want your RTF output tables to split at inappropriate places when you edit
your text. Your tables remain intact on one page, or they break where you specify.

However, Microsoft Word requires the widths of table columns, and Microsoft Word
cannot adjust tables if they are too wide for the page. Therefore, ODS measures the
width of the text and tables (horizontal measurement). All of the column widths can be
set properly by SAS, and the table can be divided into panels if it is too wide to fit on a
single page.

In short, when producing RTF output for input to Microsoft Word, SAS determines the
horizontal measurement, and Microsoft Word controls the vertical measurement.
Because Microsoft Word can determine how much room there is on the page, your tables
are displayed consistently even after you modify your RTF file.

Note: Complex tables that contain a large number of observations can reduce system
efficiencies and take longer to process.

ODS RTF and Graphics

ODS RTF produces output in rich text format, which supports three formats for graphics
that Microsoft Word can read.

Format for Graphics Corresponding SAS Graphics Driver
emfblips EMF
pngblips PNG
jpegblips JPEG

When you do not specify a target device, the default target is EMF.

354 Chapter 16 -« Creating Output

Example: Using the STYLE= Option (FestivalPrinter Style)

In the following program, the STYLE= option applies the FestivalPrinter style to the
output for the ODS RTF statement:

ods html close;
ods rtf file="SampleRTF" style=FestivalPrinter;
proc freq data=sashelp.cars;
tables origin*type;
run;
ods rtf close;

Figure 16.10 ODS RTF Output with the FestivalPrinter Style Applied

The SAS System

The FREQ Procedure

Table of Origin by Type

Origin Type
Frequency
Percent "
Row Pct Hybrid SUV Sedan Sports Truck Wagon Total
Col Pct
Asia 3 25 94 17 g 1 158

0.70 554 2198 397 187 2.57 3892
1.90 1562 5949 10.76 5.06 6.96
100.00 41.67 3588 34.69 33.33 3667

Europe 0 10 7 23 0 12 123
0.00 234 1822 537 0.00 280 28.74
0.000 813 6341 1870 0.00 9.76
0.00 16,67 29.77 46.94 000, 40.00

USA 0 25 80 k) 16 7147
0.00 554 21.03 210 374 1.64 3435
0.00 1701 6122 612 10.85 476
0.00 4167 3435 18.37 6667 2333

Total 3 &0 262 49 24 30 428
0.70 1402 6121 11.45 581 7.01100.00

Creating EXCEL Output with ODS

The ODS EXCEL Statement

To open, manage, or close the Excel destinations that produce Excel spreadsheet files
that are compatible with Microsoft 2010 and later versions, use the ODS EXCEL
statement:

Creating EXCEL Output with ODS 355

Syntax, ODS EXCEL statement:
ODS EXCEL <(<ID=>identifier)> <action>;
ODS EXCEL <(<ID=>identifier)> <option(s)>;

* (<ID=>identifier) enables you to open multiple instances of the same destination at the same
time. Each instance can have different options.

* identifier can be numeric or can be a series of characters that begin with a letter or an
underscore. Subsequent characters can include letters, underscores, and numerals.

* action can be one of the following:
* CLOSE action closes the destination and any files that are associated with it.

* EXCLUDE exclusions| ALL | NONE action excludes one or more output objects from
the destination.

Note: The default is NONE. A destination must be open for this action to take effect.

* SELECT selections| ALL | NONE action selects output objects for the specified
destination.

Note: The default is ALL. A destination must be open for this action to take effect.

* SHOW action writes the current selection list or exclusion list for the destination to the
SAS log.

Note: If the selection or exclusion list is the default list (SELECT ALL), then SHOW also
writes the entire selection or exclusion list. The destination must be open for this action
to take effect.

Details about the Excel ODS Destination

The ODS destination for Excel uses Microsoft Open Office XML Format for Office
2010 and later. This statement produces XML and represents a way to define and format
data for easy exchange.

The ODS destination for Excel creates Microsoft spreadsheet in ML XML. Each table is
placed in its own worksheet within a workbook. This destination supports ODS styles,
trafficlighting, and custom formats. Numbers, currency, and percentages are correctly
detected and displayed. Style override, a TAGATTR= style attribute, can be used to
create custom formats for the data. By default, titles and footnotes are included in the
worksheet, but they are part of the header and footer of the worksheet.

Portrait is the default printing orientation. The orientation can be changed to landscape.

Example: Customizing Your Excel Output

The following example illustrates a customized Excel workbook that contains PROC
MEANS output.

ods excel file='multitablefinal.xlsx' /*E*/

options (sheet interval="bygroup" /*E&/
suppress_bylines='yes' /*E5*/
sheet label='country' /*Ea/
embedded_titles='yes'); A 5 W

title 'Wage Rates By Manager';
proc means data=cert.usa;

by manager;

var wagerate;

run;

356 Chapter 16 -« Creating Output

ods excel close; /E*/

1 The ODS EXCEL statement opens an instance of an Excel workbook and creates a
new Excel workbook called Multitablefinal .xIsx.

2 The SHEET INTERVAL= option creates a new worksheet for each BY group.
3 The SUPPRESS BYLINES= option suppresses the BY lines for each BY group.
4 The SHEET LABEL~ option customizes the worksheet label.

5 The EMBEDDED TITLES= option embeds the title that is created by the TITLE
statement in the output.

6 THE ODS CLOSE statement closes the destination and any associated files.

Figure 16.11 Customized Excel Output

IL_J'>
&D X A = 9% Conditional Farmatting - iil el
Paste EB) Font Alignment Number ’_FFnrmatasTable' Cells Editing
. N o o - | ¥ Cell Styles~ o -
Clipboard Styles -~
F12 = fe v
A B C D E S [~
1 Wage Rates By Manager
2
3 | The MEANS Procedure
4
5 | Analysis Variable : WageRate
6 | N Mean| Std Dev Minimum Maximum
T | 5| 364223 2471.00 13.6500000 6862.50
8
9 | -
3 country - Coxe country - Delgado | country - Overby ... (3
Ready % H o - 'l + 125%

The EXPORT Procedure

The Basics of PROC EXPORT

Note: The EXPORT procedure is available for Windows, UNIX, or LINUX operating
environments.

The EXPORT procedure reads data from a SAS data set and writes it to an external data
source. In Base SAS 9.4, external data sources include delimited files and JMP files. In
delimited files, a delimiter can be a blank, comma, or tab that separates columns of data
values. If you have a license for SAS/ACCESS Interface to PC Files, you can also export

The EXPORT Procedure 357

to additional file formats, such as to a Microsoft Access database, Microsoft Excel
workbook, DBF file, and Lotus spreadsheets.

The EXPORT procedure uses one of these methods to export data:
» generated DATA step code
» generated SAS/ACCESS code

PROC EXPORT Syntax

You control the results with options and statements that are specific to the output data
source. The EXPORT procedure generates the specified output file and writes
information about the export to the SAS log. The log displays the DATA step or the
SAS/ACCESS code that the EXPORT procedure generates.

Syntax, PROC EXPORT statement:

PROC EXPORT DATA=</ibref.>SAS-data-set
OUTFILE= “filename”

<DBMS=identifier>;

<REPLACE>;

o [libref.SAS-data-set identifies the input SAS data set with either a one- or two-level SAS
name (library and member name). If you specify a one-level name, by default, the EXPORT
procedure uses either the USER library (if assigned) or the WORK library.

Default: If you do not specify a SAS data set to export, the EXPORT procedure uses the
most recently created SAS data set. SAS keeps track of the data sets with the system
variable LAST . To be certain that the EXPORT procedure uses the correct data set, you
should identify the SAS data set.

» filename specifies the complete path and filename or a fileref for the output PC file,
spreadsheet, or delimited external file.

If you specify a fileref, or if the complete path and filename do not include special
characters (such as the backslash in a path), lowercase characters, or spaces, you can omit
the quotation marks.

* identifier specifies the type of data to export. To export to a DBMS table, you must specify
the DBMS option by using a valid database identifier. For DBMS=DLM, the default
delimiter character is a space. However, you can use DELIMITER='char' statement within
the EXPORT procedure to define a specific delimiter character.

* REPLACE overwrites an existing file. If you do not specify REPLACE, the EXPORT
procedure does not overwrite an existing file.

The following values are valid for the DBMS identifier:

Table 16.1 DBMS Identifiers Supported in Base SAS

Identifier Output Data Source Extension

CSV Delimited file (comma- .csV
separated values)

DLM Delimited file (default
delimiter is a space)

358 Chapter 16 -« Creating Output

IMP JMP files, Version 7 or later Jmp
format

TAB Delimited file (tab-delimited — .txt
values)

The availability of an output external data source depends on these conditions:

+ the operating environment and, in some cases, the platform as specified in the
previous table.

» whether your site has a license for SAS/ACCESS Interface to PC Files. If you do not
have a license, only delimited and JMP files are available.

Example: Exporting a Subset of Observation to a CSV File

This example exports the SAS data set Cert.Leukemia to a delimited file.

proc export data=cert.leukemia (where=(survived=1)) /+[*/
outfile="C:\cert\leukemia surv.csv" /*m*/
dbms=csv /R /
replace; /*m*/
run;

1 The DATA= option specifies the input file. The WHERE option requests a subset of
the observations.

2 The OUTFILE= option specifies the output file.
3 The DBMS= option specifies that the output file is a CSV file
4 The REPLACE option overwrites an existing file.

The EXPORT procedure produces this external CSV file:

Output 16.2 CSV File

I leukermnia_surviv - Motepad

File Edit Format View Help
WhiteCells,AG,Survived ~
2388 ,Present,1
758,Present, 1
4388,Present, 1
2680,Present, 1
18588,Present,1
18eee,Present,1
5488 ,Present,1
7888 ,Present,1
9488 ,Present,1
32888,Present, 1
1888600,Present, 1
4488, Absent, 1
3888, Absent, 1
79008, Absent,1
1800888, Absent,1

Chapter Quiz 359

Chapter Quiz

Select the best answer for each question. Check your answers using the answer key in

the appendix.

1. Using ODS statements, how many types of output can you generate at once?
a. 1
b. 2
c. 3

d. as many as you want

2. IfODS is set to its default settings, what types of output are created by the following
code?

ods html file='c:\myhtml.htm';
ods pdf file='c:\mypdf.pdf';

a. HTML and PDF
b. PDF only
¢. HTML, PDF, and EXCEL
d. No output is created because ODS is closed by default.
3. What is the purpose of closing the HTML destination in the following code?

ods HTML close;
ods pdf ... ;

a. It conserves system resources.
b. It simplifies your program.
c. It makes your program compatible with other hardware platforms.
d. It makes your program compatible with previous versions of SAS.
4. When the following code runs, what does the file D:\Output\body.html contain?

ods html body='d:\output\body.html';
proc print data=work.alpha;

run;

proc print data=work.beta;

run;

ods html close;

a. The PROC PRINT output for Work.Alpha.

b. The PROC PRINT output for Work.Beta.

c. The PROC PRINT output for both Work.Alpha and Work.Beta.
d. Nothing. No output is written to D:\Output\body.html.

5. When the following code runs, what file is loaded by the links in D:\Output
\contents.html?

ods html body='d:\output\body.html'
contents="'d:\output\contents.html'
frame='d:\output\frame.html';

360 Chapter 16

Creating Output

a. D:\Output\body.html
b. D:\Output\contents.html
c. D:\Output\frame.html

d. There are no links from the file D:\Output\contents.html.

. The table of contents that was created by the CONTENTS= option contains a

numbered heading for which of the following?
a. each procedure

b. each procedure that creates output

c. each procedure and DATA step

d. each HTML file created by your program

. When the following code runs, what will the file D:\Output\frame.html display?

ods html body='d:\output\body.html'
contents="'d:\output\contents.html'
frame='d:\output\frame.html';

a. The file D:\Output\contents.html .

b. The file D:\Output\frame.html.

c. The files D:\Output\contents.html and D:\Output\body.html.
d. It displays no other files.

. What is the purpose of the following URL= suboptions?

ods html body='d:\output\body.html'
contents="'d:\output\contents.html'

(url='body.html")
(url='contents.html"')
frame='d:\output\frame.html';
a. To create absolute link addresses for loading the files from a server.
b. To create relative link addresses for loading the files from a server.
c. To allow HTML files to be loaded from a local drive.

d. To send HTML output to two locations.

. Which ODS HTML option was used in creating the following table?

Obs Sex Age Height Weight ActLevel

1 M 27 72 168 HIGH
2 F 34 66 152 HIGH
3 F 31 61 123 LOW

a. format=MeadowPrinter
b. format='MedowPrinter'
c. style=MeadowPrinter

d. style='MeadowPrinter’

10. What is the purpose of the PATH= option?

Chapter Quiz

ods html path='d:\output' (url=none)
body="'body.html'
contents='contents.html'
frame='frame.html';

a. It creates absolute link addresses for loading HTML files from a server.
b. It creates relative link addresses for loading HTML files from a server.
c. Itallows HTML files to be loaded from a local drive.

d. It specifies the location of HTML file output.

361

362 Chapter 16 -« Creating Output

363

Part 2

Workbook

Chapter 17
Practice Programming Scenarios 365

364

Chapter 17

365

Practice Programming
Scenarios

Scenario 1. 366
DIreCtionsS oot 366
Test Your Code 366
Objectives Accomplished 366

Scenario 2 366
DiIreCtionsSot 366
Test Your Codeo 367
Objectives Accomplished 367

Scenario 3 367
DIreCtionsSot 367
Test Your Codeo 367
Objectives Accomplished 367

Scenario 4 368
DiIreCtionsot 368
Test Your Codeo 368
Objectives Accomplished 368

Scenario 5. 368
DiIreCtionsot 368
Test Your Codeo 369
Objectives Accomplished 369

Scenario 6 369
DiIreCtionsot 369
Test Your Codeo 370
Objectives Accomplished 370

Scenario 7 370
DiIreCtionsot 370
Test Your Code 371
Objectives Accomplished 371

Scenario 8 371
DiIreCtionst 371
Test Your Code 371
Objectives Accomplished 371

Scenario 9 372
DIreCtionsS oot 372
Test Your Code 372

Objectives Accomplished 372

366 Chapter 17 < Practice Programming Scenarios

Scenario 10 373
DiIreCtionst i 373
Test Your Codeot 373
Objectives Accomplished 373

Scenario 1

Directions
This scenario uses the Cert.Patients and Cert.Measure data sets. Write a SAS program to
do the following:
» Sort Cert.Patients and Cert.Measure by ID.
* Use the match-merging technique to combine Cert.Patients and Cert.Measure to
create a new temporary data set named Work.Merge.
» Select observations for the patients under the age of 50.
» Sort the new data set, Work.Merge, by Age in descending order.
» Save the sorted data set as Work.Sortpatients.
Test Your Code

1. What the value of the Age variable for observation 6 in Work.Sortpatients?
2. What is the value of the Weight variable for observation 3 in Work.Sortpatients?

