COMPUTER
ORGANIZATION
AND ARCHITECTURE

Designing for Performance
Tenth Edition

WILLIAM STALLINGS

R
CoMPUTER ORGANIZATION
AND ARCHITECTURE

DESIGNING FOR PERFORMANCE

TENTH EDITION

This page intentionally left blank

CoMPUTER ORGANIZATION
AND ARCHITECTURE
DESIGNING FOR PERFORMANCE
TENTH EDITION

William Stallings

With contribution by
Peter Zeno
University of Bridgeport

With Foreword by
Chris Jesshope
Professor (emeritus) University of Amsterdam

PEARSON

Boston e Columbus ® Hoboken e Indianapolis ® New York e San Francisco
Amsterdam e Cape Town ® Dubai ® London ® Madrid ¢ Milan ® Munich e Paris ¢ Montreal
Toronto e Delhi ® Mexico City ® Sao Paulo Sydney ® Hong Kong ® Seoul e Singapore e Taipei ® Tokyo

Vice President and Editorial Director, ECS: Marcia J.
Horton

Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kelsey Loanes

Program Manager: Carole Snyder

Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Project Manager: Robert Engelhardt

Media Team Lead: Steve Wright

R&P Manager: Rachel Youdelman

R&P Senior Project Manager: Timothy Nicholls
Procurement Manager: Mary Fischer

Senior Specialist, Program Planning and Support:
Maura Zaldivar-Garcia

Inventory Manager: Bruce Boundy

VP of Marketing: Christy Lesko

Director of Field Marketing: Demetrius Hall
Product Marketing Manager: Bram van Kempen
Marketing Assistant: Jon Bryant

Cover Designer: Marta Samsel

Cover Art: © anderm / Fotolia

Full-Service Project Management:
Mahalatchoumy Saravanan, Jouve India
Printer/Binder: Edwards Brothers Malloy

Cover Printer: Lehigh-Phoenix Color/Hagerstown
Typeface: Times Ten LT Std 10/12

Copyright © 2016, 2013, 2010 Pearson Education, Inc., Hoboken, NJ 07030. All rights reserved. Manufactured in
the United States of America. This publication is protected by Copyright and permissions should be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materials
from this work, please submit a written request to Pearson Higher Education, Permissions Department, 221 River

Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps. Credits and acknowledgments borrowed from other sources and
reproduced, with permission, in this textbook appears on page 833.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained

in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with, or
arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London

Pearson Education Australia Ply. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Hoboken, New Jersey

Library of Congress Cataloging-in-Publication Data

Stallings, William.

Computer organization and architecture : designing for performance / William Stallings. — Tenth edition.

pages cm
Includes bibliographical references and index.

ISBN 978-0-13-410161-3 — ISBN 0-13-410161-8 1. Computer organization. 2. Computer architecture.

1. Title.
QA76.9.C643S73 2016
004.2'2—dc23

10987654321

PEARSON

www.pearsonhighered.com

2014044367

ISBN-10: 0-13-410161-8
ISBN-13: 978-0-13-410161-3

http:\\www.pearsonhighered.com

1o Tricia
my loving wife, the kindest
and gentlest person

This page intentionally left blank

CONTENTS

Foreword xiii

Preface xv

About the Author xxiii

PART ONE INTRODUCTION 1

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Basic Concepts and Computer Evolution 1

Organization and Architecture 2

Structure and Function 3

A Brief History of Computers 11

The Evolution of the Intel x86 Architecture 27
Embedded Systems 29

Arm Architecture 33

Cloud Computing 39

Key Terms, Review Questions, and Problems 42

Performance Issues 45

Designing for Performance 46

Multicore, Mics, and GPGPUs 52

Two Laws that Provide Insight: Ahmdahls Law and Little’s Law 53
Basic Measures of Computer Performance 56

Calculating the Mean 59

Benchmarks and Spec 67

Key Terms, Review Questions, and Problems 74

PART TWO THE COMPUTER SYSTEM 80

Chapter 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Chapter 4

4.1
4.2
4.3
4.4
4.5

A Top-Level View of Computer Function and Interconnection 80

Computer Components 81

Computer Function 83

Interconnection Structures 99

Bus Interconnection 100

Point-to-Point Interconnect 102

PCI Express 107

Key Terms, Review Questions, and Problems 116

Cache Memory 120

Computer Memory System Overview 121

Cache Memory Principles 128

Elements of Cache Design 131

Pentium 4 Cache Organization 149

Key Terms, Review Questions, and Problems 152

Appendix 4A Performance Characteristics of Two-Level Memories 157

viii CONTENTS

Chapter 5 Internal Memory 165

5.1 Semiconductor Main Memory 166

5.2 Error Correction 174

5.3 DDR DRAM 180

5.4 Flash Memory 185

5.5 Newer Nonvolatile Solid-State Memory Technologies 187
5.6 Key Terms, Review Questions, and Problems 190

Chapter 6 External Memory 194

6.1 Magnetic Disk 195

6.2 RAID 204

6.3 Solid State Drives 212

6.4 Optical Memory 217

6.5 Magnetic Tape 222

6.6 Key Terms, Review Questions, and Problems 224

Chapter 7 Input/Output 228

71 External Devices 230

7.2 170 Modules 232

7.3 Programmed /0 235

7.4 Interrupt-Driven 1I/0 239

7.5 Direct Memory Access 248

7.6 Direct Cache Access 254

7.7 I/0 Channels and Processors 261

7.8 External Interconnection Standards 263

7.9 IBM zEnterprise EC12 I/O Structure 266

7.10 Key Terms, Review Questions, and Problems 270
Chapter 8 Operating System Support 275

8.1 Operating System Overview 276

8.2 Scheduling 287

8.3 Memory Management 293

8.4 Intel x86 Memory Management 304

8.5 Arm Memory Management 309

8.6 Key Terms, Review Questions, and Problems 314

PART THREE ARITHMETIC AND LOGIC 318
Chapter 9 Number Systems 318

9.1 The Decimal System 319

9.2 Positional Number Systems 320

9.3 The Binary System 321

9.4 Converting Between Binary and Decimal 321
9.5 Hexadecimal Notation 324

9.6 Key Terms and Problems 326

Chapter 10 Computer Arithmetic 328

10.1 The Arithmetic and Logic Unit 329
10.2 Integer Representation 330
10.3 Integer Arithmetic 335

10.4
10.5
10.6

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6

CONTENTS

Floating-Point R epresentation 350
Floating-Point Arithmetic 358

Key Terms, Review Questions, and Problems 367
Digital Logic 372

Boolean Algebra 373

Gates 376

Combinational Circuits 378

Sequential Circuits 396

Programmable Logic Devices 405

Key Terms and Problems 409

PART FOUR THE CENTRAL PROCESSING UNIT 412

Chapter 12

121
12.2
12.3
12.4
12.5
12.6

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Instruction Sets: Characteristics and Functions 412

Machine Instruction Characteristics 413

Types of Operands 420

Intel x86 and ARM Data Types 422

Types of Operations 425

Intel x86 and ARM Operation Types 438

Key Terms, Review Questions, and Problems 446
Appendix 12A Little-, Big-, and Bi-Endian 452

Instruction Sets: Addressing Modes and Formats 456

Addressing Modes 457

x86 and ARM Addressing Modes 463
Instruction Formats 469

x86 and ARM Instruction Formats 477
Assembly Language 482

Key Terms, Review Questions, and Problems 484

Processor Structure and Function 488

Processor Organization 489

Register Organization 491

Instruction Cycle 496

Instruction Pipelining 500

The x86 Processor Family 517

The ARM Processor 524

Key Terms, Review Questions, and Problems 530

Reduced Instruction Set Computers 535

Instruction Execution Characteristics 537

The Use of a Large Register File 542
Compiler-Based Register Optimization 547
Reduced Instruction Set Architecture 549

RISC Pipelining 555

MIPS R4000 559

SPARC 565

RISC versus CISC Controversy 570

Key Terms, Review Questions, and Problems 571

ix

X CONTENTS

Chapter 16 Instruction-Level Parallelism and Superscalar Processors 575

16.1 Overview 576

16.2 Design Issues 581

16.3 Intel Core Microarchitecture 591

16.4 ARM Cortex-A8 596

16.5 ARM Cortex-M3 604

16.6 Key Terms, Review Questions, and Problems 608

PART FIVE PARALLEL ORGANIZATION 613
Chapter 17 Parallel Processing 613

171 Multiple Processor Organizations 615

17.2 Symmetric Multiprocessors 617

17.3 Cache Coherence and the MESI Protocol 621
17.4 Multithreading and Chip Multiprocessors 628
17.5 Clusters 633

17.6 Nonuniform Memory Access 640

17.7 Cloud Computing 643

17.8 Key Terms, Review Questions, and Problems 650

Chapter 18 Multicore Computers 656

18.1 Hardware Performance Issues 657

18.2 Software Performance Issues 660

18.3 Multicore Organization 665

18.4 Heterogeneous Multicore Organization 667

18.5 Intel Core i7-990X 676

18.6 ARM Cortex-A15 MPCore 677

18.7 IBM zEnterprise EC12 Mainframe 682

18.8 Key Terms, Review Questions, and Problems 685

Chapter 19 General-Purpose Graphic Processing Units 688

19.1 Cuda Basics 689

19.2 GPU versus CPU 691

19.3 GPU Architecture Overview 692

19.4 Intel’s Gen8 GPU 701

19.5 When to Use a GPU as a Coprocessor 704
19.6 Key Terms and Review Questions 706

PART SIX THE CONTROL UNIT 707
Chapter 20 Control Unit Operation 707

20.1 Micro-Operations 708

20.2 Control of the Processor 714

20.3 Hardwired Implementation 724

20.4 Key Terms, Review Questions, and Problems 727
Chapter 21 Microprogrammed Control 729

21.1 Basic Concepts 730
21.2 Microinstruction Sequencing 739

21.3
21.4
21.5

Appendix A

Al
A2
A3
A4
A5
A.6
A7

Appendix B

B.1
B.2
B.3
B.4

References 800

Index 809
Credits 833

CONTENTS

Microinstruction Execution 745
TT 8800 755
Key Terms, Review Questions, and Problems 766

Projects for Teaching Computer Organization and Architecture 768

Interactive Simulations 769
Research Projects 771

Simulation Projects 771

Assembly Language Projects 772
Reading/Report Assignments 773
Writing Assignments 773

Test Bank 773

Assembly Language and Related Topics 774
Assembly Language 775
Assemblers 783
Loading and Linking 787
Key Terms, Review Questions, and Problems 795

xi

Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I

Appendix J

Appendix K
Appendix L
Appendix M
Appendix N
Appendix O

Glossary

ONLINE APPENDICES!

System Buses

Protocols and Protocol Architectures
Scrambling

Victim Cache Strategies

Interleaved Memory

International Reference Alphabet
Stacks

Thunderbolt and Infiniband

Virtual Memory Page Replacement Algorithms
Hash Tables

Recursive Procedures

Additional Instruction Pipeline Topics

Timing Diagrams

'Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book.

This page intentionally left blank

FOREWORD

by Chris Jesshope
Professor (emeritus) University of Amsterdam
Author of Parallel Computers (with RW Hockney), 1981 & 1988

Having been active in computer organization and architecture for many years, it is a pleas-
ure to write this foreword for the new edition of William Stallings’ comprehensive book on
this subject. In doing this, I found myself reflecting on the trends and changes in this subject
over the time that I have been involved in it. I myself became interested in computer archi-
tecture at a time of significant innovation and disruption. That disruption was brought about
not only through advances in technology but perhaps more significantly through access to
that technology. VLSI was here and VLSI design was available to students in the classroom.
These were exciting times. The ability to integrate a mainframe style computer on a single
silicon chip was a milestone, but that this was accomplished by an academic research team
made the achievement quite unique. This period was characterized by innovation and diver-
sity in computer architecture with one of the main trends being in the area of parallelism.
In the 1970s, I had hands-on experience of the Illiac IV, which was an early example of
explicit parallelism in computer architecture and which incidentally pioneered all semicon-
ductor memory. This interaction, and it certainly was that, kick-started my own interest in
computer architecture and organization, with particular emphasis on explicit parallelism in
computer architecture.

Throughout the 1980s and early 1990s research flourished in this field and there was a
great deal of innovation, much of which came to market through university start-ups. Iron-
ically however, it was the same technology that reversed this trend. Diversity was gradually
replaced with a near monoculture in computer systems with advances in just a few instruc-
tion set architectures. Moore’s law, a self-fulfilling prediction that became an industry guide-
line, meant that basic device speeds and integration densities both grew exponentially, with
the latter doubling every 18 months of so. The speed increase was the proverbial free lunch
for computer architects and the integration levels allowed more complexity and innovation
at the micro-architecture level. The free lunch of course did have a cost, that being the expo-
nential growth of capital investment required to fulfill Moore’s law, which once again limited
the access to state-of-the-art technologies. Moreover, most users found it easier to wait for
the next generation of mainstream processor than to invest in the innovations in parallel
computers, with their pitfalls and difficulties. The exceptions to this were the few large insti-
tutions requiring ultimate performance; two topical examples being large-scale scientific
simulation such as climate modeling and also in our security services for code breaking. For

X111

Xiv FOREWORD

everyone else, the name of the game was compatibility and two instruction set architectures
that benefited from this were x86 and ARM, the latter in embedded systems and the former
in just about everything else. Parallelism was still there in the implementation of these ISAs,
it was just that it was implicit, harnessed by the architecture not in the instruction stream
that drives it.

Throughout the late 1990s and early 2000s, this approach to implicitly exploiting con-
currency in single-core computer systems flourished. However, in spite of the exponential
growth of logic density, it was the cost of the techniques exploited which brought this era to
a close. In superscalar processors, the logic costs do not grow linearly with issue width (par-
allelism), while some components grow as the square or even the cube of the issue width.
Although the exponential growth in logic could sustain this continued development, there
were two major pitfalls: it was increasingly difficult to expose concurrency implicitly from
imperative programs and hence efficiencies in the use of instruction issue slots decreased.
Perhaps more importantly, technology was experiencing a new barrier to performance
gains, namely that of power dissipation, and several superscalar developments were halted
because the silicon in them would have been too hot. These constraints have mandated the
exploitation of explicit parallelism, despite the compatibility challenges. So it seems that
again innovation and diversity are opening up this area to new research.

Perhaps not since the 1980s has it been so interesting to study in this field. That diver-
sity is an economic reality can be seen by the decrease in issue width (implicit parallelism)
and increase in the number of cores (explicit parallelism) in mainstream processors. How-
ever, the question is how to exploit this, both at the application and the system level. There
are significant challenges here still to be solved. Superscalar processors rely on the processor
to extract parallelism from a single instruction stream. What if we shifted the emphasis and
provided an instruction stream with maximum parallelism, how can we exploit this in dif-
ferent configurations and/or generations of processors that require different levels of expli-
cit parallelism? Is it possible therefore to have a micro-architecture that sequentializes and
schedules this maximum concurrency captured in the ISA to match the current configur-
ation of cores so that we gain the same compatibility in a world of explicit parallelism? Does
this require operating systems in silicon for efficiency?

These are just some of the questions facing us today. To answer these questions and
more requires a sound foundation in computer organization and architecture, and this book
by William Stallings provides a very timely and comprehensive foundation. It gives a com-
plete introduction to the basics required, tackling what can be quite complex topics with
apparent simplicity. Moreover, it deals with the more recent developments in this field,
where innovation has in the past, and is, currently taking place. Examples are in superscalar
issue and in explicitly parallel multicores. What is more, this latest edition includes two very
recent topics in the design and use of GPUs for general-purpose use and the latest trends in
cloud computing, both of which have become mainstream only recently. The book makes
good use of examples throughout to highlight the theoretical issues covered, and most of
these examples are drawn from developments in the two most widely used ISAs, namely the
x86 and ARM. To reiterate, this book is complete and is a pleasure to read and hopefully
will kick-start more young researchers down the same path that I have enjoyed over the last
40 years!

PREFACE

WHAT’S NEW IN THE TENTH EDITION

Since the ninth edition of this book was published, the field has seen continued innovations
and improvements. In this new edition, I try to capture these changes while maintaining a
broad and comprehensive coverage of the entire field. To begin this process of revision, the
ninth edition of this book was extensively reviewed by a number of professors who teach
the subject and by professionals working in the field. The result is that, in many places, the
narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been
substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

m GPGPU [General-Purpose Computing on Graphics Processing Units (GPUs)]: One
of the most important new developments in recent years has been the broad adoption
of GPGPUs to work in coordination with traditional CPUs to handle a wide range of
applications involving large arrays of data. A new chapter is devoted to the topic of
GPGPUs.

m Heterogeneous multicore processors: The latest development in multicore architecture
is the heterogeneous multicore processor. A new section in the chapter on multicore
processors surveys the various types of heterogeneous multicore processors.

= Embedded systems: The overview of embedded systems in Chapter 1 has been substan-
tially revised and expanded to reflect the current state of embedded technology.

m Microcontrollers: In terms of numbers, almost all computers now in use are embedded
microcontrollers. The treatment of embedded systems in Chapter 1 now includes cov-
erage of microcontrollers. The ARM Cortex-M3 microcontroller is used as an example
system throughout the text.

m Cloud computing: New to this edition is a discussion of cloud computing, with an over-
view in Chapter 1 and more detailed treatment in Chapter 17.

m System performance: The coverage of system performance issues has been
revised, expanded, and reorganized for a clearer and more thorough treatment.
Chapter 2 is devoted to this topic, and the issue of system performance arises through-
out the book.