Objectives Accomplished
* Combine SAS data sets using match-merging.
» Use a DATA step to create a SAS data set from an existing SAS data set.
» Use the IF/THEN-ELSE statements to process data conditionally.

* Use the SORT procedure to re-order observations in place or write them out to a new
data set.

Scenario 2

Directions
This scenario uses the Cert.Stress data set. Write a SAS program to do the following:

* Create a new temporary SAS data set that uses Cert.Stress and store the results in
Work.Stress1.

* Remove observations with RestHR values that are greater than or equal to 70.

» Create a new variable called TotalTime. The value of TotalTime is the value of
TimeMin multiplied by 60, plus the value of TimeSec.

Test Your Code

1.
2.

Scenario 3 367

Remove TotalTime values that are less than 600.

How many observations are in Work.Stress1?

What is the value of TotalTime for observation 5 in Work.Stress1?

Objectives Accomplished

Use a DATA step to create a SAS data set from an existing SAS data set.

Control which observations and variables in a SAS data set are processed and written
out to a new data set.

Use assignment statements in the DATA step.
Use IF/THEN-ELSE statements to process data conditionally.

Scenario 3

Directions

This scenario uses the Cert.Staff data set. Write a SAS program to do the following:

Test Your Code

Create a new temporary SAS data set that uses Cert.Staff and store the results in
Work.StaffReports.

Select observations where WageCategory is not equal to H.
Format the variable DOB as mmddyy10.
Create a new variable named Raise whose value is WageRate multiplied by 3%.

Determine the grand total of Raise for the entire data set.

. For observation 5, what is the value of DOB?

For observation 15, what is the value of Raise? Round your answer to 2 decimal
places.

What is the grand total of Raise for the entire data set?

Objectives Accomplished

Use a DATA step to create a SAS data set from an existing SAS data set.
Use SAS date and time formats to specify how the values are displayed.

Control which observations and variables in a SAS data set are processed and written
out to a new data set.

Use assignment statements in the DATA step.

368 Chapter 17 < Practice Programming Scenarios

» Use the SUM statement to accumulate subtotals and totals.

Scenario 4

Directions
This scenario uses the Cert.Laguardia data set. Write a SAS program to do the following:

* Print the data set Cert.Laguardia sorted and grouped by Dest. Save your sorted data
set as a temporary data set, Work.Laguardia.

» Store the results, grouped by the variable Dest, in a PDF file named “LGA
Airport.pdf” using the FestivalPrinter style with a report title, “Laguardia Flights”.

Test Your Code
1. What is the file size of the LGA Airport.pdf file?
2. What is the value of Boarded in observation 13?

3. What is the destination value in observation 42?

Objectives Accomplished

* Enhance reports system with user-defined formats, titles, footnotes, and SAS System
reporting options.

» Generate reports using ODS statements:
* Identify the ODS destinations.
* Create HTML, PDF, and RTF files with ODS statements.

» Use the STYLE= option to specify a style template.

Scenario 5

Directions

Open the ehs01 program from the EHS folder and correct the errors in the program. For
instructions, see the commented code in the program that is marked by a slash (/) and an
asterisk (*).

Example Code 1 ehs01 Program: Fix the Errors

data work.aprilbills drop=Total, EquipCost; /*E*/
set cert.aprbills;
if Days > 7 then Discount=(RoomCharge) *20% else 0; /*m*/
TotalDue=Total-Discount; /*E*/
format DateIn DateOut date9; /*E*/

format RoomRate RoomCharge Discount TotalDue dollarl0.; /*[EEJ*/

Scenario 6 369

proc print data=work.aprilbills; /*El*/
Here are instructions that are commented in the program, ehs01.

1 Drop the variables Total and EquipCost.

2 If the Days variable is greater than 7, then Discount is the value of RoomCharge
multiplied by 20 %. If the Days variable is less than or equal to 7, then Discount is
set to 0.

3 Create a new variable, TotalDue, with a value of Total minus Discount.
4 Format Dateln and DateOut to appear as 05SAPR2009.

5 Format the variables RoomRate, RoomCharge, Discount, and TotalDue to appear as
$100.00.

6 Print your results.

Test Your Code
1. What is the value of the variable TotalDue in observation 4?

2. What is the value of the variable Discount in observation 5?

Objectives Accomplished
» Identify the characteristics of SAS statements.

* Define SAS syntax rules and identify syntax errors such as misspelled keywords,
unmatched quotation marks, missing semicolons, and invalid options.

* Use the log to help diagnose syntax errors in a given program.

Scenario 6

Directions

This scenario uses the Excel file heart.xIsx. Write a SAS program to do the following
and store the results in the data set Work.Heart.

* Import the Excel file heart.xlsx.
* Drop the AgeAtDeath and DeathCause variables from the Work.Heart data set.
* Include only the observations where Status=Alive in the Work.Heart data set.

» Ifthe AgeCHDdiag variable has a missing value (.), then do not include the value in
Work.Heart.

» Create a new variable Smoking_Status, set its length to 17 characters, and use the
following criteria:

* If the value of Smoking is between 0 and less than 6, then Smoking_Status is
"None (0-5)".

+ If the value of Smoking is between 6 and 15 inclusively, then Smoking_Status is
"Moderate (6-15)".

370 Chapter 17

Test Your Code

Practice Programming Scenarios

* If the value of Smoking is between 16 and 25 inclusively, then Smoking_Status
is "Heavy (16-25)".

» Ifthe value of Smoking is greater than 25, then Smoking Status is "Very Heavy
(>25)".

» Ifthere are any other values for the variable Smoking, set Smoking Status to
"Error".

* Create a two-way frequency table using variables AgeCHDdiag and Smoking_Status
and suppress column percentage, row percentage, and cell percentage.

1. What is the total number of Heavy Smokers (16-25)?
2. What is the frequency value of Very Heavy (>25) smokers for AgeCHDDiag 48?

3. What is the frequency value of Smoking Status = "Error"?

Objectives Accomplished

* Access SAS data sets with the SET statement.
» Use a DATA step to create a SAS data set from an existing SAS data set.
» Use IF-THEN/ELSE statements to process data conditionally.

» Use assignment statement to create new variables and assign a value in the DATA
step.

» Define the length of a variable using the LENGTH statement.

* Generate summary reports and frequency tables using Base SAS procedures.

Scenario 7

Directions

This scenario uses the Cert. Temp18 data set. Write a SAS program to do the following:

* Create a temporary SAS data set that uses Cert. Temp18 and store the results as
Work.Scenario7.

* Format the Day variable so that the date appears as 01JAN2018.

* Use a function to create a variable named Month that is equal to the numeric value of
the month of the Day variable. For example, if the month is January, Month=1, if the
month is February, Month=2, and so on.

» Create a one-way frequency table using the variable HighTemp.

e Use PROC MEANS to calculate the mean and standard deviation for the variables
AvgHighTemp and AvgLowTemp by the new Month variable.

Test Your Code

Scenario 8 371

. What is the frequency for a HighTemp of 63?

What is the HighTemp on January 12, 2018?

What is the mean for AvgLowTemp for Month=1? (Round your answer to the
nearest integer.)

What is the standard deviation (std) for AvgHighTemp for Month=3? (Round your
answer to two decimal places.)

Objectives Accomplished

Use a DATA step to create a SAS data set from an existing SAS data set.
Use SAS date and time formats to specify how the values are displayed.

Use assignment statements to create new variables and assign a value in the DATA
step.

Use SAS functions to manipulate character data, numeric data, and SAS date values.

Generate summary reports and frequency tables using Base SAS procedures.

Scenario 8

Directions

This scenario uses the Cert.Addresses data set. Write a SAS program to do the
following:

Test Your Code

Create a temporary SAS data set that uses Cert.Addresses and store the results in
Work.Scenario8.

Extract the 5-digit ZIP codes from the State variable and store them in the ZipCode
variable.

Extract the two letters from the State variable and store them in the State variable.

Create a one-way frequency table using the variable State.

What is the frequency for the state of NY?
Which observation contains ZipCode 850697

How many states have the frequency number of 4?

Objectives Accomplished

Use a DATA step to create a SAS data set from an existing SAS data set.

372 Chapter 17 < Practice Programming Scenarios

Use assignment statements to create new variables and assign a value in the DATA
step.

Use SAS functions such as SUBSTR to search a character value and extract a portion
of the value.

Generate frequency tables using Base SAS procedures.

Scenario 9

Directions

This scenario uses the Cert. Empdata, Cert. Empdatu, and Cert. Empdatu2 data sets. Write
a SAS program to do the following:

Test Your Code

Concatenate Cert.Empdata, Cert. Empdatu, and Cert. Empdatu?2 to create
Work.FlightEmpData.

Create a macro variable named &Location and set the value of this macro variable to
USA.

Include only the observations whose value for Country is the value of the macro
variable.

Keep only observations whose salary is $30,000 or greater.
Sort the data by variable Salary in descending order.

Use PROC EXPORT to export the data to a CSV file and save it as
flightempdata.csv.

What is the value of Salary in observation 4?

What is the size (in bytes) of the CSV file that you exported?

Objectives Accomplished

Use a DATA step to create a SAS data set from an existing SAS data set.

Create a simple raw data file by using the EXPORT procedure as an alternative to the
DATA step.

Use the WHERE statement in the DATA step to select observations to be processed.

Use the SORT procedure to re-order observations in place or write them out to a new
data set.

Create macro variables with the %LET statement.

Scenario 10 373

Scenario 10

Directions

Open the ehs02 program from the EHS folder and correct the errors in the program
below.

Example Code 2 ehs02 Program: Fix the Errors

work.mycars;
set sashelp.cars;
AvgMPG=mean (mpg_city, mpg highway) ;
run;
title 'Cars With Average MPG Over 40';
proc print data=work.mycars
var make model type avgmpg;
where AvgMPG>40;
run;
title 'Average MPG by Car Type';
proc means data=work.mycars avg min max maxdec=1;
var avgmpg;
class type;
run;
title;

Test Your Code

1. What is the number of observations where the variable Type is Sedan?

2. How many observations are printed to the report titled, “Cars With Average MPG
Over 40”7

Objectives Accomplished
* Identify the characteristics of SAS statements.

* Define SAS syntax rules and identify common syntax errors such as misspelled
keywords, unmatched quotation marks, missing semicolons, and invalid options.

* Use the log to help diagnose syntax errors in a given program.

374 Chapter 17 < Practice Programming Scenarios

Part 3

375

Quiz Answer Keys and
Scenario Solutions

Appendix 1
Chapter Quiz Answer Keys 377

Appendix 2
Programming Scenario Solutions 393

376

Appendix 1

Chapter Qu

377

iz Answer Keys

Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

BasicConcepts 377
AccessingYourData 378
Creating SASDataSets i, 379
Identifying and Correcting SAS Language Errors............... 380
Creating Reports i, 381
Understanding DATA Step Processing 383
BY-Group Processing 384
Creating and Managing Variables 384
: Combining SASDataSets 386
: Processing Datawith DO Loops 387
: SAS Formats and Informats 388
: SAS Date, Time, and Datetime Values 389
: Using Functions to Manipulate Data 390
: Producing Descriptive Statistics 390
:CreatingOutput 391

Chapter 2: Basic Concepts

1. Correct answer: ¢

Rows in
Missing

the data set are called observations, and columns are called variables.
values do not affect the structure of the data set.

2. Correct answer: a

When it

encounters a DATA, PROC, or RUN statement, SAS stops reading

statements and executes the previous step in the program. This program contains one
DATA step and two PROC steps, for a total of three program steps.

3. Correct answer: b

It must be a character variable, because the values contain letters and underscores,
which are not valid characters for numeric values.

378 Appendix 1 + Chapter Quiz Answer Keys

4.

10

Correct answer: a

It must be a numeric variable, because the missing value is indicated by a period
rather than by a blank. Missing values in numeric variables are indicated by a period
while character values are indicated by a blank. Numeric values are also right
justified while character values are left justified.

Correct answer: d

If you use VALIDVARNAME=ANY, the name can begin with or contain any
characters, including blanks, national characters, special characters, and multi-byte
characters. The name can be up to 32 bytes long. The name must contain at least one
character, and the variable name can contain mixed-case letters.

Correct answer: d

To store a file permanently in a SAS data library, you assign it a libref. For example,
by assigning the libref Cert to a SAS data library, you specify that files within the
library are to be stored until you delete them. Therefore, SAS files in the Cert and
Certxl libraries are permanent files.

Correct answer: d

To reference a temporary SAS file in a DATA step or PROC step, you can specify
the one-level name of the file (for example, Forecast) or the two-level name using
the libref Work (for example, Work.Forecast).

Correct answer: d

The numeric variable Balance has a default length of 8. Numeric values (no matter
how many digits they contain) are stored in 8 bytes of storage unless you specify a
different length.

Correct answer: ¢

The five statements are 1) the PROC PRINT statement (two lines long); 2) the VAR
statement; 3) the WHERE statement (on the same line as the VAR statement); 4) the
LABEL statement; and 5) the RUN statement (on the same line as the LABEL
statement).

. Correct answer: d

Every SAS file is stored in a SAS library. A SAS library is a collection of SAS files,
such as SAS data sets and catalogs. In some operating environments, a SAS library is
a physical collection of files. In others, the files are only logically related. In the
Windows and UNIX environments, a SAS library is typically a group of SAS files in
the same folder or directory.

Chapter 3: Accessing Your Data

1.

Correct answer: d

Librefs remain in effect until the LIBNAME statement is changed, canceled, or until
the SAS session ends.

Correct answer: b

When you are using the default engine, you do not have to specify the engine name
in the LIBNAME statement. However, you do have to specify the libref and the SAS
data library name.

Chapter 4: Creating SAS Data Sets 379

Correct answer: a

A SAS engine is a set of internal instructions that SAS uses for writing to and
reading from files in a SAS library. Each engine specifies the file format for files that
are stored in the library, which in turn enables SAS to access files with a particular
format. Some engines access SAS files, and other engines support access to other
vendors' files.

Correct answer: a

To print a summary of library contents with the CONTENTS procedure, use a period
to append the ALL option to the libref. Adding the NODS option suppresses
detailed information about the files.

Correct answer: e

All the programs listed violate the rules for assigning a libref. Librefs must be 1 to 8
characters long, must begin with a letter or underscore, and can contain only
numbers, letters, or underscores. After you assign a libref, you specify it as the first
level in the two-level name for a SAS file.

Correct answer: ¢

The CONTENTS procedure creates a report that contains the contents of a library or
the descriptor information for an individual SAS data set.

Correct answer: ¢

The LIBNAME statement is global, which means that librefs stay in effect until
changed or canceled, or until the SAS session ends. Therefore, the LIBNAME
statement assigns the libref for the current SAS session only. You must assign a libref
before accessing SAS files that are stored in a permanent SAS data library.