XV

Xvi PREFACE

m Flash memory: The coverage of flash memory has been updated and expanded, and now
includes a discussion of the technology and organization of flash memory for internal
memory (Chapter 5) and external memory (Chapter 6).

= Nonvolatile RAM: New to this edition is treatment of three important new nonvolatile
solid-state RAM technologies that occupy different positions in the memory hierarchy:
STT-RAM, PCRAM, and ReRAM.

m Direct cache access (DCA): To meet the protocol processing demands for very high
speed network connections, Intel and other manufacturers have developed DCA tech-
nologies that provide much greater throughput than traditional direct memory access
(DMA) approaches. New to this edition, Chapter 7 explores DCA in some detail.

m Intel Core Microarchitecture: As in the previous edition, the Intel x86 family is used as
a major example system throughout. The treatment has been updated to reflect newer
Intel systems, especially the Intel Core Microarchitecture, which is used on both PC and
server products.

= Homework problems: The number of supplemental homework problems, with solu-
tions, available for student practice has been expanded.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one- or two-semester undergraduate course for computer science, com-
puter engineering, and electrical engineering majors. This edition is designed to support the
recommendations of the ACM/IEEE Computer Science Curricula 2013 (CS2013). CS2013
divides all course work into three categories: Core-Tier 1 (all topics should be included
in the curriculum); Core-Tier-2 (all or almost all topics should be included); and Elective
(desirable to provide breadth and depth). In the Architecture and Organization (AR) area,
CS2013 includes five Tier-2 topics and three Elective topics, each of which has a number of
subtopics. This text covers all eight topics listed by CS2013. Table P.1 shows the support for

the AR Knowledge Area provided in this textbook.

Table P.1 Coverage of CS2013 Architecture and Organization (AR) Knowledge Area

IAS Knowledge Units

Topics

Textbook Coverage

Digital Logic and Digital
Systems (Tier 2)

® Overview and history of computer architecture

® Combinational vs. sequential logic/Field program-
mable gate arrays as a fundamental combinational
sequential logic building block

® Multiple representations/layers of interpretation
(hardware is just another layer)

® Physical constraints (gate delays, fan-in, fan-out,
energy/power)

— Chapter 1
—Chapter 11

Machine Level Represen-
tation of Data (Tier 2)

Bits, bytes, and words

Numeric data representation and number bases
Fixed- and floating-point systems

Signed and twos-complement representations
Representation of non-numeric data (character
codes, graphical data)

— Chapter 9
— Chapter 10

PREFACE XxvVii

IAS Knowledge Units | Topics Textbook Coverage
Assembly Level Machine | ® Basic organization of the von Neumann machine —Chapter 1
Organization (Tier 2) e Control unit; instruction fetch, decode, and execution — Chapter 7
e Instruction sets and types (data manipulation, — Chapter 12
control, I/O) —Chapter 13
® Assembly/machine language programming — Chapter 17
® Instruction formats — Chapter 18
® Addressing modes — Chapter 20
e Subroutine call and return mechanisms (cross- —Chapter 21
reference PL/Language Translation and Execution) — Appendix A
® J/O and interrupts
® Shared memory multiprocessors/multicore
organization
® Introduction to SIMD vs. MIMD and the Flynn
Taxonomy
Memory System Organi- ® Storage systems and their technology — Chapter 4
zation and Architecture ® Memory hierarchy: temporal and spatial locality — Chapter 5
(Tier 2) ® Main memory organization and operations —Chapter 6
® [Latency, cycle time, bandwidth, and interleaving — Chapter 8
® Cache memories (address mapping, block size, — Chapter 17
replacement and store policy)
® Multiprocessor cache consistency/Using the memory
system for inter-core synchronization/atomic mem-
ory operations
® Virtual memory (page table, TLB)
® Fault handling and reliability
Interfacing and Commu- ® |/O fundamentals: handshaking, buffering, pro- —Chapter 3
nication (Tier 2) grammed I/O, interrupt-driven I/O — Chapter 6
® Interrupt structures: vectored and prioritized, inter- — Chapter 7
rupt acknowledgment
e External storage, physical organization, and drives
® Buses: bus protocols, arbitration, direct-memory
access (DMA)
® RAID architectures
Functional Organization ® Implementation of simple datapaths, including — Chapter 14
(Elective) instruction pipelining, hazard detection, and — Chapter 16
resolution — Chapter 20
® Control unit: hardwired realization vs. micropro- — Chapter 21
grammed realization
® Instruction pipelining
® Introduction to instruction-level parallelism (ILP)
Multiprocessing and ® Example SIMD and MIMD instruction sets and —Chapter 12
Alternative Architectures architectures — Chapter 13
(Elective) ® Interconnection networks — Chapter 17
® Shared multiprocessor memory systems and memory
consistency
® Multiprocessor cache coherence
Performance Enhance- ® Superscalar architecture — Chapter 15
ments (Elective) ® Branch prediction, Speculative execution, — Chapter 16
Out-of-order execution — Chapter 19

Prefetching

Vector processors and GPUs
Hardware support for multithreading
Scalability

xviili PREFACE

OBJECTIVES

This book is about the structure and function of computers. Its purpose is to present, as clearly
and completely as possible, the nature and characteristics of modern-day computer systems.

This task is challenging for several reasons. First, there is a tremendous variety of prod-
ucts that can rightly claim the name of computer, from single-chip microprocessors costing
a few dollars to supercomputers costing tens of millions of dollars. Variety is exhibited not
only in cost but also in size, performance, and application. Second, the rapid pace of change
that has always characterized computer technology continues with no letup. These changes
cover all aspects of computer technology, from the underlying integrated circuit technology
used to construct computer components to the increasing use of parallel organization con-
cepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental
concepts apply consistently throughout. The application of these concepts depends on the
current state of the technology and the price/performance objectives of the designer. The
intent of this book is to provide a thorough discussion of the fundamentals of computer
organization and architecture and to relate these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always
been important to design computer systems to achieve high performance, but never has
this requirement been stronger or more difficult to satisfy than today. All of the basic per-
formance characteristics of computer systems, including processor speed, memory speed,
memory capacity, and interconnection data rates, are increasing rapidly. Moreover, they are
increasing at different rates. This makes it difficult to design a balanced system that maxi-
mizes the performance and utilization of all elements. Thus, computer design increasingly
becomes a game of changing the structure or function in one area to compensate for a per-
formance mismatch in another area. We will see this game played out in numerous design
decisions throughout the book.

A computer system, like any system, consists of an interrelated set of components.
The system is best characterized in terms of structure—the way in which components are
interconnected, and function—the operation of the individual components. Furthermore, a
computer’s organization is hierarchical. Each major component can be further described by
decomposing it into its major subcomponents and describing their structure and function.
For clarity and ease of understanding, this hierarchical organization is described in this book
from the top down:

m Computer system: Major components are processor, memory, I/O.

m Processor: Major components are control unit, registers, ALU, and instruction execu-
tion unit.

= Control unit: Provides control signals for the operation and coordination of all proces-
sor components. Traditionally, a microprogramming implementation has been used, in
which major components are control memory, microinstruction sequencing logic, and
registers. More recently, microprogramming has been less prominent but remains an
important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear
context. This should minimize the chance that the reader will get lost and should provide
better motivation than a bottom-up approach.

PREFACE Xix

Throughout the discussion, aspects of the system are viewed from the points of view of
both architecture (those attributes of a system visible to a machine language programmer) and
organization (the operational units and their interconnections that realize the architecture).

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implementation
issues of contemporary operating systems. Accordingly, a purely conceptual or theoretical
treatment would be inadequate. To illustrate the concepts and to tie them to real-world design
choices that must be made, two processor families have been chosen as running examples:

m Intel x86 architecture: The x86 architecture is the most widely used for nonembedded com-
puter systems. The x86 is essentially a complex instruction set computer (CISC) with some
RISC features. Recent members of the x86 family make use of superscalar and multicore
design principles. The evolution of features in the x86 architecture provides a unique case-
study of the evolution of most of the design principles in computer architecture.

= ARM: The ARM architecture is arguably the most widely used embedded processor,
used in cell phones, iPods, remote sensor equipment, and many other devices. The ARM
is essentially a reduced instruction set computer (RISC). Recent members of the ARM
family make use of superscalar and multicore design principles.

Many, but by no means all, of the examples in this book are drawn from these two computer
families. Numerous other systems, both contemporary and historical, provide examples of
important computer architecture design features.

PLAN OF THE TEXT

The book is organized into six parts:

m Overview

m The computer system

m Arithmetic and logic

m The central processing unit

m Parallel organization, including multicore

m The control unit

The book includes a number of pedagogic features, including the use of interactive sim-

ulations and numerous figures and tables to clarify the discussion. Each chapter includes a list

of key words, review questions, homework problems, and suggestions for further reading. The
book also includes an extensive glossary, a list of frequently used acronyms, and a bibliography.