Correct answer: d

The LIBNAME statement does not specify an engine. Therefore, it uses a default
engine to create the States library.

Chapter 4: Creating SAS Data Sets

1.

Correct answer: a

You assign a fileref by using a FILENAME statement in the same way that you
assign a libref by using a LIBNAME statement.

Correct answer: b

By default, the IMPORT procedure reads delimited files as varying record-length
files. If your external file has a fixed-length format, use the OPTIONS statement

before the PROC IMPORT statement that includes the RECFM=F and LRECL~=

options.

Correct answer: a

Use the OBS= option in the OPTIONS statement before the IMPORT procedure to
limit the number of observations that SAS reads from the external file. When you use
the OBS= option in the PROC PRINT statement, the whole file is imported but
printing is limited to the number of observations specified. Use DELIMITER="" to
indicate that the delimiter is a period (.) and use GETNAMES=YES to read in the
first line, which contains the variable names.

380 Appendix 1 + Chapter Quiz Answer Keys

4.

Correct answer: d

To read an Excel workbook file, SAS must receive the following information in the
DATA step: a libref to reference the Excel workbook to be read, the name and
location (using another libref) of the new SAS data set, and the name of the Excel
worksheet that is to be read.

Correct answer: d

The GETNAMES statement specifies whether the IMPORT procedure generates
SAS variable names from the data values in the first row in the input file. The default
is GETNAMES=YES. NO specifies that the IMPORT procedure generates SAS
variable names as VAR1, VAR2, and so on.

Correct answer: b

When you associate a fileref with an individual external file, you specify the fileref
in subsequent SAS statements and commands.

Correct answer: d

The IMPORT procedure reads data from an external data source and writes it to a
SAS data set. In delimited files, a delimiter (such as a blank, comma, or tab)
separates columns of data values. You can also have a delimiter other than blanks,
commas, or tabs. In those cases, PROC IMPORT reads the data from the external
data source as well. You can have a delimiter such as an ampersand (&).

Correct answer: b

Placing an explicit OUTPUT statement in a DATA step overrides the automatic
output, so that observations are added to a data set only when the explicit OUTPUT
statement is executed. The OUTPUT statement overrides the default behavior of the
DATA step.

Chapter 5: Identifying and Correcting SAS
Language Errors

1.

Correct answer: a

To correct errors in programs when you use the Editor window, you usually need to
recall the submitted statements from the recall buffer to the Editor window. After
correcting the errors, you can resubmit the revised program. However, before doing
so, it is a good idea to clear the messages from the SAS log so that you do not
confuse the old error messages with the new messages. Remember to check the SAS
log again to verify that your program ran correctly.

Correct answer: d

The missing quotation mark in the LABEL statement causes SAS to misinterpret the
statements in the program. When you submit the program, SAS is unable to resolve
the PROC step, and a PROC PRINT running message appears at the top of the
active window.

Correct answer: ¢

Syntax errors generally cause SAS to stop processing the step in which the error
occurred. When a program that contains an error is submitted, messages regarding
the problem also appear in the SAS log. When a syntax error is detected, the SAS log

Chapter 6: Creating Reports 381

displays the word ERROR, identifies the possible location of the error, and gives an
explanation of the error.

Correct answer: ¢

Syntax errors occur because the program statements did not conform to the rules of
the SAS language. Syntax errors, such as misspelled keywords, generally prevent
SAS from executing the step in which the error occurred.

Correct answer: b

When you submit a SAS statement that contains an invalid option, a log message
notifies you that the option is not valid or not recognized. You should recall the
program, remove or replace the invalid option, check your statement syntax as
needed, and resubmit the corrected program.

Correct answer: b

The DATA step contains a misspelled keyword (dat instead of data). However, this is
such a common (and easily interpretable) error that SAS produces only a warning
message, not an error.

Correct answer: d

The N and ERROR temporary variables can be helpful when debugging a
DATA step. The N variable displays debugging messages for a specified number
of iterations of the DATA step. The ERROR displays debugging messages when
an error occurs.

Correct answer: d

You can use the PUTLOG statement or the PUT statement to help identify errors and
print messages in the SAS log. You can use the PUTLOG statement in a DATA step
to write messages to the SAS log to help identify logic errors. You can also use
temporary variables in the PUTLOG to assist in debugging. You can use the PUT
statement to examine variables and print your own message to the SAS log.

Correct answer: ¢

A logic error occurs when the program statements follow the rules and execute, but
the results are not correct. You can use the PUTLOG statement in the DATA step to
help identify logic errors.

Chapter 6: Creating Reports

1.

Correct answer: ¢

The DATA= option specifies the data set that you are listing, and the ID statement
replaces the Obs column with the specified variable. The VAR statement specifies
variables and controls the order in which they appear, and the WHERE statement
selects rows based on a condition. The LABEL option in the PROC PRINT
statement causes the labels that are specified in the LABEL statement to be
displayed.

Correct answer: a

You use the DATA= option to specify the data set to be printed. The LABEL option
specifies that variable labels appear in output instead of in variable names.

3. Correct answer: d

382 Appendix 1

Chapter Quiz Answer Keys

In the WHERE statement, the IN operator enables you to select observations based
on several values. You specify values in parentheses and separated by spaces or
commas. Character values must be enclosed in quotation marks and must be in the
same case as in the data set.

Correct answer: ¢

In a PROC SORT step, you specify the DATA= option to specify the data set to sort.
The OUT= option specifies an output data set. The required BY statement specifies
the variable or variables to use in sorting the data.

Correct answer: d

You do not need to name the variables in a VAR statement if you specify them in the
SUM statement, but you can. If you choose not to name the variables in the VAR
statement as well, then the SUM statement determines their order in the output.

Correct answer: ¢

The BY statement is required in PROC SORT. Without it, the PROC SORT step
fails. However, the PROC PRINT step prints the original data set as requested.

Correct answer: a

Column totals appear at the end of the report in the same format as the values of the
variables, so b is incorrect. Work.Loans is sorted by Month and Amount, so ¢ is
incorrect. The program sums both Amount and Payment, so d is incorrect.

Correct answer: ¢

To ensure that the compound expression is evaluated correctly, you can use
parentheses to group the observations:

account='101-1092"' or rate eq 0.095

OBS Account Emount Rate Months Payment
1 101-10852 $22,0 10.1 &0 S467.43
2 1 31 53114, 5. 3e0 5958 . 57
3 101-1285 510, 1.0 38 5325

4 101-3144 53, 10. 12 5308

5 103-1135 58, 10 24 $403.47
5] 103-1994 58, 10. &0 5383 07
7 103-2335 55, 10 48 $128.02
8 103-3664 287, g 360 S35 45
g 103-38591 530 9. 360 5257 .75

For example, from the data set above, a and b select observations 2 and 8 (those that
have a rate of 0.095); c selects no observations; and d selects observations 4 and 7
(those that have an amount less than or equal to 5000).

Correct answer: d

By default, PROC PRINT prints all observations and variables. An Obs column is
generated to identify the observation number, and variables and observations appear
in the order in which they occur in the data set.

Chapter 7: Understanding DATA Step Processing 383

Chapter 7: Understanding DATA Step Processing

1.

10.

I1.

Correct answer: b

During the compilation phase, the program data vector is created. The program data
vector includes the two automatic variables N _and ERROR . The descriptor
portion of the new SAS data set is created at the end of the compilation phase. The
descriptor portion includes the name of the data set, the number of observations and
variables, and the names and attributes of the variables. Observations are not written
until the execution phase.

Correct answer: a

Syntax checking can detect many common errors, but it cannot verify the values of
variables or the correctness of formats.

Correct answer: ¢

The DATA step executes once for each record in the input file, unless otherwise
directed.

Correct answer: d

The remaining variables are initialized to missing. Missing numeric values are
represented by periods, and missing character values are represented by blanks.

Correct answer: b

The default value of ERROR is 0, which means there is no data error. When an
error occurs, whether one error or multiple errors, the value is set to 1.

Correct answer: d

By default, at the end of the DATA step, the values in the program data vector are
written to the data set as an observation. Then, control returns to the top of the DATA
step, the value of the automatic variable N _is incremented by one, and the values
of variables that were created in programming statements are reset to missing. The
automatic variable ERROR is reset to 0 if necessary.

Correct answer: a

The order in which variables are defined in the DATA step determines the order in
which the variables are stored in the data set.

Correct answer: ¢

When SAS cannot detect syntax errors, the DATA step compiles, but it does not
execute.

Correct answer: d

The variable type for Bonus is incorrect. When there is an incorrect variable type,
SAS attempts to automatically convert to the correct variable type. If it cannot, SAS
continues processing and produces output with missing values.

Correct answer: ¢

The FREQ procedure detects invalid character and numeric values by looking at
distinct values. You can use PROC FREQ to identify any variables that were not
given an expected value.

Correct answer: d

384 Appendix 1 + Chapter Quiz Answer Keys

At the bottom of the DATA step, the compilation phase is complete, and the
descriptor portion of the new SAS data set is created. There are no observations
because the DATA step has not yet executed.

Chapter 8: BY-Group Processing

1.

Correct answer: d

When you use the BY statement with the SET statement, the DATA step creates the
temporary variables FIRST. and LAST. They are not stored in the data set.

Correct answer: d

Before you can perform BY-group processing, your data must follow a pattern. If
your data is not ordered or grouped in some pattern, BY-group processing results in
an error.

Correct answer: a

In the DATA step, during BY-group processing only, the temporary variables
FIRST.variable and LAST.variable are available for DATA step programming, but
they do not appear in the output data set.

Correct answer: ¢

The SORT procedure sorts the data Cert.Credit by the variable Type in ascending
order. You do not have to specify the order in the BY statement in PROC SORT
unless you are sorting in DESCENDING order.

Correct answer: b

A BY group includes all observations with the same BY value. If you use more than
one variable in a BY statement, a BY group is a group of observations with the same
combination of values for these variables. Each BY group has a unique combination
of values for the variables.

Correct answer: ¢

SAS determines FIRST.variable by looking at each observation. When an
observation is the first in a BY group, SAS sets the value of the FIRST.variable to 1.
This happens when the value of the variable changed from the previous observation.
For all other observations in the BY group, the value of FIRST.variable is 0.

Correct answer: a

The SORT procedure sorts the data Cert.Choices by the variable Day first, then
Flavor in ascending order, and finally writes the sorted data set to Work.Choices.

Chapter 9: Creating and Managing Variables

1.

Correct answer: ¢

Program c correctly deletes the observation in which the value of Finish is oak and
the value of Price is less than 200. It also creates TotalPrice by summing the variable
Price down observations, and then drops Price by using the DROP statement in the
DATA step.

Chapter 9: Creating and Managing Variables 385

. Correct answer: ¢

Logical comparisons that are enclosed in parentheses are evaluated as true or false
before they are compared to other expressions. In the example, the AND comparison
within the nested parentheses is evaluated before being compared to the OR
comparison.

. Correct answer: b

You must enclose character values in quotation marks, and you must specify them in
the same case in which they appear in the data set. The value OK is not identical to
Ok, so the value of Count is not changed by the [F-THEN statement.

. Correct answer: d

The length of a variable is determined by its first reference in the DATA step. When
creating a new character variable, SAS allocates as many bytes of storage space as
there are characters in the reference to that variable. The first reference to a new
variable can also be made with a LENGTH statement or an assignment statement.

. Correct answer: a

You can write multiple ELSE statements to specify a series of mutually exclusive
conditions. The ELSE statement must immediately follow the IF-THEN statement in
your program. An ELSE statement executes only if the previous [IF-THEN/ELSE
statement is false.

. Correct answer: a

The length of a new variable is determined by the first reference in the DATA step,
not by data values. In this case, the length of Type is determined by the value Fixed.
The LENGTH statement is in the wrong place; it must occur before any other
reference to the variable in the DATA step. You can run PROC CONTENTS on the
data set to see the length of each variable.

. Correct answer: b

To select variables, you can use a DROP or KEEP statement in any DATA step. You

can also use the DROP= or KEEP= data set options following a data set name in any
DATA or PROC step. However, you cannot use DROP or KEEP statements in PROC
steps.

. Correct answer: b

The variables Age, Weight, and Group are specified using the KEEP= option in the
SET statement. When Cert.Fitness is being read, Age, Weight, and Group are the
variables that create Work.Cardiac. The variables Age and Group are specified in the
DROP= option in the DATA statement. Age and Group are dropped from
Work.Cardiac.

. Correct answer: ¢

You specify the data set to be created in the DATA statement. The DROP= data set
option prevents variables from being written to the data set. Because you use the
variable OrdrTime when processing your data, you cannot drop OrdrTime in the SET
statement. If you use the KEEP= option in the SET statement, then you must list
OrdrTime as one of the variables to be kept.

386 Appendix 1 + Chapter Quiz Answer Keys

Chapter 10: Combining SAS Data Sets

1. Correct answer: a

This example is a case of one-to-one matching, which requires multiple SET
statements. Where same-named variables occur, values that are read from the second
data set replace those that are read from the first data set. Also, the number of
observations in the new data set is the number of observations in the smallest
original data set.

2. Correct answer: b

This is a case of concatenation, which requires a list of data set names in the SET
statement and one or more BY variables in the BY statement. Notice that
observations in each BY group are read sequentially, in the order in which the data
sets and BY variables are listed. The new data set contains all the variables from all
the input data sets, as well as the total number of records from all input data sets.

3. Correct answer: a

Concatenating appends the observations from one data set to another data set. The
new data set contains the total number of records from all input data sets, so b is
incorrect. All the variables from all the input data sets appear in the new data set, so
¢ is incorrect.

4. Correct answer: a

The concatenated data sets are read sequentially, in the order in which they are listed
in the SET statement. The second observation in Work.Reps does not contain a value
for Sale, so a missing value appears for this variable. (Note that if you merge the data
sets, the value of Sale for the second observation is $30, 000.)

5. Correct answer: b

If you have variables with the same name in more than one input data set, values of
the same-named variable in the first data set in which it appears are overwritten by
values of the same-named variable in subsequent data sets.

6. Correct answer: a

The DATA step uses the IN= data set option, and the subsetting IF statement
excludes unmatched observations from the output data set. So, answers a and b,
which contain unmatched observations, are incorrect.

7. Correct answer: d

Match-merging overwrites same-named variables in the first data set with same-
named variables in subsequent data sets. To prevent overwriting, rename variables by
using the RENAME= data set option in the MERGE statement.

8. Correct answer: ¢

The two input data sets are not sorted by values of the BY variable, so the DATA
step produces errors and stops processing.

9. Correct answer: ¢

In this example, the new data set contains one observation for each unique value of
ID. The new data set is shown below.

Chapter 11: Processing Data with DO Loops 387

Obs ID | Name | Dept|Project | Hours
1,000 Miguel @ A12 | Document

2 111 Fred B45 | Survey 35
3| 222 Diana B45 | Document 40
4| 777 Steve 0
5 888 Monigque Al12 | Document 37
6 999 | Vien D03 | Survey

10. Correct answer: a

In the new data set, the third observation is the second observation for ID number 2
(Kelly Windsor). The value for Bonus is retained from the previous observation
because the BY variable value did not change. The new data set is shown below.

Obs | ID | Name Sale | Bonus

1| 1| Nay Rong 528,000 52,000
Kelly Windsor | 530,000 $4.000
Kelly Windsor | 540,000 54,000
Julio Meraz 515,000 $3,000
Julio Meraz 520,000 $3,000
Julio Meraz 520,000 ' $3.000
Julio Meraz 525,000 $3,000

2
3
4
5
B
7
8 Richard Krabill | $35,000 ' $2.500

F = % T T S T S R i T]

Chapter 11: Processing Data with DO Loops

1. Correct answer: ¢

DO loops are DATA step statements and cannot be used in conjunction with PROC
steps.

2. Correct answer: ¢

The number of iterations is determined by the DO statement's stop value, which in
this case is 12.

3. Correct answer: a
Use a DO loop to perform repetitive calculations starting at 1 and looping 15 times.
4. Correct answer: d

At the end of the 15th iteration of the DO loop, the value for Year is incremented to
2005. Because this value exceeds the stop value, the DO loop ends. At the bottom of
the DATA step, the current values are written to the data set.

5. Correct answer: b

388 Appendix 1 + Chapter Quiz Answer Keys

10.

The OUTPUT statement overrides the automatic output at the end of the DATA step.
On the last iteration of the DO loop, the value of Year, 2004, is written to the data
set.

Correct answer: d

The number of observations is based on the number of times the OUTPUT statement
executes. The new data set has 20 observations, one for each iteration of the DO
loop.

Correct answer: b

Place the monthly calculation in a DO loop within a DO loop that iterates once for
each year. The DO WHILE and DO UNTIL statements are not used here because the
number of required iterations is fixed. A non-iterative DO group would not be useful.

Correct answer: a

The DO UNTIL condition is evaluated at the bottom of the loop, so the enclosed
statements are always executed at least once.

Correct answer: ¢

Because the DO WHILE loop is evaluated at the top of the loop, you specify the
condition that must exist in order to execute the enclosed statements.

Correct answer: a

The WHILE expression causes the DO loop to stop executing when the value of
Distance becomes equal to or greater than 250.

Chapter 12: SAS Formats and Informats

1.

Correct answer: ¢

If you do not specify the LIBRARY= option, formats are stored in a default format
catalog named Work.Formats. The libref Work signifies that any format that is stored
in Work.Formats is a temporary format; it exists only for the current SAS session.

Correct answer: a

To store formats in a permanent catalog, you first write a LIBNAME statement to
associate the libref with the SAS data library in which the catalog will be stored.
Then add the LIB= (or LIBRARY=) option to the PROC FORMAT statement,
specifying the name of the catalog.

Correct answer: d

The name of a format that is created with a VALUE statement must begin with a
dollar sign ($) if it applies to a character variable.

Correct answer: b

A semicolon is needed after the PROC FORMAT statement. The VALUE statement
begins with the keyword VALUE and ends with a semicolon after all the labels have
been defined.

Correct answer: d

You can list values separated by commas, but the list must contain either all numeric
values or all character values. Data set variables are either numeric or character.

10.

Chapter 13: SAS Date, Time, and Datetime Values 389

Correct answer: d

When specifying a label, enclose it in quotation marks and limit the label to 32,767
characters.

Correct answer: d

MISS and MISSING are invalid keywords, and LOW does not include missing
numeric values. The keyword OTHER can be used in the VALUE statement to label
missing values as well as any values that are not specifically included in a range.

Correct answer: b

By placing the FORMAT statement in a DATA step, you permanently associate the
defined format with variables.

Correct answer: b

To associate a user-defined format with a variable, place a period at the end of the
format name when it is used in the FORMAT statement.

Correct answer: d

Adding the keyword FMTLIB to the PROC FORMAT statement displays a list of all
the formats in your catalog, along with descriptions of their values.

Chapter 13: SAS Date, Time, and Datetime Values

1.

Correct answer: ¢
A SAS date value is the number of days from January 1, 1960, to the given date.
Correct answer: d

In addition to tracking time intervals, SAS date and time values can be used in
calculations like other numeric values. This lets you calculate values that involve
dates much more easily than in other programming languages.

Correct answer: b
SAS automatically makes adjustments for leap years.
Correct answer: d

The SAS informat MMDDY Yw. reads dates such as 10222001, 10/22/01, or
10-22-01. In this case, the field width is eight.

Correct answer: b

The minimum acceptable field width for the TIMEw. informat is five. If you specify
a w value less than five, you receive an error message in the SAS log.

Correct answer: d

In the time value of a date and time expression, you must use delimiters to separate
the values for hour, minutes, and seconds.

Correct answer: b

To find the number of days spanned by two dates, subtract the first day from the last
day and add one. Because SAS date values are numeric values, they can easily be
used in calculations.

390 Appendix 1 + Chapter Quiz Answer Keys

Chapter 14: Using Functions to Manipulate Data

1.

Correct answer: b

When this DATA step is executed, SAS automatically converts the character values
of PayRate to numeric values so that the calculation can occur. Whenever data is
automatically converted, a message is written to the SAS log stating that the
conversion has occurred.

Correct answer: b

You explicitly convert character values to numeric values by using the INPUT
function. Be sure to select an informat that can read the form of the values.

Correct answer: d

You explicitly convert numeric values to character values by using the PUT function.
Be sure to select a format that can read the form of the values.

Correct answer: a

The SCAN function is used to extract words from a character value when you know
the order of the words, when their position varies, and when the words are marked by
some delimiter. In this case, you do not need to specify delimiters, because the blank
and the comma are default delimiters.

Correct answer: d

The SUBSTR function is best used when you know the exact position of the
substring to extract from the character value. You specify the position to start from
and the number of characters to extract.

Correct answer: ¢

The SUBSTR function replaces variable values if it is placed on the left side of an
assignment statement. When placed on the right side (as in Question 5), the function
extracts a substring.

Correct answer: b

The TRIM function removes trailing blanks from character values. In this case, extra
blanks must be removed from the values of FirstName. Although answer c also
works, the extra TRIM function for the variable LastName is unnecessary. Because
of the LENGTH statement, all values of FullName are padded to 40 characters.

Correct answer: d

Use the INDEX function in a subsetting IF statement, enclosing the character string
in quotation marks. Only those observations in which the function locates the string
and returns a value greater than 0 are written to the data set.

Chapter 15: Producing Descriptive Statistics

1.

Correct answer: ¢

10.

Chapter 16: Creating Output 391

By default, the MEANS procedure produces the n, mean, minimum, maximum, and
standard deviation.

Correct answer: d

To specify the variables that PROC MEANS analyzes, add a VAR statement and list
the variable names.

Correct answer: a

Unlike Age, Height, or Weight, the values of IDnum are unlikely to yield any useful
statistics.

Correct answer: a

Unlike CLASS processing, BY-group processing requires that your data already be
indexed or sorted in the order of the BY variables. You might need to run the SORT
procedure before using PROC MEANS with a BY group.

Correct answer: b

A CLASS statement produces a single large table, whereas BY-group processing
creates a series of small tables. The order of the variables in the CLASS statement
determines their order in the output table.

Correct answer: a

You can use PROC MEANS to create the table. The MEANS procedure provides
data summarization tools to compute descriptive statistics for the variables Age,
Height, and Weight for each Sex group.

Correct answer: ¢
By default, PROC FREQ creates a table for all variables in a data set.
Correct answer: ¢

Both continuous values and unique values can result in lengthy, meaningless tables.
Frequency distributions work best with categorical values.

Correct answer: d

An asterisk is used to join the variables in a two-way TABLES statement. The first
variable forms the table rows. The second variable forms the table columns.

Correct answer: d

An asterisk is used to join the variables in crosstabulation tables. The only results
shown in this table are cell percentages. The NOFREQ option suppresses cell
frequencies, the NOROW option suppresses row percentages, and the NOCOL
option suppresses column percentages.

Chapter 16: Creating Output

1.

Correct answer: d

You can generate any number of output types as long as you open the ODS
destination for each type of output you want to create.

Correct answer: a

392 Appendix 1 + Chapter Quiz Answer Keys

HTML output is created by default in the SAS windowing environment for the
Windows operating environment and UNIX, so these statements create HTML and
PDF output.

3. Correct answer: a

By default, in the SAS windowing environment for the Windows operating
environment and UNIX, SAS programs produce HTML output. If you want only
RTF output, it is a good idea to close the HTML destination before creating RTF
output, as an open destination uses system resources.

4. Correct answer: ¢

When multiple procedures are run while HTML output is open, procedure output is
appended to the same body file.

5. Correct answer: a

The CONTENTS= option creates a table of contents containing links to the body
file, D: \Output\body.html.

6. Correct answer: b

The table of contents contains a numbered heading for each procedure that creates
output.

7. Correct answer: ¢

The FRAME-= option creates an HTML file that integrates the table of contents and
the body file.

8. Correct answer: b

Specifying the URL= suboption in the file specification provides a URL that ODS
uses in the links that it creates. Specifying a simple (one name) URL creates a
relative link address to the file.

9. Correct answer: ¢

You can change the appearance of HTML output by using the STYLE= option in the
ODS HTML statement. The style name doe not need quotation marks.

10. Correct answer: d

You use the PATH= option to specify the location for HTML files to be stored. When
you use the PATH= option, you do not need to specify the full path name for the
body, contents, or frame files.

393

Appendix 2

Programming Scenario
Solutions

Scenario 1 394
Code SOIULIONttt 394
Test Your Code SOlutiont e 395

Scenario 2 395
Code SOIULIONottt 395
Test Your Code SOlutiont e 396

Scenario 3 396
Code SOIULIONottt 396
Test Your Code SOolution 397

Scenario d 398
Code SOIULIONottt 398
Test Your Code SOolution 401

SCeNATIO 5 . . . 401
Code SOIULION . . o .ttt 401
Test Your Code SOolutiont 402

Scenario 6 402
Code SOIULION . . o .ottt 402
Test Your Code SOlutiont 404

SCenario 7 404
Code SOIULION . . o .ottt 404
Test Your Code SOolutiont e 405

Scenario 8 405
Code SOIULION . . o .ottt 405
Test Your Code SOlutiont e 407

Scenario D 407
Code SOIULIONottt 407
Test Your Code SOlutiont 408

Scenario 10 408
Code SOIULIONottt 408

Test Your Code SOlutiont e 409

394 Appendix 2

Programming Scenario Solutions

Scenario 1

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within each scenario. Your code can be different, so long as it results in the
same answers.

proc sort data=cert.patients out=work.patients; /**/
by id;

run;

proc sort data=cert.measure out=work.measure;

by id;

run;

data work.merge; /*E&*/
merge work.patients work.measure; VA 3 W
by id; /*Ea*/
if age<50; /*E5*/

run;

proc sort dataswork.merge out=work.sortpatients; /*[E@&*/
by descending Age;

run;
proc print data=work.sortpatients; A 7 W
run;

Sort Cert.Patients and Cert.Measure by ID. You specify the DATA= option to specify
the data set to sort. The OUT= option specifies an output data set. The required BY
statement specifies the variable or variables to use in sorting the data.

The DATA step creates a new temporary data set named Work.Merge.

The MERGE statement combines observations from Work.Patients and
Work.Measure into a single observation in a new data set, Work.Merge, according to
the values of a common variable.

The BY statement identifies the variable that the MERGE statement uses to combine
observations. During match-merging, SAS sequentially checks each observation of
each data set to see whether the BY values match and then writes the combined
observation to the new data set.

The IF statement specifies that only patients under the age of 50 are read into
Work.Merge.

Sort Work.Merge by Age in descending order. You specify the DATA= option to
specify the data set to sort. The OUT= option specifies an output data set. The
required BY statement specifies the variable or variables to use in sorting the data.
The DESCENDING option precedes the variable name.

The PROC PRINT step enables you to view the contents of the sorted data set,
Work.Sortpatients.

Output A2.1 PROC PRINT Output of Work. Sortpatients

Obs

M o R W N =

Test Your Code Solution
1. Correct Answer: 16

2. Correct Answer: 200

ID
1129
5438
8045
8125
8012
2304

Sex

m M = = M m

Age

48
42
40
39
39
16

Height
61
52
72
70
B3
51

Weight
137
168
200
176
157
102

Scenario 2 395

If your answers are not correct, verify that you have sorted your data in descending order

and that you used the PRINT procedure to print Work.Sortpatients.

Scenario 2

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within each scenario. Your code can be different, so long as it results in the
same answers.

data work.stressl;
set cert.stress;
where RestHR <=70;
TotalTime= (timemin*60) +timesec;

if

run;

TotalTime<600 then delete;

proc print data=work.stressl;

run;

/5 /
/<8 /
/B8 /
/3 /
/< /

/*II!*

1 The DATA step creates a new, temporary data set named, Work.Stress1.

2 The SET statement specifies the SAS data set that you want to read from. To create

Work.Stress1, you read from Cert.Stress.

3 The WHERE statement selects only the observations where the values of RestHR are
greater than or equal to 70.

4 The assignment statement creates the TotalTime variable by multiplying the value of
TimeMin by 60 and adding the value of TimeSec. The values of TotalTime are

assigned to each observation.

5 The IF-THEN and DELETE statements subset the data by omitting observations that
have a TotalTime variable value less than 600.

396 Appendix 2 + Programming Scenario Solutions

6 The PROC PRINT step enables you to view the contents of the new data set,
Work.Stress1.

Output A2.2 PROC PRINT Output of Work.Stress1

Obs | ID Name RestHR | MaxHR | RecHR | TimeMin | TimeSec | Tolerance | TotalTime
1 2462 Almers, C 68 171 133 10 511 605
2 2552 | Reberson, P 69 158 139 15 41 D 941
3 | 2555 King, E 70 167 122 13 13 11 793
4 | 2571 Nunnelly, A 65 181 141 15 2 1 902
5 2586 Derber, B 68 176 119 17 35 N 1055
6 2588 Ivan, H T0 182 126 15 41 N 941

Test Your Code Solution
1. Correct Answer: 6
2. Correct Answer: 1055

If your answers are not correct, verify that you omitted the observations from the
Work.Stress1 data set.

Scenario 3

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within each scenario. Your code can be different, so long as it results in the
same answers.

data work.staffreports; A 1
set cert.staff; VA 2
where WageCategory ne'H'; /**/
format DOB mmddyyl0. ; /*E*/
Raise=WageRate*0.03; A 5

run;

proc print data=work.staffreports; /B /
sum Raise; A 7

run;

1 The DATA step creates a new data set named Work.Staffreports.

2 The SET statement specifies the SAS data set that you want to read from. To create
Work.Staffreports, you read from Cert.Staff.