INSTRUCTOR SUPPORT MATERIALS

Support materials for instructors are available at the Instructor Resource Center (IRC) for
this textbook, which can be reached through the publisher’s Web site www.pearsonhighered
.com/stallings or by clicking on the link labeled “Pearson Resources for Instructors” at this

http:\\www.pearsonhighered.com/
http:\\www.pearsonhighered.com/

XX PREFACE

book’s Companion Web site at WilliamStallings.com/ComputerOrganization. To gain access
to the IRC, please contact your local Pearson sales representative via pearsonhighered.com/
educator/replocator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-
0485. The IRC provides the following materials:

m Projects manual: Project resources including documents and portable software, plus
suggested project assignments for all of the project categories listed subsequently in this
Preface.

= Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

= PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.
m PDF files: Copies of all figures and tables from the book.

m Test bank: A chapter-by-chapter set of questions.

m Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time. These samples are based on real-world
experience by professors with the first edition.

The Companion Web site, at WilliamStallings.com/ComputerOrganization (click on
Instructor Resources link) includes the following:

m Links to Web sites for other courses being taught using this book.

m Sign-up information for an Internet mailing list for instructors using this book to
exchange information, suggestions, and questions with each other and with the author.

STUDENT RESOURCES

oF

5[] For this new edition, a tremendous amount of original supporting material for
students has been made available online, at two Web locations. The Companion
Web Site, at WilliamStallings.com/ComputerOrganization (click on Student
Resources link), includes a list of relevant links organized by chapter and an
errata sheet for the book.
Purchasing this textbook new grants the reader six months of access to the Premium
Content Site, which includes the following materials:

=

m Online chapters: To limit the size and cost of the book, two chapters of the book are
provided in PDF format. The chapters are listed in this book’s table of contents.

= Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A total of 13 appen-
dices cover these topics for the interested student. The appendices are listed in this
book’s table of contents.

= Homework problems and solutions: To aid the student in understanding the material, a
separate set of homework problems with solutions are available. Students can enhance
their understanding of the material by working out the solutions to these problems and
then checking their answers.

PREFACE xxi

To access the Premium Content site, click on the Premium Content link at
the Companion Web site or at pearsonhighered.com/stallings and enter the stu-
dent access code found on the card in the front of the book.

Finally, I maintain the Computer Science Student Resource Site at
WilliamStallings.com/StudentSupport.html.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer organization and architec-
ture course is a project or set of projects by which the student gets hands-on experience to
reinforce concepts from the text. This book provides an unparalleled degree of support for
including a projects component in the course. The instructor’s support materials available
through Prentice Hall not only includes guidance on how to assign and structure the projects
but also includes a set of user’s manuals for various project types plus specific assignments,
all written especially for this book. Instructors can assign work in the following areas:

= Interactive simulation assignments: Described subsequently.

m Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

= Simulation projects: The IRC provides support for the use of the two simulation pack-
ages: SimpleScalar can be used to explore computer organization and architecture
design issues. SMPCache provides a powerful educational tool for examining cache
design issues for symmetric multiprocessors.

= Assembly language projects: A simplified assembly language, CodeBlue, is used and
assignments based on the popular Core Wars concept are provided.

m Reading/report assignments: A list of papers in the literature, one or more for each
chapter, that can be assigned for the student to read and then write a short report.

= Writing assignments: A list of writing assignments to facilitate learning the material.
m Test bank: Includes T/F, multiple choice, and fill-in-the-blank questions and answers.

This diverse set of projects and other student exercises enables the instructor to use
the book as one component in a rich and varied learning experience and to tailor a course
plan to meet the specific needs of the instructor and students. See Appendix A in this book
for details.

INTERACTIVE SIMULATIONS

An important feature in this edition is the incorporation of interactive simulations. These
simulations provide a powerful tool for understanding the complex design features of a
modern computer system. A total of 20 interactive simulations are used to illustrate key
functions and algorithms in computer organization and architecture design. At the relevant
point in the book, an icon indicates that a relevant interactive simulation is available online
for student use. Because the animations enable the user to set initial conditions, they can

Xxxii PREFACE

serve as the basis for student assignments. The instructor’s supplement includes a set of
assignments, one for each of the animations. Each assignment includes several specific prob-
lems that can be assigned to students.

For access to the animations, click on the rotating globe at this book’s Web site at
http://williamstallings.com/ComputerOrganization.

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously
of their time and expertise. The following professors and instructors reviewed all or a large
part of the manuscript: Molisa Derk (Dickinson State University), Yaohang Li (Old Domin-
ion University), Dwayne Ockel (Regis University), Nelson Luiz Passos (Midwestern State
University), Mohammad Abdus Salam (Southern University), and Vladimir Zwass (Fair-
leigh Dickinson University).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Rekai Gonzalez Alberquilla, Allen Baum, Jalil Boukhobza, Dmitry Bufistov,
Humberto Calderdn, Jesus Carretero, Ashkan Eghbal, Peter Glaskowsky, Ram Huggahalli,
Chris Jesshope, Athanasios Kakarountas, Isil Oz, Mitchell Poplingher, Roger Shepherd,
Jigar Savla, Karl Stevens, Siri Uppalapati, Dr. Sriram Vajapeyam, Kugan Vivekanandara-
jah, Pooria M. Yaghini, and Peter Zeno,

Peter Zeno also contributed Chapter 19 on GPGPU .

Professor Cindy Norris of Appalachian State University, Professor Bin Mu of the Uni-
versity of New Brunswick, and Professor Kenrick Mock of the University of Alaska kindly
supplied homework problems.

Aswin Sreedhar of the University of Massachusetts developed the interactive simula-
tion assignments and also wrote the test bank.

Professor Miguel Angel Vega Rodriguez, Professor Dr. Juan Manuel Sdnchez Pérez,
and Professor Dr. Juan Antonio Gémez Pulido, all of University of Extremadura, Spain,
prepared the SMPCache problems in the instructor’s manual and authored the SMPCache
User’s Guide.

Todd Bezenek of the University of Wisconsin and James Stine of Lehigh University
prepared the SimpleScalar problems in the instructor’s manual, and Todd also authored the
SimpleScalar User’s Guide.

Finally, I would like to thank the many people responsible for the publication of the
book, all of whom did their usual excellent job. This includes the staff at Pearson, par-
ticularly my editor Tracy Johnson, her assistant Kelsey Loanes, program manager Carole
Snyder, and production manager Bob Engelhardt. I also thank Mahalatchoumy Saravanan
and the production staff at Jouve India for another excellent and rapid job. Thanks also to
the marketing and sales staffs at Pearson, without whose efforts this book would not be in
front of you.

http://williamstallings.com/ComputerOrganization

ABOUT THE AUTHOR

Dr. William Stallings has authored 17 textbooks, and counting revised editions,
over 40 books on computer security, computer networking, and computer archi-
tecture. In over 30 years in the field, he has been a technical contributor, technical
manager, and an executive with several high-technology firms. Currently, he is
an independent consultant whose clients have included computer and networking manufac-
turers and customers, software development firms, and leading-edge government research
institutions. He has 13 times received the award for the best computer science textbook of
the year from the Text and Academic Authors Association.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety of sub-
jects of general interest to computer science students (and professionals). His articles appear
regularly at networking.answers.com, where he is the Networking Category Expert Writer.
He is a member of the editorial board of Cryptologia, a scholarly journal devoted to all
aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame
in electrical engineering.

xxiii

This page intentionally left blank

PART ONE INTRODUCTION

/j/
CHAPTER

BAsic CONCEPTS AND
COMPUTER EVOLUTION

1.1 Organization and Architecture

1.2 Structure and Function
Function
Structure

1.3 A Brief History of Computers
The First Generation: Vacuum Tubes
The Second Generation: Transistors
The Third Generation: Integrated Circuits
Later Generations

1.4 The Evolution of the Intel x86 Architecture

1.5 Embedded Systems
The Internet of Things
Embedded Operating Systems
Application Processors versus Dedicated Processors
Microprocessors versus Microcontrollers
Embedded versus Deeply Embedded Systems

1.6 ARM Architecture
ARM Evolution
Instruction Set Architecture
ARM Products

1.7 Cloud Computing
Basic Concepts
Cloud Services

1.8 Key Terms, Review Questions, and Problems

2 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Explain the general functions and structure of a digital computer.

@ Present an overview of the evolution of computer technology from early
digital computers to the latest microprocessors.

@ Present an overview of the evolution of the x86 architecture.

@ Define embedded systems and list some of the requirements and constraints
that various embedded systems must meet.