3 The WHERE statement selects only the observations for the values of WageCategory
that do not equal H.

4 The FORMAT statement formats the DOB variable in the mmddyy10. format.

Scenario 3 397

5 The assignment statement creates the Raise variable. The values for Raise are
assigned for each observation by multiplying the value of WageRate by 3%.

6 The PROC PRINT step enables you to view the contents of the new data set,
Work.Staffreports.

7 The SUM statement generates a grand total for the Raise variable.

Output A2.3 PROC PRINT Output of Work.Staffreports

Obs 1D
11351
161
212
2512
282
3782
381
3922
412
442
452
4551
472
452
5002
5112
&
5132
5151
1351

=T T-T - - B R - I TR (R Uy 8 |

[I N e T T - R R
=T I T- T -~ I I~ T B T Y~ T I B N

Name DoB
Farr, Sue 03/05/1947
Cox, Kay B | 12/31/1945
Moore, Ron | 05/22/1953
Ruth, G H 04/13/1952
Shaw, Rick | 07/17/1951
Bond, Jim S | 12/04/1948
Smith, Anna | 06/09/1950
Dow, Tony 10/04/1947
Star, Burt 02/19/1956
Lewis, Ed D | 03/04/1950
Fox, Jim E 11/09/1945
Wong, Kim P 06/12/1942
Hall, Joe B 07171961
Chin, Mike 12/02/1952
Welch, WB | 09/21M1957
Delgado, BEd | 08/25/1948
Vega, Julie 10/01/1957
Owerby, Phil | 06/08/1951
Coxe, Susan | 01/19/1932
Farr, Sue 03/05/1947

Test Your Code Solution

WageCategory \WageRate
3392.50
5093.75
1813.30
167250
2192 25
2247 .50
2082.75
2960.00
2300.00
3420.00
3902.35
3442 50
2262 .50
2938.00
5910.75
4045.85
448050
6855.90
3163.00
3392.50

[I 5 R 5 I N s I o L " O " I o A " Y " IO A N " I 5 N 5 N IO 5 R 5 B

1. Correct Answer: 07/17/1951
2. Correct Answer: 177.32
3. Correct Answer: 2024.05

Bonus
1187.38
178281

634.65

550.37

T67 29

T86.63

728.96
1036.00

805.00
1197.00
1365.82
1204 88

791.88
1025.30
2068.76
1416.05
15665.18
239957
1107.05
1187.38

Raise
101.78
152.81

54.40

4718

6577
67.43
62.48
86.80
69.00
102.60

117.07

103.28
67.688
86.14

177.32
121.38
134.42
20568

94.89

101.78

2024.05

If your answers are not correct, verify that you have observations from the
Work.Staffreports data set.

398 Appendix 2

Programming Scenario Solutions

Scenario 4

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within the scenario. Your code can be different, as long as it results in the same
answers.

proc sort data=cert.laguardia out=work.laguardia; /**/
by dest;

run;

title 'Laguardia Flights'; /*E&*/

ods pdf file='LGA Airport' style=FestivalPrinter; /**/

proc print data=work.laguardia; /*Ea*/
by dest; /*E5*/

run;

ods pdf close; /B3 /

When using the SORT procedure, the DATA= option specifies the input data set, and
the OUT= option specifies the output data set. The required BY statement specifies
the sorting variables.

The TITLE statement specifies title lines for SAS output. In this example, the TITLE
statement titles the output Laguardia Flights.

The ODS PDF statement opens the PDF destination, which produces a PDF output.
The PDF file is named LGA Airport, and FestivalPrinter is used as the style template
with a .pdf extension.

The PROC PRINT statement prints the observations of Work.Laguardia using all of
the variables. See Output A2.5 on page 400.

The BY statement in the PRINT procedure produces a separate section in the report
for each BY group. As there are four destinations in Work.Laguardia, four separate
sections are produced.

The ODS PDF CLOSE statement closes the PDF destination.

Output A2.4 Partial Results: PROC PRINT Output of Work.Laguardia

Obs

L T - L R o R

42
43

45
46

Flight
387
387
387
387
387

27
271
271
27
271

Date
04MAR12
05MAR12
07TMAR12
08MAR12
09MAR12

05MAR12
07TMAR12
08MAR12
09MAR12
10MAR12

Depart | Orig

11:40
11:40
11:40
11:40
11:40

1317
13:17
13:17
13:17
1317

LGA
LGA
LGA
LGA
LGA

LGA
LGA
LGA
LGA
LGA

Dest
CPH
CPH
CPH
CPH
CPH

PAR
PAR
PAR
PAR
PAR

Boarded @ Transferred Deplaned

&1
142
131
150
128

...inore observations...

177
155
152
159
182

21
]
5
9

14

22
21
20
18

103
152
142
162
145

203
180
176
182
198

Scenario 4 399

Revenue
196540
134561
135632
128564
134523

128972
153423
133345
126543
134976

400 Appendix 2

Programming Scenario Solutions

Output A2.5 Partial Results: PROC PRINT Output of Work.Laguardia

Obs

(= I 5 DR - PR N B

Obs
34
35
36
37
38
39
40
11
42
43

45
46

Flight
387
387
387
387
387
387

Flight
271
271
271
271
271
271
271
271
271
271
271
271
271

Date
04MAR12
05MAR12
07TMAR12
08MAR12
09MAR12
10MAR12

Date
04MAR12
05MAR12
07TMAR12
08MAR12
0SMAR12
10MAR12
03MAR12
04MAR12
05MAR12
07TMAR12
08MAR12
0SMAR12
10MAR12

Laguardia Flights

Depart
11:40
11:40
11:40
11:40
11:40
11:40

Depart
11:40
12:19

9:31
12:19
1317
11:40
1317
1317
1317
1317
1317
1317
1317

Dest=CPH

Orig | Boarded Transferred Deplaned

LGA 81 21
LGA 142 8
LGA 131 5
LGA 150 9
LGA 128 14
LGA 154 18

...imore obhservations...

Dest=PAR

Orig = Boarded Transferred

LGA 146 a
LGA 177 15
LGA 155 18
LGA 152 T
LGA 153 15
LGA 182 9
LGA 147 29
LGA 146 13
LGA 177 22
LGA 155 21
LGA 152 20
LGA 159 18
LGA 182 9

103
152
142
162
145
177

Deplaned
163
227
172
187
191
153
183
163
203
180
176
182
198

Revenue
196540
134561
135632
128564
134523
109885

Revenue
156804
190098
166470
163248
170766
195468
123456
125632
128972
153423
133345
126543
134976

Output A2.6 Partial Output: PDF Output: LGA Airport

Bookmarks pd
E- Wl B
v ﬂ Print

v [Dest=CPH

D Data Set
WORK.LAGUARDIA

v [Dest=FRA

D Data Set
WORKLAGUARDIA

v [] Dest=LON

[:I Data Set
WORK.LAGUARDIA

v [Dest=PAR

[:I Data Set
WORK.LAGUARDIA

Test Your Code Solution

Obs

M B WM =

Obs

10
11
12
13

Obs
14
15
16
17
18
19
20

Flight
387
387
387
387
387
387

BRBRRRRE

Flight

219
219
219
219
219
219

Date
4MAR1Z
05MAR1Z
0TMAR12
08MAR1Z
09MAR1TZ
10MAR12

Date
03MAR12
4MAR12
D5MAR12
OTMAR12
08MAR12
D9MAR12
10MAR12

Date
04MAR12
05MAR12
DEMAR12
OTMAR12
DEMAR12
D9MAR12

10MAR12

Friday,

Scenario 5 401

December

Orig Boarded Transferred Deplaned Revenue

21

103

196540
134561
135632
128564
134523
109885

Orig Boarded Transferred Deplaned Revenue

16
14
11
2

5
11
12

200
165

187636
165456
125436
107865
178543
100967
134459

Orig Boarded Transferred Deplaned Revenue

Laguardia Flights

Dest=CFH

Depart
11:40) LGA 81
11:40) LGA 142
11:40) LGA 131
11:40) LGA 150
11:40 LGA 128
11:40 LGA 154
Dest=FRA

Depart
12:19) LGA 180
12:19) LGA 137
12:19) LGA 185
12:19) LGA 210
12:19 LGA 176
12:19) LGA 173
12:19 LGA 129
Dest=LON

Depart
9:31|LGA 232
9:31|LGA 160
931 LGA 163
931 LGA 241
931/ LGA 183
931 LGA 21
931/ LGA 167

18
4
14
9
1"
18
=

250
167
183
250
197
235
181

1. Correct Answer: 189KB — 199KB. You might get a slightly different answer,
depending on your hardware, operating system, and software version. On the actual
exam, all candidates work from the same cloned virtual machine, so the results will

be consistent for grading.

2. Correct Answer: 129

3. Correct Answer: PAR

If your answers are not correct, verify that you used a BY statement in your PROC
PRINT statement.

189065
197456
162343
134520
106753
122766
198744

Scenario 5

Code Solution

The highlighted portions below illustrate the areas where corrections are required in

order to make this program run and generate results.

7,

402 Appendix 2 - Programming Scenario Solutions

data work.aprilbills (drop=Total EquipCost) ;

set cert.aprbills;

if Days>7 then Discount=(RoomCharge)*.20;

else Discount=0;

TotalDue=Total-Discount;
format DateIn DateOut date9.;
format RoomRate RoomCharge Discount TotalDue dollarl0.2;

run;

proc print data=work.aprilbills;

run;

Output A2.7 PROC PRINT Output of AprilBills

Obs

1

2
3
4
5
6

LastName Dateln
Akron 05APR2009
Brown 12APR2009
Camnes 27TAPR2009
Denison T1APR2009
Fields 15APR2009
Jamison 16APR2009

Test Your Code Solution

1. Correct Answer: $437.41
2. Correct Answer: $280.00

DateQut | RoomRate Days

0SAPR2009
01MAY2009
29APR2009
12APR2009
22APR2009
23APR2009

5175.00
5125.00
5125.00
5175.00
5175.00
§125.00

5
20

[==T S

RoomCharge
F875.00
$2.500.00
$375.00
£350.00
$1.400.00
$1,000.00

Discount | TotalDue
50.00 51,173.45
£500.00 5232678
50.00 554024
§0.00 543741
£280.00 | 51,498.94

£200.00 | 31,146.28

Scenario 6

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within the scenario. Your code can be different, as long as it results in the same
answers.

libname certdata XLSX 'C:\Users\certdata\heart.xlsx';
data work.heart;

set certdata.heart (drop=AgeAtDeath DeathCause) ;
where Status='Alive';

if AgeCHDdiag=. then delete;
length Smoking Status $17;
if 0<=Smoking<6 then Smoking Status='Non-Smoker (0-5)';

else if 6<=Smoking<=15 then Smoking Status='Moderate (6-15)';
else if 16<=Smoking<=25 then Smoking Status='Heavy (16-25)';

else if Smoking>25 then Smoking Status='Very Heavy (> 25)';

else Smoking Status='Error';

run;

proc freq data=work.heart;

tables AgeCHDdiag*Smoking Status/norow nocol nopercent;

/*ER+/
/B /
/*EE1+/
B/
s
g/
/Kl /

/+E+/

VA o k¥
T

10

Scenario 6 403

run;

The SAS/ACCESS LIBNAME statement creates the libref certdata, which points to
the Excel workbook heart.xIsx.

The DATA step creates a new temporary data set named Work.Heart.

The SET statement indicates which worksheet in the Excel file to read. The SET
statement specifies the libref (the reference to the Excel file) and the worksheet name
as the input data. The DROP= data set option excludes the variables AgeAtDeath
and DeathCause from being written to the data set. The DROP statement could also
have been used.

The WHERE statement selects the observations where the value of the Status
variable is Alive.

The IF statement causes the DATA step to continue processing only those
observations that meet the condition of the expression specified in the IF statement.
In the example, if the value of AgeCHDdiag is missing, then those observations are
removed from the data set.

The LENGTH statement specifies that the length of Smoking_Status is set to 17 and
is a character variable. This is used to avoid truncating values.

The IF/ELSE IF statements create values for the Smoking_Status variable by
subsetting smoking values.

The ELSE statement gives an alternative action if all the other IF-THEN/ELSE
statements are not executed.

The FREQ procedure creates a two-way frequency for Work.Heart.

The TABLES statement requests a two-way frequency table for the variables
AgeCHDdiag and Smoking_Status. The options norow, nocol, and nopercent
suppress row percentages, column percentages, and cell percentages.

Output A2.8 Partial Results: PROC FREQ Results

Frequency

Table of AgeCHDdiag by Smoking_Status

Smoking_Status

Error | Heavy (16-25) Moderate (6-15) | Non-Smoker (0-5) Very Heavy (= | Total

AgeCHDdiag(AgeCHDdiag) 25)
32 0 0 0 1 0
33 0 1 0 1 0
36 0 1 0 0 0
37 0 0 0 2 0
38 0 1 0 1 0

Total

_..more ohservations...

84 0 0 2 2 0
85 0 1 0 2 0
86 0 0 0 3 0
&7 0 0 0 1 0
&8 0 0 0 2 0

3 102 56 350 44

L

—

555

404 Appendix 2 - Programming Scenario Solutions

Test Your Code Solution
1. Correct Answer: 102
2. Correct Answer: 2

3. Correct Answer: 3

Scenario 7

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within the scenario. Your code can be different, as long as it results in the same

answers.
data work.scenario7; /*E*/
set cert.templs8; /*E&*/
format Day date9.; A 3
Month=month (day) ; /*Ea*/
run;
proc freq data=work.scenario?7; /*E5*/
tables HighTemp; /*E*/
run;
proc means data=work.scenario7; /**/
class month; /*E5y*/
var AvgLowTemp AvgHighTemp; /*E&*/
run;

1 The DATA step creates a new temporary data set named Work.Scenario7.
2 The SET statement is used to read observations from one or more SAS data sets.
3 The FORMAT statement formats the Day variable in the date9. format.

4 The MONTH function returns the numeric value of the month within the Day
variable.

5 The FREQ procedure creates one-way, two-way, and n-way tables. It also describes
data by reporting the distribution of variable values.

6 The TABLES statement requests one-way to n-way frequency and crosstabulation
tables and statistics. In this case, that is a one-way frequency with the default
statistics for the variable HighTemp.

7 The MEANS procedure is used to compute descriptive statistics for the variables
stated in the VAR statement.

8 The CLASS statement provides separate calculations for each value of the Month
variable.

9 The VAR statement identifies the two variables, AvgLowTemp and AvgHighTemp,
as the analysis variables, and also controls their order in the output.