ORGANIZATION AND ARCHITECTURE

In describing computers, a distinction is often made between computer architec-
ture and computer organization. Although it is difficult to give precise definitions
for these terms, a consensus exists about the general areas covered by each. For
example, see [VRANSO], [SIEWS82], and [BELL78a]; an interesting alternative view
is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a pro-
grammer or, put another way, those attributes that have a direct impact on the
logical execution of a program. A term that is often used interchangeably with com-
puter architecture is instruction set architecture (ISA). The ISA defines instruction
formats, instruction opcodes, registers, instruction and data memory; the effect of
executed instructions on the registers and memory; and an algorithm for control-
ling instruction execution. Computer organization refers to the operational units
and their interconnections that realize the architectural specifications. Examples of
architectural attributes include the instruction set, the number of bits used to repre-
sent various data types (e.g., numbers, characters), I/O mechanisms, and techniques
for addressing memory. Organizational attributes include those hardware details
transparent to the programmer, such as control signals; interfaces between the com-
puter and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have
a multiply instruction. It is an organizational issue whether that instruction will be
implemented by a special multiply unit or by a mechanism that makes repeated
use of the add unit of the system. The organizational decision may be based on the
anticipated frequency of use of the multiply instruction, the relative speed of the
two approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organ-
ization has been an important one. Many computer manufacturers offer a family of
computer models, all with the same architecture but with differences in organization.
Consequently, the different models in the family have different price and perform-
ance characteristics. Furthermore, a particular architecture may span many years
and encompass a number of different computer models, its organization changing
with changing technology. A prominent example of both these phenomena is the
IBM System/370 architecture. This architecture was first introduced in 1970 and

1.2 / STRUCTURE AND FUNCTION 3

included a number of models. The customer with modest requirements could buy a
cheaper, slower model and, if demand increased, later upgrade to a more expensive,
faster model without having to abandon software that had already been developed.
Over the years, IBM has introduced many new models with improved technology
to replace older models, offering the customer greater speed, lower cost, or both.
These newer models retained the same architecture so that the customer’s soft-
ware investment was protected. Remarkably, the System/370 architecture, with a
few enhancements, has survived to this day as the architecture of IBM’s mainframe
product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence
organization but also result in the introduction of more powerful and more complex
architectures. Generally, there is less of a requirement for generation-to-generation
compatibility for these smaller machines. Thus, there is more interplay between
organizational and architectural design decisions. An intriguing example of this is
the reduced instruction set computer (RISC), which we examine in Chapter 15.

This book examines both computer organization and computer architecture.
The emphasis is perhaps more on the side of organization. However, because a
computer organization must be designed to implement a particular architectural
specification, a thorough treatment of organization requires a detailed examination
of architecture as well.

1.2 STRUCTURE AND FUNCTION

A computer is a complex system; contemporary computers contain millions of
elementary electronic components. How, then, can one clearly describe them? The
key is to recognize the hierarchical nature of most complex systems, including the
computer [SIMO96]. A hierarchical system is a set of interrelated subsystems, each
of the latter, in turn, hierarchical in structure until we reach some lowest level of
elementary subsystem.

The hierarchical nature of complex systems is essential to both their design
and their description. The designer need only deal with a particular level of the
system at a time. At each level, the system consists of a set of components and
their interrelationships. The behavior at each level depends only on a simplified,
abstracted characterization of the system at the next lower level. At each level, the
designer is concerned with structure and function:

= Structure: The way in which the components are interrelated.
m Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the
system into its subparts. Evidence from a number of fields suggests that the top-
down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer
system will be described from the top down. We begin with the major components
of a computer, describing their structure and function, and proceed to successively

4 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

lower layers of the hierarchy. The remainder of this section provides a very brief
overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. In general
terms, there are only four basic functions that a computer can perform:

= Data processing: Data may take a wide variety of forms, and the range of pro-
cessing requirements is broad. However, we shall see that there are only a few
fundamental methods or types of data processing.

= Data storage: Even if the computer is processing data on the fly (i.e., data
come in and get processed, and the results go out immediately), the computer
must temporarily store at least those pieces of data that are being worked on
at any given moment. Thus, there is at least a short-term data storage function.
Equally important, the computer performs a long-term data storage function.
Files of data are stored on the computer for subsequent retrieval and update.

= Data movement: The computer’s operating environment consists of devices
that serve as either sources or destinations of data. When data are received
from or delivered to a device that is directly connected to the computer, the
process is known as input-output (I/O), and the device is referred to as a
peripheral. When data are moved over longer distances, to or from a remote
device, the process is known as data communications.

m Control: Within the computer, a control unit manages the computer’s
resources and orchestrates the performance of its functional parts in response
to instructions.

The preceding discussion may seem absurdly generalized. It is certainly
possible, even at a top level of computer structure, to differentiate a variety of func-
tions, but to quote [SIEWS82]:

There is remarkably little shaping of computer structure to fit the
function to be performed. At the root of this lies the general-purpose
nature of computers, in which all the functional specialization occurs
at the time of programming and not at the time of design.

Structure

We now look in a general way at the internal structure of a computer. We begin with
a traditional computer with a single processor that employs a microprogrammed
control unit, then examine a typical multicore structure.

SIMPLE SINGLE-PROCESSOR COMPUTER Figure 1.1 provides a hierarchical view
of the internal structure of a traditional single-processor computer. There are four
main structural components:

= Central processing unit (CPU): Controls the operation of the computer and
performs its data processing functions; often simply referred to as processor.

= Main memory: Stores data.

1.2 / STRUCTURE AND FUNCTION 5

COMPUTER

Sequencing
logic

Control unit
registers and
decoders

Control
memory

Figure 1.1 The Computer: Top-Level Structure

m I/O: Moves data between the computer and its external environment.

= System interconnection: Some mechanism that provides for communication
among CPU, main memory, and I/O. A common example of system intercon-
nection is by means of a system bus, consisting of a number of conducting
wires to which all the other components attach.

There may be one or more of each of the aforementioned components. Tra-
ditionally, there has been just a single processor. In recent years, there has been
increasing use of multiple processors in a single computer. Some design issues relat-
ing to multiple processors crop up and are discussed as the text proceeds; Part Five
focuses on such computers.

6 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

Each of these components will be examined in some detail in Part Two. How-
ever, for our purposes, the most interesting and in some ways the most complex
component is the CPU. Its major structural components are as follows:

= Control unit: Controls the operation of the CPU and hence the computer.

= Arithmetic and logic unit (ALU): Performs the computer’s data processing
functions.

m Registers: Provides storage internal to the CPU.

= CPU interconnection: Some mechanism that provides for communication
among the control unit, ALU, and registers.

Part Three covers these components, where we will see that complexity is added by
the use of parallel and pipelined organizational techniques. Finally, there are sev-
eral approaches to the implementation of the control unit; one common approach is
a microprogrammed implementation. In essence, a microprogrammed control unit
operates by executing microinstructions that define the functionality of the control
unit. With this approach, the structure of the control unit can be depicted, as in
Figure 1.1. This structure is examined in Part Four.

MULTICORE COMPUTER STRUCTURE As was mentioned, contemporary
computers generally have multiple processors. When these processors all reside
on a single chip, the term multicore computer is used, and each processing unit
(consisting of a control unit, ALU, registers, and perhaps cache) is called a core. To
clarify the terminology, this text will use the following definitions.

= Central processing unit (CPU): That portion of a computer that fetches and
executes instructions. It consists of an ALU, a control unit, and registers.
In a system with a single processing unit, it is often simply referred to as a
processor.

m Core: An individual processing unit on a processor chip. A core may be equiv-
alent in functionality to a CPU on a single-CPU system. Other specialized pro-
cessing units, such as one optimized for vector and matrix operations, are also
referred to as cores.

m Processor: A physical piece of silicon containing one or more cores. The
processor is the computer component that interprets and executes instruc-
tions. If a processor contains multiple cores, it is referred to as a multicore
processor.

After about a decade of discussion, there is broad industry consensus on this usage.

Another prominent feature of contemporary computers is the use of multiple
layers of memory, called cache memory, between the processor and main memory.
Chapter 4 is devoted to the topic of cache memory. For our purposes in this section,
we simply note that a cache memory is smaller and faster than main memory and is
used to speed up memory access, by placing in the cache data from main memory,
that is likely to be used in the near future. A greater performance improvement may
be obtained by using multiple levels of cache, with level 1 (L1) closest to the core
and additional levels (L2, L3, and so on) progressively farther from the core. In this
scheme, level n is smaller and faster than level n + 1.

1.2 / STRUCTURE AND FUNCTION 7

Figure 1.2 is a simplified view of the principal components of a typical mul-
ticore computer. Most computers, including embedded computers in smartphones
and tablets, plus personal computers, laptops, and workstations, are housed on a
motherboard. Before describing this arrangement, we need to define some terms.
A printed circuit board (PCB) is a rigid, flat board that holds and interconnects
chips and other electronic components. The board is made of layers, typically two
to ten, that interconnect components via copper pathways that are etched into
the board. The main printed circuit board in a computer is called a system board
or motherboard, while smaller ones that plug into the slots in the main board are
called expansion boards.

The most prominent elements on the motherboard are the chips. A chip is
a single piece of semiconducting material, typically silicon, upon which electronic
circuits and logic gates are fabricated. The resulting product is referred to as an
integrated circuit.

/ N

MOTHERBOARD
Main memory chips

2000
0

I/O chips

Qa0

Processor
chip S~

CORE

Instruction
logic

Arithmetic
and logic
unit (ALU)

Load/
store logic

| L1 I-cache |

| L1 data cache |

cache

L2 instruction

L2 data
cache

"

PROCESSOR CHIP I
Core Core Core Core
L3 cache L3 cache
Core Core Core Core

/

Figure 1.2 Simplified View of Major Elements of a Multicore Computer

8 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

The motherboard contains a slot or socket for the processor chip, which typ-
ically contains multiple individual cores, in what is known as a multicore processor.
There are also slots for memory chips, I/O controller chips, and other key computer
components. For desktop computers, expansion slots enable the inclusion of more
components on expansion boards. Thus, a modern motherboard connects only a
few individual chip components, with each chip containing from a few thousand up
to hundreds of millions of transistors.

Figure 1.2 shows a processor chip that contains eight cores and an L3 cache.
Not shown is the logic required to control operations between the cores and the
cache and between the cores and the external circuitry on the motherboard. The
figure indicates that the L3 cache occupies two distinct portions of the chip surface.
However, typically, all cores have access to the entire L3 cache via the aforemen-
tioned control circuits. The processor chip shown in Figure 1.2 does not represent
any specific product, but provides a general idea of how such chips are laid out.

Next, we zoom in on the structure of a single core, which occupies a portion of
the processor chip. In general terms, the functional elements of a core are:

m Instruction logic: This includes the tasks involved in fetching instructions,
and decoding each instruction to determine the instruction operation and the
memory locations of any operands.

= Arithmetic and logic unit (ALU): Performs the operation specified by an
instruction.

= Load/store logic: Manages the transfer of data to and from main memory via
cache.

The core also contains an L1 cache, split between an instruction cache
(I-cache) that is used for the transfer of instructions to and from main memory, and
an L1 data cache, for the transfer of operands and results. Typically, today’s pro-
cessor chips also include an L2 cache as part of the core. In many cases, this cache
is also split between instruction and data caches, although a combined, single 1.2
cache is also used.

Keep in mind that this representation of the layout of the core is only intended
to give a general idea of internal core structure. In a given product, the functional
elements may not be laid out as the three distinct elements shown in Figure 1.2,
especially if some or all of these functions are implemented as part of a micropro-
grammed control unit.

EXAMPLES It will be instructive to look at some real-world examples that
illustrate the hierarchical structure of computers. Figure 1.3 is a photograph of the
motherboard for a computer built around two Intel Quad-Core Xeon processor
chips. Many of the elements labeled on the photograph are discussed subsequently
in this book. Here, we mention the most important, in addition to the processor
sockets:

m PCI-Express slots for a high-end display adapter and for additional peripher-
als (Section 3.6 describes PCle).
m Ethernet controller and Ethernet ports for network connections.

m USB sockets for peripheral devices.

1.2 / STRUCTURE AND FUNCTION 9

Intel® 3420

. Chipset
Six Channel DDR3-1333 Memory

Serial ATA/300 (SATA
Interfaces Up to 48GB erial ()

Interfaces

2x Quad-Core Intel® Xeon® Processors
with Integrated Memory Controllers

2x USB 2.0
- : e - - Internal
..... / = : 2x USB 2.0
d CHAS . | I External

E_ VGA Video Output

N BIOS

___—— 2x Ethernet Ports
10/100/1000Base-T

Ethernet Controller

Power & Backplane I/0O PCI Express® PCI Express® Clock
Connector C Connector B Connector A

Figure 1.3 Motherboard with Two Intel Quad-Core Xeon Processors
Source: Chassis Plans, www.chassis-plans.com

m Serial ATA (SATA) sockets for connection to disk memory (Section 7.7
discusses Ethernet, USB, and SATA).

m Interfaces for DDR (double data rate) main memory chips (Section 5.3
discusses DDR).

m Intel 3420 chipset is an I/O controller for direct memory access operations
between peripheral devices and main memory (Section 7.5 discusses DDR).

Following our top-down strategy, as illustrated in Figures 1.1 and 1.2, we can
now zoom in and look at the internal structure of a processor chip. For variety, we
look at an IBM chip instead of the Intel processor chip. Figure 1.4 is a photograph
of the processor chip for the IBM zEnterprise EC12 mainframe computer. This chip
has 2.75 billion transistors. The superimposed labels indicate how the silicon real
estate of the chip is allocated. We see that this chip has six cores, or processors.
In addition, there are two large areas labeled L3 cache, which are shared by all six
processors. The L3 control logic controls traffic between the L3 cache and the cores
and between the L3 cache and the external environment. Additionally, there is stor-
age control (SC) logic between the cores and the L3 cache. The memory controller
(MC) function controls access to memory external to the chip. The GX I/O bus
controls the interface to the channel adapters accessing the I/O.

Going down one level deeper, we examine the internal structure of a single
core, as shown in the photograph of Figure 1.5. Keep in mind that this is a portion
of the silicon surface area making up a single-processor chip. The main sub-areas
within this core area are the following:

= [SU (instruction sequence unit): Determines the sequence in which instructions
are executed in what is referred to as a superscalar architecture (Chapter 16).

= [FU (instruction fetch unit): Logic for fetching instructions.

http:\\www.chassis-plans.com

10 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

Figure 1.4 zEnterprise EC12 Processor Unit

(PU) chip diagram Figure 1.5 zEnterprise EC12 Core layout
Source: IBM zEnterprise EC12 Technical Guide, Source: IBM zEnterprise EC12 Technical Guide,
December 2013, SG24-8049-01. IBM, Reprinted by December 2013, SG24-8049-01. IBM, Reprinted by
Permission Permission

IDU (instruction decode unit): The IDU is fed from the IFU buffers, and is
responsible for the parsing and decoding of all z/Architecture operation codes.

LSU (load-store unit): The LSU contains the 96-kB L1 data cache,! and man-
ages data traffic between the L2 data cache and the functional execution
units. It is responsible for handling all types of operand accesses of all lengths,
modes, and formats as defined in the z/Architecture.

XU (translation unit): This unit translates logical addresses from instructions
into physical addresses in main memory. The XU also contains a translation
lookaside buffer (TLB) used to speed up memory access. TLBs are discussed
in Chapter 8.

FXU (fixed-point unit): The FXU executes fixed-point arithmetic operations.
BFU (binary floating-point unit): The BFU handles all binary and hexadeci-
mal floating-point operations, as well as fixed-point multiplication operations.
DFU (decimal floating-point unit): The DFU handles both fixed-point and
floating-point operations on numbers that are stored as decimal digits.

RU (recovery unit): The RU keeps a copy of the complete state of the sys-
tem that includes all registers, collects hardware fault signals, and manages the
hardware recovery actions.

kB = kilobyte = 2048 bytes. Numerical prefixes are explained in a document under the “Other Useful”
tab at ComputerScienceStudent.com.

1.3 / A BRIEF HISTORY OF COMPUTERS 11

= COP (dedicated co-processor): The COP is responsible for data compression
and encryption functions for each core.

m I-cache: This is a 64-kB L1 instruction cache, allowing the IFU to prefetch
instructions before they are needed.

m L2 control: This is the control logic that manages the traffic through the two
L2 caches.

= Data-L2: A 1-MB L2 data cache for all memory traffic other than instructions.
m Instr-L2: A 1-MB L2 instruction cache.

As we progress through the book, the concepts introduced in this section will
become clearer.

1.3 A BRIEF HISTORY OF COMPUTERS?

In this section, we provide a brief overview of the history of the development of
computers. This history is interesting in itself, but more importantly, provides a basic
introduction to many important concepts that we deal with throughout the book.

The First Generation: Vacuum Tubes

The first generation of computers used vacuum tubes for digital logic elements and
memory. A number of research and then commercial computers were built using
vacuum tubes. For our purposes, it will be instructive to examine perhaps the most
famous first-generation computer, known as the IAS computer.

A fundamental design approach first implemented in the IAS computer is
known as the stored-program concept. This idea is usually attributed to the mathem-
atician John von Neumann. Alan Turing developed the idea at about the same time.
The first publication of the idea was in a 1945 proposal by von Neumann for a new
computer, the EDVAC (Electronic Discrete Variable Computer).?

In 1946, von Neumann and his colleagues began the design of a new stored-
program computer, referred to as the IAS computer, at the Princeton Institute for
Advanced Studies. The IAS computer, although not completed until 1952, is the
prototype of all subsequent general-purpose computers.

Figure 1.6 shows the structure of the IAS computer (compare with Figure 1.1).
It consists of

= A main memory, which stores both data and instructions’

= An arithmetic and logic unit (ALU) capable of operating on binary data

This book’s Companion Web site (WilliamStallings.com/ComputerOrganization) contains several links
to sites that provide photographs of many of the devices and components discussed in this section.