Output A2.9 PROC FREQ Results of High Temp

HighTemp Frequency Percent

21
23
26
27
28

68
T4
7
78
82

2 222

1

2 222

1
1

Cumulative
Frequency

2
3
]

85
86
a7
89
30

Output A2.10 PROC MEANS Results

Month | N Obs
1 Kh|
2 28
3 ch|

Test Your Code Solution

Variable

AvglowTemp
AvgHighTemp
AvglowTemp
AvgHighTemp

AvglowTemp
AvgHighTemp

1. Correct Answer: 2

H oL

Correct Answer: 64
Correct Answer: 29

Correct Answer: 3.17

N

i
1

24
28

3
i

Mean

266129032
43.1612903

31.7500000
482857143

37.6129032
558387097

Cumulative
Percent

222
3.33
5.56
6.67
7.78

94 44
95.56
96.67
958.89
100.00

Std Dev . Minimum

0.4951376 28.0000000
1.7145801 35.0000000

1.4813657 30.0000000
2.0880106 45.0000000

25778210 | 34.0000000
31738176 51.0000000

Scenario 8 405

Maximum

29.0000000
47.0000000

34.0000000
52.0000000

420000000
61.0000000

Scenario 8

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within the scenario. Your code can be different, as long as it results in the same

ansSwers.

data work.scenario8;

/8 /

406 Appendix 2 - Programming Scenario Solutions

set cert.addresses; A 2
Zipcode=substr (State, 3,5) ; A +3 K
State=substr (State, 1,2); /*E*/
run;
proc print data=work.scenario8; VA 5

where zipcode='85069"';
run;
proc freq data=work.scenario8 order=freq; /*m*/
tables State; /~Edll*/
run;

1 The DATA step creates a temporary data set named Work.Scenario8.
2 The SET statement reads observations from one or more SAS data sets.

3 The assignment statement creates a new variable, Zipcode, which uses the SUBSTR
function to extract the last 5 characters of the values in the variable State, starting at
and including character 3.

4 The assignment statement replaces the value of State and uses the SUBSTR function
to extract 2 characters of the values in the variable State, starting at and including
character 1.

5 The PRINT procedure enables you to view the contents of the new data set,
Work.Scenario8 where Zipcode is equal to 85069.

6 The FREQ procedure creates one-way, two-way, and n-way tables. It also describes
data by reporting the distribution of variable values. The ORDER=FREQ option
orders the table by descending frequency.

7 The TABLES statement requests a one-way frequency with the default statistics for
the variable State.

Output A2.11 PROC PRINT Results

Obs | Street City State Tel Zipcode
45 | 1861 Clarksburg Road | Harguala Valley | AZ 928-372-871 | 85069

Output A2.12 PROC FREQ Results

State Frequency | Percent

FL
NC
CA
NY
PA

...more observations...

NJ
NM
ut
WA
wi

Test Your Code Solution

1. Correct Answer: 3
2. Correct Answer: 45

3. Correct Answer: 2

4
4
3
3
3

6.56
6.56
4.92
4.92
4.92

1.64
1.64
1.64
1.64
1.64

Cumulative
Frequency

4

8
11
14
17

a7
58
59
60
61

Cumulative
Percent

6.56
13.11
18.03
22.95
2787

93.44
95.08
96.72
96.36
100.00

Scenario 9 407

Scenario 9

Code Solution

The solution listed below is one example of a program that could be used to accomplish
each task within the scenario. Your code can be different, as long as it results in the same

answers.

%let Location=USA;
data work.flightempdata;

set cert.empdata cert.empdatu cert.empdatu2;

where Country="&Location" and Salary >= 30000;

run;

proc sort data=work.flightempdata;

by descending Salary;

run;

proc export data=work.flightempdata
outfile="C:\cert\flightempdata.csv"

dbms=csv
replace;
run;

/*ER+/
/B /
/*EE1+/
/K /

/+ER*/

K3/

408 Appendix2 -

Programming Scenario Solutions

The %LET statement creates a macro variable named Location that stores the
character variable value of USA.

The DATA step creates a new temporary data set named Work.Flightempdata.

The SET statement reads and concatenates the observations from the Cert.Empdata,
Cert.Empdatu, and Cert.Empdatu2 data sets in that order.

The WHERE statement selects observations from the SAS data sets Cert.Empdata,
Cert.Empdatu, and Cert.Empdatu?2 that have a value for Country that is equal to the
value of the macro variable &location The statement also selects observations that
have a value of Salary greater than or equal to $30,000.

The PROC SORT step sorts the SAS data set Work.Flightempdata by the values of

the variable Salary in descending order.

6 PROC EXPORT exports the SAS data set Work.Flightempdata to a comma-
separated value file. The DATA= option identifies the input SAS data set, and the
OUTFILE= option specifies the complete path and filename for the delimited
external file. The DBMS = option specifies the type of data to export (in this case
CSV), and the REPLACE option overwrites an existing file.

Output A2.13 PROC EXPORT Result: Flightempdata.csv

& flightempdata - Notepad = O x

File Edit Format View Help
EmpID,Dept,Country,Salary,Date

E@@21,FINANCE & IT,USA,45158,84/09/2083
EB282,HUMAN RESOUCES,USA,368680,081/13/2009
E2089,FINANCE & IT,USA,35768,081/26/2087
EB283,SALES & MARKETING,USA,336880,87/13/2084
E9228,FLIGHT OPERATIONS,USA,33880,87/12/2084
E1152,FLIGHT OPERATIONS,USA,3@860,02/28/2008

Test Your Code Solution

1. Correct Answer: $33,000

2. Correct Answer: 290 — 300 bytes (any number within this range is an acceptable and

correct answer)

Scenario 10

Code Solution

The highlighted portions below illustrate the arecas where corrections are required in
order to make this program run and generate results.

data work.mycars;

Scenario 10 409

set sashelp.cars;
AvgMPG=mean (mpg city, mpg highway) ;
run;
title 'Cars With Average MPG Over 40';
proc print data=work.mycars;
var make model type avgmpg;
where AvgMPG>40;
run;
title 'Average MPG by Car Type';
proc means data=work.mycars mean min max maxdec=1;
var avgmpg;
class type;
run;
title;

Test Your Code Solution
1. Correct Answer: 262

2. Correct Answer: 4

410 Appendix 2 - Programming Scenario Solutions

Index

41

Special Characters

_ERROR _automatic variable
DATA step iterations and 117
functionality 112
initializing variables 115

N automatic variable
DATA step processing and 116
functionality 112

$w. format 227

A
AND operator
examples 153
in SAS expressions 143
in WHERE statement, PRINT
procedure 82
APPEND procedure
functionality 177
appending data sets 177
arguments in functions 255
arithmetic operators in SAS expressions
142
assignment statements 144
conditional processing 152
date constants 145
examples 144, 145
positioning SUBSTR function 282
SAS expressions in 142
asterisk (*) 324
attributes
See variable attributes

B

BEST12. format 261

BESTw. format 312

BY clause, DO statement 214

BY group 129

BY statement
DESCENDING option 187
group processing with 134, 314
match-merging data sets 177, 184
PRINT procedure 89, 91

SORT procedure 87, 187
syntax 314
BY value 129
BY variable 129
BY-group processing
BY group 129
BY value 129
BY variable 129
DATA step 129
determining FIRST. LAST. variables
132
FIRST.variable 131
LAST.variable 131
sorting observations 130

C
calculations
dates and times in 247
case sensitivity
format values 232
CATX function
functionality 288
syntax 288
CEIL function 300
character strings 66
PUT statement 66
searching 289, 291
specifying delimiters 278
testing programs 66
character variables
removing trailing blanks 286, 287
replacing 282
searching for strings 289
character-to-numeric conversions 256,
257
CLASS statement, MEANS procedure
313
cleaning data 121
CLM statistic 309
columns
See variables
combining data sets 177
by appending 177

412

Index

by concatenating 177, 182
by match-merging 177, 184
by one-to-one reading 177, 178

excluding unmatched observations 196

methods for 177

renaming variables 194
COMMADO. informat 260
COMMAO9.2 format 228
COMMAw.d format 227
common errors

missing RUN statement 60

missing semicolon (;) 61

unbalanced quotation mark 61
compilation phase (DATA step)

data set variables 112

descriptor portion of data sets 113

diagnosing errors in 120

match-merge processing 188

program data vector 112

syntax checking 112
concatenating data sets 177, 182, 183
concatenation operator (||) 261
conditional processing

assigning variable values 152

assignment statements 152

DO groups 207

DO loops 218

providing alternative actions 154

PUT statement and 67

testing programs 67, 155
CONTAINS operator 82
CONTENTS procedure

reading Microsoft Excel data 48

viewing library contents 28
converting data

See data conversion

CROSSLIST option, TABLES statement

(FREQ) 327
CSS statistic
MEANS procedure 309
CV statistic
MEANS procedure 309

D

data cleaning 121

data conversion 256
character-to-numeric 257
lowercase 294
numeric-to-character 256
numeric-to-character conversion 261
uppercase 293

data sets
See also combining data sets
See also match-merging data sets
BY-group processing 134

data portion 20

descriptor portion 17, 113

dropping and keeping variables 156

iteratively processing data 217

manipulating data 146

missing values 21

naming 44

naming conventions 14

observations (rows) 20

reading 45

specifying observations via system
options 85

summarized using MEANS procedure
316

testing programs 66

variable attributes 18, 112

variables and 21

DATA step

BY-group processing 129
checking processing 42
compilation phase 188
creating/modifying variables 142
debugging 120

execution phase 189
functionality 109

iterations of 117

manipulating data 146

naming data sets 44

reading Microsoft Excel data 48, 51
submitting 42

syntax 44

writing 44, 51

data validation 121

DATDIF function 263, 275
DATE function 263,271
DATE7. format 228

DATED9. format 228, 265, 266
dates and times

in calculations 247
informat support 243
manipulating with functions 241

DATETIMEw. format 243
DATETIMEw. informat 246
DATEw. format

examples 227,243

DATEw. informat

functionality 245
syntax 245

DAY function

functionality 254
manipulating date values 264
syntax 264

typical use 263

debugging

cleaning data 121

diagnosing errors in compilation phase

120
diagnosing errors in execution phase
121
validating data 121
decimal places, limiting 312
DELETE statement
example 155
in IF-THEN statement 155
delimiters
for SCAN function 278
specifying multiple 279
DESCENDING option
BY statement, SORT procedure 87
descriptive statistics 307
creating summarized data sets 316
creating tables in list format 326
group processing with BY statement
314
group processing with CLASS
statement 313
limiting decimal places 312
procedure syntax 308

producing frequency tables 317, 322,

324
selecting statistics 309

specifying variables in FREQ procedure

322
specifying variables in MEANS
procedure 313
DO groups
indenting 215
iteratively processing data 214
nesting 215
DO loops
conditionally executing 218
constructing 210
decrementing 213
functionality 212
index variables 213,216
nesting 215
specifying series of items 214
DO statement
See also iterative DO statements
BY clause 214
grouping statements 207
DO UNTIL statement 218
DO WHILE statement
functionality 218,219
syntax 219
Document destination 336
dollar sign ($)
in format names 232
name literals and 49, 52
DOLLAR10.2 format 228
DOLLARS.2 format 228

Index 413

DOLLARSY.2 format 228

DOLLARw.d format 227

DROP statement 157

DROP= data set option
determining when to specify 46
selecting variables 156

E
END statement
grouping statements 207
end-of-file marker 119
engines
See SAS engines
error handling 61
correcting common errors 60
error types 59
IF-THEN/ELSE statement 67
in DATA step compilation phase 120
in DATA step execution phase 121
interpreting messages 59
invalid option 71
resubmitting revised programs 61
semicolon errors 68
unbalanced quotation marks 69, 70
validating or cleaning data 121
Excel data
See Microsoft Excel data
execution phase (DATA step)
diagnosing errors in 121
end of processing actions 116, 119
end-of-file marker 119
initializing variables 115
input data 115
iterations of DATA step 117
match-merge processing 189
expressions 145
See also SAS expressions
external files
reading entire files 44

F
FILENAME statement

creating data sets from external files 34

naming data sets 44
syntax 34
filerefs
associating with external files 34
fully qualified filenames in 34
files
See SAS files
FIND function
examples 292
functionality 291
syntax 291

414

Index

FIRST.variable
examples 132
FIRSTOBS= system option 83
FLOOR function 300
FMTLIB keyword 235
FOOTNOTE statement
canceling 97
examples 96
modifying 97
quotation marks in 69
specifying in list reports 95
FORMAT procedure
FMTLIB keyword 235
functionality 229, 230
invoking 230
LIBRARY= option 230
syntax 230
VALUE statement 231, 232, 234
FORMAT statement

assigning formats to variables 234, 250

formatting dates 265, 266
functionality 225
syntax 225
formats 19
assigning permanent 250
assigning to variables 234, 250
decimal places 228
defining unique 231
examples 228
field widths 227
for variables 225
functionality 225
permanently assigned 103
specifying 227
storing 230
storing permanently 230
writing numeric values 312
forward slash (/)
specifying multiple delimiters 279
FRAME= option
syntax 342
FREQ procedure
See also TABLES statement, FREQ
procedure
detecting invalid data 121

producing frequency tables 317, 322,

324
specifying variables 322
suppressing table information 329
syntax 121,318
frequency tables
creating in list format 326
n-way 317, 324
one-way 317,322
suppressing information 329
two-way 324

functions
arguments 255
arrays and 255

character-to-numeric conversions 257

converting data 256

manipulating date/time values 241
syntax 255

target variables and 256

variable lists 255

G

group processing
with BY statement 134, 314
with CLASS statement 313

H
HIGH keyword 232
HTML destination 336
HTML link and path options
URL= suboption 343
HTML output
appearance of HTML 346
frame files 342
link and path options 343, 345
ODS overview 336
overview 338
specify link and path 343
table of contents 340, 342
HTML table of contents
CONTENTS= option 342
hyphen (-) 279
hypothesis testing 309

|
ID statement, PRINT procedure
BY statement and 91
VAR statement and 79
IF-THEN statement
assigning values conditionally 152
cleaning data 123
DELETE statement in 155
DO groups 207
ELSE statement 154
examples 152
for flagging errors 67
syntax 152
testing programs 65
IN= data set option 196
indenting DO groups 215
INDEX function
functionality 289
syntax 289
index variables in DO loops 213,216

informats 19
components 243
reading dates and times 243
initializing variables 115, 148
input buffer 117
INPUT function
character-to-numeric conversion 256,
259
examples 260
syntax 259
INT function 301
INTCK function
examples 273
functionality 263, 273
syntax 273
INTNX function 263,274
invalid data 121
invalid option 71
iterative DO statements 218
conditional executing 218
nesting DO loops 215

K
KEEP statement 157
KEEP= data set option
determining when to specify 46
selecting variables 156
KURTOSIS statistic, MEANS procedure
309