3The 1945 report on EDVAC is available at box.com/COA10e.

4A 1954 report [GOLDS54] describes the implemented IAS machine and lists the final instruction set. It
is available at box.com/COA10e.

SIn this book, unless otherwise noted, the term instruction refers to a machine instruction that is directly
interpreted and executed by the processor, in contrast to a statement in a high-level language, such as Ada
or C++, which must first be compiled into a series of machine instructions before being executed.

12 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

Central processing unit (CPU)

re—=-=-=-=-=-==-==== === = = = 1
I 1
1 Arithmetic-logic unit (CA) 1
I 1
I 1
- !
I 1
I T 1 Input-
| Arithmetic-logic ! output
: circuits : equipment
1 | I, 0)
I 1
I 1
I | MBR | 1
I 1
I 1
Instructions 1 1
and data ! !
1]
I 1
: : Instructions
M)] ! and data
M) ! 1
M(2) : :
PC IBR
MQ3) . , .
AC: Accumulator register
M) l] . . .
] ! MQ: multiply-quotient register
o MBR: memory buffer register
I Y Y 1 Y g
° 1 1 IBR: instruction buffer register
* ! MAR IR I PC: program counter
Main : : MAR: memory address register
memory | , IR:insruction register
(M) 1 -~]
-
: Control : C_OMI_‘OI :
| signals - circuits 1
M(4092) | - I
M(4093
ME 4095; : Program control unit (CC) :
T Addresls'eg __________________ :

Figure 1.6 IAS Structure

= A control unit, which interprets the instructions in memory and causes them
to be executed

= Input-output (I/O) equipment operated by the control unit

This structure was outlined in von Neumann'’s earlier proposal, which is worth
quoting in part at this point [VONN45]:

2.2 First: Since the device is primarily a computer, it will
have to perform the elementary operations of arithmetic most fre-
quently. These are addition, subtraction, multiplication, and divi-
sion. It is therefore reasonable that it should contain specialized
organs for just these operations.

1.3 / A BRIEF HISTORY OF COMPUTERS 13

It must be observed, however, that while this principle as such
is probably sound, the specific way in which it is realized requires
close scrutiny. At any rate a central arithmetical part of the device will
probably have to exist, and this constitutes the first specific part: CA.

2.3 Second: The logical control of the device, that is, the
proper sequencing of its operations, can be most efficiently car-
ried out by a central control organ. If the device is to be elastic,
that is, as nearly as possible all purpose, then a distinction must
be made between the specific instructions given for and defining
a particular problem, and the general control organs that see to it
that these instructions—no matter what they are—are carried out.
The former must be stored in some way; the latter are represented
by definite operating parts of the device. By the central control we
mean this latter function only, and the organs that perform it form
the second specific part: CC.

2.4 Third: Any device that is to carry out long and compli-
cated sequences of operations (specifically of calculations) must
have a considerable memory . ..

The instructions which govern a complicated problem may
constitute considerable material, particularly so if the code is cir-
cumstantial (which it is in most arrangements). This material must
be remembered.

At any rate, the total memory constitutes the third specific
part of the device: M.

2.6 The three specific parts CA, CC (together C), and M cor-
respond to the associative neurons in the human nervous system. It
remains to discuss the equivalents of the sensory or afferent and the
motor or efferent neurons. These are the input and output organs of
the device.

The device must be endowed with the ability to maintain
input and output (sensory and motor) contact with some specific
medium of this type. The medium will be called the outside record-
ing medium of the device: R.

2.7 Fourth: The device must have organs to transfer informa-
tion from R into its specific parts C and M. These organs form its
input, the fourth specific part: I. 1t will be seen that it is best to make
all transfers from R (by I) into M and never directly from C.

2.8 Fifth: The device must have organs to transfer from its
specific parts C and M into R. These organs form its output, the
fifth specific part: O. It will be seen that it is again best to make all
transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46,
GOLD54]. Following [HAYE98], the terminology and notation of von Neumann

14 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

are changed in the following to conform more closely to modern usage; the exam-
ples accompanying this discussion are based on that latter text.

The memory of the IAS consists of 4,096 storage locations, called words, of
40 binary digits (bits) each.® Both data and instructions are stored there. Numbers are
represented in binary form, and each instruction is a binary code. Figure 1.7 illustrates
these formats. Each number is represented by a sign bit and a 39-bit value. A word
may alternatively contain two 20-bit instructions, with each instruction consisting
of an 8-bit operation code (opcode) specifying the operation to be performed and
a 12-bit address designating one of the words in memory (numbered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory
and executing them one at a time. We explain these operations with reference to
Figure 1.6. This figure reveals that both the control unit and the ALU contain stor-
age locations, called registers, defined as follows:

= Memory buffer register (MBR): Contains a word to be stored in memory or sent
to the I/O unit, or is used to receive a word from memory or from the I/O unit.

= Memory address register (MAR): Specifies the address in memory of the word
to be written from or read into the MBR.

= Instruction register (IR): Contains the 8-bit opcode instruction being executed.

= Instruction buffer register (IBR): Employed to hold temporarily the right-
hand instruction from a word in memory.

= Program counter (PC): Contains the address of the next instruction pair to be
fetched from memory.

= Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-
porarily operands and results of ALU operations. For example, the result

01 39
L]
siTgn bit (a) Number word
left instruction (20 bits) right instruction (20 bits)
0 8 20 28 39
opcode (8 bits) address (12 bits) opcode (8 bits) address (12 bits)

(b) Instruction word

Figure 1.7 IAS Memory Formats

There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits
that is the normal unit in which information may be stored, transmitted, or operated on within a given
computer. Typically, if a processor has a fixed-length instruction set, then the instruction length equals
the word length.

1.3 / A BRIEF HISTORY OF COMPUTERS 15

of multiplying two 40-bit numbers is an 80-bit number; the most significant
40 bits are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in
Figure 1.8. Each instruction cycle consists of two subcycles. During the fetch cycle,
the opcode of the next instruction is loaded into the IR and the address portion is
loaded into the MAR. This instruction may be taken from the IBR, or it can be
obtained from memory by loading a word into the MBR, and then down to the IBR,
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry
and result in the use of data paths. To simplify the electronics, there is only one reg-
ister that is used to specify the address in memory for a read or write and only one
register used for the source or destination.

(Start)

Yes Is next No
instruction MAR<«+—PC

No memory in IBR?
Fetch access

cycle required MBR<+— M(MAR)

IR«—IBR (0:7) IR «—MBR (20:27)
MAR «—IBR (8:19)|][MAR+—MBR (28:39)

IBR<—MBR (20:39)
IR «—MBR (0:7)
MAR<«—MBR (8:19)

equired?

PC+—PC+1

Decode instruction in IR

AC «—M(X) Go to M(X, 0:19) If AC > 0 then
go to M(X, 0:19)

AC«+—AC +M(X)

Execution
cycle
| MBR<—M(MAR)| | PC<«—MAR MBR+—M(MAR)
AC<«—MBR AC«—AC + MBR

M(X) = contents of memory location whose address is X
(i:j) = bits i through j

Figure 1.8 Partial Flowchart of IAS Operation

16 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

Once the opcode is in the IR, the execute cycle is performed. Control circuitry

interprets the opcode and executes the instruction by sending out the appropri-
ate control signals to cause data to be moved or an operation to be performed by
the ALU.

These can be grouped as follows:

The TAS computer had a total of 21 instructions, which are listed in Table 1.1.

= Data transfer: Move data between memory and ALU registers or between two

ALU registers.

= Unconditional branch: Normally, the control unit executes instructions in

Table 1.1 The IAS Instruction Set

sequence from memory. This sequence can be changed by a branch instruc-
tion, which facilitates repetitive operations.

Instruction Symbolic
Type Opcode Representation Description
00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC
00001001 LOAD MQM(X) Transfer contents of memory location X to MQ
00100001 STOR M(X) Transfer contents of accumulator to memory location X
Data transfer 00000001 LOAD M(X) Transfer M(X) to the accumulator
00000010 LOAD -M(X) Transfer -M(X) to the accumulator
00000011 LOAD [M(X)| Transfer absolute value of M(X) to the accumulator
00000100 LOAD —|M(X)| Transfer -[M(X)| to the accumulator
Unconditional 00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)
branch 00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)
00001111 JUMP + M(X,0:19) If number in the accumulator is nonnegative, take next
Conditional instruction from left half of M(X)
branch 00010000 JUMP + M(X,20:39) If number in the accumulator is nonnegative, take next
instruction from right half of M(X)
00000101 ADD M(X) Add M(X) to AG; put the result in AC
00000111 ADD [M(X)| Add [IM(X)| to AC; put the result in AC
00000110 SUB M(X) Subtract M(X) from AC; put the result in AC
00001000 SUB |[M(X)| Subtract [M(X)| from AC; put the remainder in AC
Arilmeite 00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of result
in AC, put least significant bits in MQ
00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the
remainder in AC
00010100 LSH Multiply accumulator by 2; that is, shift left one bit position
00010101 RSH Divide accumulator by 2; that is, shift right one position
00010010 STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits
Address of AC
modify 00010011 STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost bits
of AC

1.3 / A BRIEF HISTORY OF COMPUTERS 17

= Conditional branch: The branch can be made dependent on a condition, thus
allowing decision points.