L
LABEL option, PRINT procedure 100
LABEL statement
assigning labels in multiple 101
assigning labels in single 102
example 101
functionality 100
syntax 100
labels
assigning descriptive 100
assigning for variables 19
assigning permanent 103
LAST.variable
examples 132
LCLM statistic, MEANS procedure 309
leading blanks, removing 288
LEFT function 286
LENGTH statement
examples 150
functionality 149, 279
length, variable 19, 279
LIBNAME statement
assigning librefs 27
defining SAS libraries 26

Index 415

referencing files in other formats 27
syntax 26
libraries
See SAS libraries
LIBRARY= option, FORMAT procedure
230
librefs
assigning 25,26
defined 13
lifespan of 27
verifying 27
LIST option, TABLES statement (FREQ)
326
list reports
creating 309
creating tables for 326
formatting data values 225
generating column totals 88
identifying observations 78
selecting observations 310
selecting variables 77
sorting data 86
specifying footnotes 95
specifying titles 95
logic errors
PUTLOG statement 63
logical operators
in SAS expressions 143
LOW keyword 232
LOWCASE function 291, 294

M
macro
using SAS macro variables 164
Markup Languages Family destination
336
match-merging data sets 188
compilation phase 188
examples 185
execution phase 189
functionality 177, 184
handling missing values 191
handling unmatched observations 191
selecting data 185
MAX statistic
MEANS procedure 309, 316
MAXDEC= option, MEANS procedure
312
MDY function
examples 270
functionality 263
missing values 270
MEAN statistic
MEANS procedure 309, 316
MEANS procedure

416

Index

BY statement 314

CLASS statement 313
creating summarized data sets 316
descriptive statistics 309
detecting invalid data 121, 122
functionality 307

hypothesis testing 309
keywords supported 309
limiting decimal places 312
MAXDEC= option 312
OUTPUT statement 316
quantile statistics 309
selecting statistics 309
specifying variables 313
syntax 122,308

VAR statement 122, 313

MEDIAN statistic, MEANS procedure

309
MERGE statement
match-merging data sets 177, 184
RENAME-= data set option 195
RETAIN statement and 148
syntax 184
Microsoft Excel data 53
CONTENTS procedure 48
creating worksheets 53
DATA statement 48, 51
name literals 51
PRINT procedure 48, 52
referencing workbooks 49
RUN statement 48, 52
SET statement 48
steps for reading 47
WHERE statement, DATA step 51
writing the DATA step 51
MIN statistic
MEANS procedure 309, 316
missing values
in match-merge processing 191
MDY function and 270
overview 21
MMDDYY10. format 228
MMDDYYS. format 228
MMDDY Yw. format 227
MMDDY Yw. informat
examples 243
functionality 243
syntax 243
MODE statistic
MEANS procedure 309
MONTH function
examples 265
functionality 254
manipulating date values 264
syntax 264
typical use 263

N
N statistic
MEANS procedure 309, 316
n-way frequency tables 317, 324
naming conventions
for variables 18
SAS data sets 14
nesting
DO groups 215
DO loops 215
NMISS statistic
MEANS procedure 309
NOCOL option, TABLES statement
(FREQ) 330
NOCUM option, TABLES statement
(FREQ) 324
NOFREQ option, TABLES statement
(FREQ) 330
NOOBS option, PRINT procedure 78
NOPERCENT option, TABLES statement
(FREQ) 330
NOROW option, TABLES statement
(FREQ) 330
NOT operator 153
numeric-to-character conversion 256, 261

o
OBS= option, OPTIONS statement 44
OBS= system option 83
observations 20
See also combining data sets
combining from multiple data sets 177
creating for DO loop iterations 213
deleting 155
identifying 78
limiting when testing programs 125
selecting in list reports 80
selecting matching 197
specifying via system options 83
unmatched 191, 196
writing explicitly 54
ODS ALL_ CLOSE statement 337
ODS destinations 336
ODS EXCEL destination
TAGATTR=style 355
ODS EXCEL statement
syntax 354
ODS HTML CLOSE statement
syntax 337
ODS HTML statement
syntax 338
table of contents syntax 340
ODS LISTING CLOSE statement 337
ODS PDF destinations
open and close statements 348

table of contents 348
ODS PDF statement
statements 348
syntax 347
ODS RTF
RTF formats 353
RTF graphics 353
ODS RTF destinations
open and close statements 353
ODS RTF statement
syntax 352
ODS statements 336
one-to-one reading of data sets
example 181
functionality 177, 178, 179
selecting data 178
one-way frequency tables 317, 322
operands 142
operators
concatenation 261
defined 142
in SAS expressions 142
logical 143
OR operator
examples 153
in SAS expressions 143
in WHERE statement, PRINT
procedure 82
OTHER keyword 232
Output Delivery System (ODS)
advantages 336
EXCEL 354, 355
HTML support 338, 340
opening and closing destinations 336
PDF 347, 348, 351
RTF 352,353
Output destination 336
OUTPUT statement
creating for DO loop iterations 213
functionality 54
syntax 54
OUTPUT statement (MEANS) 316
OUTPUT statement, MEANS procedure
functionality 316
syntax 316

P

P1 statistic, MEANS procedure 309
P10 statistic, MEANS procedure 309
P25 statistic, MEANS procedure 309
PS5 statistic, MEANS procedure 309
P50 statistic, MEANS procedure 309
P75 statistic, MEANS procedure 309
P90 statistic, MEANS procedure 309
P95 statistic, MEANS procedure 309

Index 417

P99 statistic, MEANS procedure 309
parentheses ()
for function arguments 255
logical comparisons in 153
PATH= Option
syntax 345
PDV
See program data vector
period (.)
in SAS filenames 13
PRINT procedure
BY statement 89, 91
creating list reports 76
ID statement 79, 91
LABEL option 100
NOOBS option 78
reading Microsoft Excel data 48, 52
SUM statement 88, 89
VAR statement 77, 79
WHERE statement 80
printer family destination 336
PROBT statistic, MEANS procedure 309
PROC IMPORT
OBS= option 44
verifying data 42
PROC step
missing RUN statement 67
reading external files 44
PROC TRANSPOSE
variables 158
program data vector 112
DATA step processing 112, 117, 118
match-merge processing 188, 189, 190,
191
programming workspace
SAS libraries 11
PROPCASE function 294
PUT function
numeric-to-character conversion 256,
260, 261
syntax 262
PUT statement
character strings 66
conditional processing and 67
data set variables 66
syntax 65
testing programs 65, 66, 155
PUTLOG statement 63

Q

QI statistic, MEANS procedure 309

Q3 statistic, MEANS procedure 309

QRANGE statistic, MEANS procedure
309

QTR function

418 Index

functionality 254 SAS log 9, 261
manipulating date values 264 clearing 61
syntax 264 resubmitting revised programs 62
typical use 263 SAS programs
quantile statistics 309 DATA step processing 109
quotation marks error handling 59
common errors 69 processing 8
format names and 232 resubmitting revised 61
logical operations 153 results of processing 9
numeric-to-character conversion 261 SAS log 9
reading Microsoft Excel data 49 SAS sessions

libref lifespan and 27
SAS statements

R See also assignment statements
RANGE statistic DO groups 207
MEANS procedure 309 executing repeatedly 210
RENAME-= data set option 195 SAS/ACCESS engines 28
renaming variables 194 SAS/ACCESS LIBNAME statement
RETAIN statement naming data sets 44
initializing sum variables 148 syntax 48
syntax 148 Sashelp library 11
RIGHT function 286 Sasuser library 11
ROUND function 302 SCAN function
rows functionality 277
See observations specifying delimiters 278
RTF destination 336 specifying variable length 279
RUN statement SUBSTR function versus 285
reading Microsoft Excel data 48, 52 syntax 278

semantic errors 59
semicolon (;)

S common errors 68
SAS engines 28 SET statement
SAS expressions 142 BY statement and 313
accumulating totals 147 concatenating data sets 177, 182
arithmetic operators in 142 DATA step processing 115, 117
logical operators in 143 one-to-one reading 177, 178
specifying compound 82 reading data sets 45
specifying in list reports 81 reading Microsoft Excel data 48, 51
SAS files 13 RETAIN statement and 148
naming conventions 14 syntax 45
referencing 13 SKEWNESS statistic, MEANS procedure
referencing in other formats 27 309
storing 12 SORT procedure
temporary 13 BY statement 87, 187
two-level names 13, 25, 27 examples 86
SAS formats sorting data in list reports 86
See formats syntax 86
SAS informats sorting data in list reports 86
See informats statistics
SAS libraries 11 quantile 309
creating 11 summary 316
defining 11, 25 STD statistic
deleting 12 MEANS procedure 309, 316
storing SAS files 12 STDDEYV statistic, MEANS procedure
viewing 28 309

viewing library contents 28 STDERR statistic

MEANS procedure 309
STEP statement 51
storing
formats 230
SAS files 12
strings
See character strings
STYLE= option
syntax 346, 351
subsetting data 155
subsetting IF statement
examples 151
finding year 266
functionality 47
selecting matching observations 197
syntax 151
SUBSTR function
functionality 261, 280
positioning 282
replacing text 282
SCAN function versus 285
syntax 280
subtotaling variables 89, 323
sum statement
accumulating totals 147
DO loops and 211
syntax 147
SUM statement, PRINT procedure
creating customized layouts 91
generating column totals 88
requesting subtotals 89
syntax 88
SUM statistic
MEANS procedure 309
sum variables, initializing 148
summary statistics 316
SUMWGT statistic
MEANS procedure 309
syntax errors 59
system options
specifying observations 83

T
T statistic
MEANS procedure 309
TABLES statement, FREQ procedure 121
creating n-way tables 324
creating one-way tables 322
creating two-way tables 324
CROSSLIST option 327
examples 323
LIST option 326
NOCOL option 330
NOCUM option 324
NOFREQ option 330

Index 419

NOPERCENT option 330
NOROW option 330
syntax 322,324
target variables
defined 256
missing values and 270
temporary variables 196, 313
testing programs
character strings 66
conditional processing 67, 155
data set variables 66
hypothesis testing 309
limiting observations 125
PUT statement 65
TIME function 263
TIMEw. format 243
TIMEw. informat 246
TITLE statement
canceling 97
examples 95
modifying 97
quotation marks in 69
specifying in list reports 95
TODAY function 263
trailing blanks, removing 286, 287, 288
TRANWRD function 295
TRIM function 287
two-way frequency tables 324

U
UCLM statistic, MEANS procedure 309
UNIX environment
SAS library implementation 12, 26
storing files 12
unbalanced quotation marks 69, 70
unmatched observations
excluding 196
handling 191
UPCASE function 291, 293
UPDATE statement 148
USS statistic
MEANS procedure 309

\'
validating data 121
VALIDMEMNAME-= system option
naming conventions 16
VALIDNARNAME-= system option
naming conventions 14
VALUE statement, FORMAT procedure
assigning formats to variables 234
functionality 231
HIGH keyword 232
LOW keyword 232

420

Index

OTHER keyword 232
specifying value ranges 232
syntax 231
VAR statement
MEANS procedure 122,309, 313,316
PRINT procedure 77, 79
VAR statistic
MEANS procedure 309
variable attributes
data sets 18, 112
format considerations 19
variables 21
accumulating totals 147
assigning formats 234, 250
assigning labels 19, 330
assigning values conditionally 152
attributes 18, 19
creating or modifying 142
creating/modifying 147
DO groups 207
format overview 19
functionality 21
generating totals 88
index 213,216
informat overview 19
initializing 115, 148
labels for 19
length of 19,279
macro 164
missing values 21
naming conventions 14, 16, 18
PROC TRANSPOSE 158
renaming 194
requesting subtotals 89, 323
selecting in list reports 77
selecting to drop and keep 156
specifying in FREQ procedure 322
specifying in MEANS procedure 313
specifying lengths 149
subsetting data 155
sum 148
target 256, 270
temporary 196, 313

testing programs 66
types of 19

w
w. format 227
w.d format 227
w.d informat 258
WEEKDATEw. format 248
WEEKDAY function 263, 266
WHERE statement, DATA step
automatic conversions and 258
reading Microsoft Excel data 51
WHERE statement, PRINT procedure
CONTAINS operator 82
examples 82
specifying compound expressions 82
specifying expressions 81
syntax 80
Windows environment
SAS library implementation 12, 26
storing files 12
unbalanced quotation marks 69
WORDDATEw. format 249
Work library 11
writing observations explicitly 54

Y

YEAR function
examples 265
functionality 254
manipulating date values 264
syntax 264
typical use 263

YRDIF function 263, 275

Y4

z/OS environment
SAS library implementation 12, 26
unbalanced quotation marks 69, 70

Ready to take your SAS®
and JMP“skills up a notch?

P

B

\

-

4

Be among the first to know about new books,
special events, and exclusive discounts.
support.sas.com/newbooks

Share your expertise. Write a book with SAS.
support.sas.com/publish

@ sas.com/books S&a-s

for additional books and resources. THE POWER TO KNOW.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2017 SAS Institute Inc. All rights reserved. M1588358 US.0217

	Contents
	How to Prepare for the Exam
	Requirements and Details
	Requirements
	Exam Objectives and Updates to This Book
	Take a Practice Exam
	Registering for the Exam
	Additional Resources for Learning SAS Programming

	Syntax Conventions

	Accessibility Features of the Prep Guide
	Overview
	Accessibility Documentation Help
	Documentation Format

	SAS Certified Specialist Prep Guide
	Setting Up Practice Data
	Accessing Your Practice Data
	Requirements
	Practice Data ZIP File
	Instructions

	Basic Concepts
	Getting Started
	The Basics of the SAS Language
	SAS Statements
	Global Statements
	DATA Step
	PROC Step
	SAS Program Structure
	Processing SAS Programs
	Log Messages
	Results of Processing

	SAS Libraries
	Definition
	Predefined SAS Libraries
	Defining Libraries
	How SAS Files Are Stored
	Storing Files Temporarily or Permanently

	Referencing SAS Files
	Referencing Permanent SAS Data Sets
	Referencing Temporary SAS Files
	Rules for SAS Names
	VALIDVARNAME=System Option
	VALIDMEMNAME=System Option
	When to Use VALIDMEMNAME=System Option

	SAS Data Sets
	Overview of Data Sets
	Descriptor Portion
	SAS Variable Attributes
	Data Portion
	SAS Indexes
	Extended Attributes

	Chapter Quiz

	Accessing Your Data
	SAS Libraries
	Assigning Librefs
	Verifying Librefs
	How Long Librefs Remain in Effect
	Specifying Two-Level Names
	Referencing Third-Party Data
	Accessing Stored Data

	Viewing SAS Libraries
	Viewing Libraries
	Viewing Libraries Using PROC CONTENTS
	Example: View the Contents of an Entire Library
	Example: View Descriptor Information
	Example: View Descriptor Information Using the Varnum Option

	Chapter Quiz

	Creating SAS Data Sets
	Referencing an External Data File
	Using a FILENAME Statement
	Defining a Fully Qualified Filename
	Referencing a Fully Qualified Filename

	The IMPORT Procedure
	The Basics of PROC IMPORT
	PROC IMPORT Syntax
	Example: Importing an Excel File with an XLSX Extension
	Example: Importing a Delimited File with a TXT Extension
	Example: Importing a Space-Delimited File with a TXT Extension
	Example: Importing a Comma-Delimited File with a CSV Extension
	Example: Importing a Tab-Delimited File

	Reading and Verifying Data
	Verifying the Code That Reads the Data
	Checking DATA Step Processing
	Printing the Data Set
	Reading the Entire External File

	Using the Imported Data in a DATA Step
	Naming the Data Set with the DATA Statement
	Specifying the Imported Data with the SET Statement

	Reading a Single SAS Data Set to Create Another
	Example: Reading a SAS Data Set
	Specifying DROP= and KEEP= Data Set Options

	Reading Microsoft Excel Data with the XLSX Engine
	Running SAS with Microsoft Excel
	Steps for Reading Excel Data
	The LIBNAME Statement
	Referencing an Excel Workbook
	Referencing an Excel Workbook in a DATA Step
	Printing an Excel Worksheet as a SAS Data Set

	Creating Excel Worksheets
	Writing Observations Explicitly
	Chapter Quiz

	Identifying and Correcting SAS Language Errors
	Error Messages
	Types of Errors
	Syntax Errors
	Example: Syntax Error Messages

	Correcting Common Errors
	The Basics of Error Correction
	Resubmitting a Revised Program
	The Basics of Logic Errors
	PUT Statement
	Missing RUN Statement
	Missing Semicolon
	Correcting the Error: Missing Semicolon
	Unbalanced Quotation Marks
	Correcting the Error in the Windows Operating Environment
	Correcting the Error in the UNIX Environment
	Correcting the Error in the z/OS Operating Environment
	Semantic Error: Invalid Option
	Correcting the Error: Invalid Option

	Chapter Quiz

	Creating Reports
	Creating a Basic Report
	Selecting Variables
	The VAR Statement
	Removing the OBS Column

	Identifying Observations
	Using the ID Statement in PROC PRINT
	Example: ID Statement
	Example: ID and VAR Statement
	Selecting Observations
	Specifying WHERE Expressions
	Using the CONTAINS Operator
	Specifying Compound WHERE Expressions
	Examples of WHERE Statements
	Using System Options to Specify Observations
	Examples: FIRSTOBS= and OBS= Options
	Using FIRSTOBS= and OBS= for Specific Data Sets
	Example: FIRSTOBS= and OBS= as Data Set Options

	Sorting Data
	The SORT Procedure
	Example: PROC SORT

	Generating Column Totals
	The SUM Statement
	Creating Subtotals for Variable Groups
	Example: SUM Statement
	Creating a Customized Layout with BY Groups and ID Variables
	Example: ID, BY, and SUM Statements
	Creating Subtotals on Separate Pages
	Example: PAGEBY Statement

	Specifying Titles and Footnotes in Procedure Output
	TITLE and FOOTNOTE Statements
	Example: Creating Titles
	Example: Creating Footnotes
	Modifying and Canceling Titles and Footnotes

	Assigning Descriptive Labels
	Temporarily Assigning Labels to Variables
	Example: Using the LABEL Option in the PROC PRINT Statement
	Example: Using Multiple LABEL Statements
	Example: Using a Single LABEL Statement to Assign Multiple
Labels

	Using Permanently Assigned Labels
	Chapter Quiz

	Understanding DATA Step Processing
	How SAS Processes Programs
	Compilation Phase
	Program Data Vector (PDV)
	Syntax Checking
	Data Set Variables
	Descriptor Portion of the SAS Data Set

	Execution Phase
	Initializing Variables
	SET Statement
	Sequentially Process Statements
	End of the DATA Step
	Iterations of the DATA Step
	End-of-File Marker
	End of the Execution Phase

	Debugging a DATA Step
	Diagnosing Errors in the Compilation Phase
	Diagnosing Errors in the Execution Phase
	Debugging Data Errors
	Using an Assignment Statement to Clean Invalid Data

	Testing Your Programs
	Limiting Observations
	Example: Viewing Execution in the SAS Log

	Chapter Quiz

	BY-Group Processing
	Definitions
	Preprocessing Data
	Determine Whether the Data Requires Preprocessing
	Example: Sorting Observations for BY-Group Processing

	FIRST. and LAST. DATA Step Variables
	How the DATA Step Identifies BY Groups
	How SAS Determines FIRST.variable and
LAST.variable
	Example: Grouping Observations Using One BY Variable
	Example: Grouping Observations Using Multiple BY Variables

	Chapter Quiz

	Creating and Managing Variables
	Creating Variables
	Assignment Statements
	SAS Expressions
	Using Operators in SAS Expressions
	Examples: Assign Variables
	Date Constants
	Example: Assignment Statements and Date Values

	Modifying Variables
	Selected Useful Statements
	Accumulating Totals
	Example: Accumulating Totals
	Initializing Sum Variables
	Example: RETAIN Statement

	Specifying Lengths for Variables
	Avoiding Truncated Variable Values
	Example: LENGTH Statement

	Subsetting Data
	Using a Subsetting IF Statement
	Example: Subsetting IF Statement
	Categorizing Values
	Example: IF-THEN Statement
	Examples: Logical Operators
	Providing an Alternative Action
	Deleting Unwanted Observations
	Example: IF-THEN and DELETE Statements
	Selecting Variables
	Example: DROP Data Set Option
	Example: Using the DROP Statement

	Transposing Variables into Observations
	The TRANSPOSE Procedure
	PROC TRANSPOSE Results
	Example: Performing a Simple Transposition
	Transposing Specific Variables
	Naming Transposed Variables
	Transposing BY Groups

	Using SAS Macro Variables
	%LET Statement
	Example: Using SAS Macro Variables with Numeric Values
	Example: Using SAS Macro Variables with Character Values
	Example: Using Macro Variables in TITLE Statements

	Chapter Quiz

	Combining SAS Data Sets
	How to Prepare Your Data Sets
	Determining the Structure and Contents of Data Sets
	Testing Your Program
	Looking at Sources of Common Problems

	Methods of Combining SAS Data Sets: The Basics
	One-to-One Reading: Details
	One-to-One Reading Syntax
	How One-to-One Reading Selects Data
	How One-to-One Reading Works
	Example: Using One-to-One Reading to Combine Data Sets

	Concatenating: Details
	Concatenating Syntax
	How Concatenating Selects Data
	Example: Using Concatenating to Combine Data Sets

	Match-Merging: Details
	Match-Merging Syntax
	How Match-Merging Selects Data
	Example: Using Match-Merging to Combine Data Sets
	Example: Merge in Descending Order

	Match-Merge Processing
	The Basics of Match-Merge Processing
	The Compilation Phase: Setting Up a New Data Set
	The Execution Phase: Match-Merging Observations
	Handling Unmatched Observations and Missing Values

	Renaming Variables
	The Basics of Renaming Variables
	RENAME Statement Syntax
	Example: Renaming Variables

	Excluding Unmatched Observations
	Overview
	Identifying Observation in Both Data Sets
	Selecting Matching Observations

	Chapter Quiz

	Processing Data with DO Loops
	The Basics of DO Loops
	The Basics of Using Grouping Statements and DO Groups
	Example: DO and END Statements
	DO Statement, Iterative Syntax
	Example: Processing Iterative DO Loops

	Constructing DO Loops
	DO Loop Execution
	Using Explicit OUTPUT Statements
	Decrementing DO Loops
	Specifying a Series of Items

	Nesting DO Loops
	Indenting and Nesting DO Groups
	Examples: Nesting DO Loops

	Iteratively Processing Observations from a Data Set
	Conditionally Executing DO Loops
	Overview
	Using the DO UNTIL Statement
	Using the DO WHILE Statement

	Chapter Quiz

	SAS Formats and Informats
	Applying SAS Formats and Informats
	Temporarily Assigning Formats to Variables
	Specifying SAS Formats
	Field Widths
	Decimal Places
	Examples: Data Values and Formats

	The FORMAT Procedure
	Definitions
	A Word about PROC FORMAT
	The PROC FORMAT Statement
	Permanently Storing Your Formats

	Defining a Unique Format
	The VALUE Statement
	Specifying Value Ranges

	Associating User-Defined Formats with Variables
	How SAS Finds Format Catalogs
	Assigning Formats to Variables
	Displaying User-Defined Formats

	Chapter Quiz

	SAS Date, Time, and Datetime Values
	SAS Date and Time Values
	Definitions
	Example: Date and Time Values

	Reading Dates and Times with Informats
	Overview
	The MMDDYYw. Informat
	Example: Reading Dates with Formats and Informats
	The DATEw. Informat
	The TIMEw. Informat
	The DATETIMEw. Informat

	Example: Using Dates and Times in Calculations
	Displaying Date and Time Values with Formats
	The WEEKDATEw. Format
	The WORDDATEw. Format

	Chapter Quiz

	Using Functions to Manipulate Data
	The Basics of SAS Functions
	Definition
	Uses of SAS Functions
	SAS Functions Categories

	SAS Functions Syntax
	Arguments and Variable Lists
	Example: Multiple Arguments
	Target Variables

	Converting Data with Functions
	A Word about Converting Data
	Potential Problems of Omitting INPUT or PUT
	Automatic Character-to-Numeric Conversion
	When Automatic Conversion Occurs
	Restriction for WHERE Expressions
	Explicit Character-to-Numeric Conversion
	Automatic Numeric-to-Character Conversion
	Explicit Numeric-to-Character Conversion

	Manipulating SAS Date Values with Functions
	SAS Date Functions
	YEAR, QTR, MONTH, and DAY Functions
	WEEKDAY Function
	MDY Function
	DATE and TODAY Functions
	INTCK Function
	INTNX Function
	DATDIF and YRDIF Functions

	Modifying Character Values with Functions
	SCAN Function
	SUBSTR Function
	SCAN versus SUBSTR Functions
	LEFT and RIGHT Functions
	Concatenation Operator
	TRIM Function
	CATX Function
	INDEX Function
	Finding a String Regardless of Case
	FIND Function
	UPCASE Function
	LOWCASE Function
	PROPCASE Function
	TRANWRD Function
	COMPBL Function
	COMPRESS Function

	Modifying Numeric Values with Functions
	CEIL and FLOOR Functions
	INT Function
	ROUND Function

	Nesting SAS Functions
	Chapter Quiz

	Producing Descriptive Statistics
	The MEANS Procedure
	What Does the MEANS Procedure Do?
	MEANS Procedure Syntax
	Example: Default PROC MEANS Output
	Specifying Descriptive Statistics Keywords
	Example: Specifying Statistic Keywords
	Limiting Decimal Places with MAXDEC= Option
	Specifying Variables Using the VAR Statement
	Group Processing Using the CLASS Statement
	Group Processing Using the BY Statement
	Creating a Summarized Data Set Using the OUTPUT Statement

	The FREQ Procedure
	What Does the FREQ Procedure Do?
	 FREQ Procedure Syntax
	Example: Creating a One-Way Frequency Table (Default)
	Specifying Variables Using the TABLES Statement
	Example: Creating a One-Way Table for One Variable
	Example: Determining the Report Layout
	Create Two-Way and N-Way
Tables
	Example: Creating Two-Way Tables
	Examples: Creating N-Way Tables
	Creating Tables Using the LIST Option
	Example: Using the LIST Option
	Example: Using the CROSSLIST Option
	Suppressing Table Information
	Example: Suppressing Percentages

	Chapter Quiz

	Creating Output
	The Output Delivery System (ODS)
	Overview of ODS
	Opening and Closing ODS Destinations
	Using Statements to Open and Close ODS Destinations

	Creating HTML Output with ODS
	The ODS HTML Statement
	Example: Creating Output with PROC PRINT
	Creating HTML Output with a Table of Contents
	Using Options to Specify Links and Paths
	Changing the Appearance of HTML Output

	Creating PDF Output with ODS
	The ODS PDF Statement
	The ODS Printer Family of Statements
	Opening and Closing the PDF Destination
	Working with the Table of Contents
	Example: Creating PDF Output Using the FILE= Option
	Example: Creating a Printable Table of Contents
	Changing the Appearance of PDF Output

	Creating RTF Output with ODS
	The ODS RTF Statement
	Opening and Closing the RTF Destination
	Understanding How RTF Formats Output
	ODS RTF and Graphics
	Example: Using the STYLE= Option (FestivalPrinter Style)

	Creating EXCEL Output with ODS
	The ODS EXCEL Statement
	Details about the Excel ODS Destination
	Example: Customizing Your Excel Output

	The EXPORT Procedure
	The Basics of PROC EXPORT
	PROC EXPORT Syntax
	Example: Exporting a Subset of Observation to a CSV File

	Chapter Quiz

	Workbook
	Practice Programming Scenarios
	Scenario 1
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 2
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 3
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 4
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 5
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 6
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 7
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 8
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 9
	Directions
	Test Your Code
	Objectives Accomplished

	Scenario 10
	Directions
	Test Your Code
	Objectives Accomplished

	Quiz Answer Keys and Scenario Solutions
	Chapter Quiz Answer Keys
	Chapter 2: Basic Concepts
	Chapter 3: Accessing Your Data
	Chapter 4: Creating SAS Data Sets
	Chapter 5: Identifying and Correcting SAS Language Errors
	Chapter 6: Creating Reports
	Chapter 7: Understanding DATA Step Processing
	Chapter 8: BY-Group Processing
	Chapter 9: Creating and Managing Variables
	Chapter 10: Combining SAS Data Sets
	Chapter 11: Processing Data with DO Loops
	Chapter 12: SAS Formats and Informats
	Chapter 13: SAS Date, Time, and Datetime Values
	Chapter 14: Using Functions to Manipulate Data
	Chapter 15: Producing Descriptive Statistics
	Chapter 16: Creating Output

	Programming Scenario Solutions
	Scenario 1
	Code Solution
	Test Your Code Solution

	Scenario 2
	Code Solution
	Test Your Code Solution

	Scenario 3
	Code Solution
	Test Your Code Solution

	Scenario 4
	Code Solution
	Test Your Code Solution

	Scenario 5
	Code Solution
	Test Your Code Solution

	Scenario 6
	Code Solution
	Test Your Code Solution

	Scenario 7
	Code Solution
	Test Your Code Solution

	Scenario 8
	Code Solution
	Test Your Code Solution

	Scenario 9
	Code Solution
	Test Your Code Solution

	Scenario 10
	Code Solution
	Test Your Code Solution

	Index