= Arithmetic: Operations performed by the ALU.

m Address modify: Permits addresses to be computed in the ALU and then
inserted into instructions stored in memory. This allows a program consider-
able addressing flexibility.

Table 1.1 presents instructions (excluding I/O instructions) in a symbolic,
easy-to-read form. In binary form, each instruction must conform to the format of
Figure 1.7b. The opcode portion (first 8 bits) specifies which of the 21 instructions is
to be executed. The address portion (remaining 12 bits) specifies which of the 4,096
memory locations is to be involved in the execution of the instruction.

Figure 1.8 shows several examples of instruction execution by the control unit.
Note that each operation requires several steps, some of which are quite elaborate.
The multiplication operation requires 39 suboperations, one for each bit position
except that of the sign bit.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of the
vacuum tube by the transistor. The transistor, which is smaller, cheaper, and gener-
ates less heat than a vacuum tube, can be used in the same way as a vacuum tube to
construct computers. Unlike the vacuum tube, which requires wires, metal plates, a
glass capsule, and a vacuum, the transistor is a solid-state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched
an electronic revolution. It was not until the late 1950s, however, that fully transis-
torized computers were commercially available. The use of the transistor defines
the second generation of computers. It has become widely accepted to classify com-
puters into generations based on the fundamental hardware technology employed
(Table 1.2). Each new generation is characterized by greater processing perfor-
mance, larger memory capacity, and smaller size than the previous one.

But there are other changes as well. The second generation saw the intro-
duction of more complex arithmetic and logic units and control units, the use of
high-level programming languages, and the provision of system software with the

Table 1.2 Computer Generations

Approximate Typical Speed
Generation Dates Technology (operations per second)

1 1946-1957 Vacuum tube 40,000

2 1957-1964 Transistor 200,000

3 1965-1971 Small- and medium-scale 1,000,000

integration

1972-1977 Large scale integration 10,000,000

1978-1991 Very large scale integration 100,000,000

1991- Ultra large scale integration >1,000,000,000

18 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

computer. In broad terms, system software provided the ability to load programs,
move data to peripherals, and libraries to perform common computations, similar
to what modern operating systems, such as Windows and Linux, do.

It will be useful to examine an important member of the second generation: the
IBM 7094 [BELL71]. From the introduction of the 700 series in 1952 to the introduc-
tion of the last member of the 7000 series in 1964, this IBM product line underwent
an evolution that is typical of computer products. Successive members of the product
line showed increased performance, increased capacity, and/or lower cost.

The size of main memory, in multiples of 2'° 36-bit words, grew from
2k (1k =21%) to 32k words,” while the time to access one word of memory, the mem-
ory cycle time, fell from 30 us to 1.4 us. The number of opcodes grew from a modest
24 to 185.

Also, over the lifetime of this series of computers, the relative speed of the
CPU increased by a factor of 50. Speed improvements are achieved by improved
electronics (e.g., a transistor implementation is faster than a vacuum tube imple-
mentation) and more complex circuitry. For example, the IBM 7094 includes an
Instruction Backup Register, used to buffer the next instruction. The control unit
fetches two adjacent words from memory for an instruction fetch. Except for the
occurrence of a branching instruction, which is relatively infrequent (perhaps 10 to
15%), this means that the control unit has to access memory for an instruction on
only half the instruction cycles. This prefetching significantly reduces the average
instruction cycle time.

Figure 1.9 shows a large (many peripherals) configuration for an IBM 7094,
which is representative of second-generation computers. Several differences from
the IAS computer are worth noting. The most important of these is the use of data
channels. A data channel is an independent I/O module with its own processor and
instruction set. In a computer system with such devices, the CPU does not execute
detailed I/O instructions. Such instructions are stored in a main memory to be
executed by a special-purpose processor in the data channel itself. The CPU initi-
ates an I/O transfer by sending a control signal to the data channel, instructing it to
execute a sequence of instructions in memory. The data channel performs its task
independently of the CPU and signals the CPU when the operation is complete.
This arrangement relieves the CPU of a considerable processing burden.

Another new feature is the multiplexor, which is the central termination
point for data channels, the CPU, and memory. The multiplexor schedules access
to the memory from the CPU and data channels, allowing these devices to act
independently.

The Third Generation: Integrated Circuits

A single, self-contained transistor is called a discrete component. Throughout
the 1950s and early 1960s, electronic equipment was composed largely of discrete
components —transistors, resistors, capacitors, and so on. Discrete components were
manufactured separately, packaged in their own containers, and soldered or wired

7A discussion of the uses of numerical prefixes, such as kilo and giga, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

1.3 / A BRIEF HISTORY OF COMPUTERS 19

IBM 7094 computer Peripheral devices
T - 9 |
! ' Mag tape |
1 1 1 . 1
| b units !
1 1 1 1

CPU
! b | Ca“:l I
punc
| Data |1 |
channe 3
: : : Line :
1 [printer !
1 1 1 1
1 1 1 1
1 1 | Card 1
| - reader)
1 1 1 1
1 1 1 1
1 1 1 1
1 o Drum !
1 Multi- Data o !
1 1
! plexor channel [] |
! [Disk !
1 1 1 1
1 1 1 1
: } Data L Disk :
1 channel o !
1 1 1 1
1 { 1 1 H 1
er-
: : :] tZ[I))es :
1 1 1 1
1 M 1 1 1
! emory Data ot Teleprocessing !
: channel | equipment :
1 1

Figure 1.9 An IBM 7094 Configuration

together onto Masonite-like circuit boards, which were then installed in computers,
oscilloscopes, and other electronic equipment. Whenever an electronic device called
for a transistor, a little tube of metal containing a pinhead-sized piece of silicon had
to be soldered to a circuit board. The entire manufacturing process, from transistor
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer indus-
try. Early second-generation computers contained about 10,000 transistors. This
figure grew to the hundreds of thousands, making the manufacture of newer, more
powerful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the
era of microelectronics: the invention of the integrated circuit. It is the integrated
circuit that defines the third generation of computers. In this section, we provide a
brief introduction to the technology of integrated circuits. Then we look at perhaps
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC PDP-S8.

MICROELECTRONICS Microelectronics means, literally, “small electronics.” Since the
beginnings of digital electronics and the computer industry, there has been a persistent
and consistent trend toward the reduction in size of digital electronic circuits. Before
examining the implications and benefits of this trend, we need to say something about
the nature of digital electronics. A more detailed discussion is found in Chapter 11.

20 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

The basic elements of a digital computer, as we know, must perform data stor-
age, movement, processing, and control functions. Only two fundamental types of
components are required (Figure 1.10): gates and memory cells. A gate is a device
that implements a simple Boolean or logical function. For example, an AND gate
with inputs A and B and output C implements the expression IF A AND B ARE
TRUE THEN C IS TRUE. Such devices are called gates because they control data
flow in much the same way that canal gates control the flow of water. The memory
cell is a device that can store 1 bit of data; that is, the device can be in one of two
stable states at any time. By interconnecting large numbers of these fundamental
devices, we can construct a computer. We can relate this to our four basic functions
as follows:

= Data storage: Provided by memory cells.
m Data processing: Provided by gates.

= Data movement: The paths among components are used to move data from
memory to memory and from memory through gates to memory.

m Control: The paths among components can carry control signals. For example,
a gate will have one or two data inputs plus a control signal input that activates
the gate. When the control signal is ON, the gate performs its function on the
data inputs and produces a data output. Conversely, when the control signal
is OFF, the output line is null, such as the one produced by a high impedance
state. Similarly, the memory cell will store the bit that is on its input lead when
the WRITE control signal is ON and will place the bit that is in the cell on its
output lead when the READ control signal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among
these elements. The gates and memory cells are, in turn, constructed of simple elec-
tronic components, such as transistors and capacitors.

The integrated circuit exploits the fact that such components as transistors,
resistors, and conductors can be fabricated from a semiconductor such as silicon.
It is merely an extension of the solid-state art to fabricate an entire circuit in a tiny
piece of silicon rather than assemble discrete components made from separate
pieces of silicon into the same circuit. Many transistors can be produced at the same
time on a single wafer of silicon. Equally important, these transistors can be con-
nected with a process of metallization to form circuits.

—- .
° Boolean Binary
Input ° logic —> Output Input —>{ storage Output
. function cell
Read 41
Activate Write
signal
(a) Gate (b) Memory cell

Figure 1.10 Fundamental Computer Elements

1.3 / A BRIEF HISTORY OF COMPUTERS 21

Figure 1.11 depicts the key concepts in an integrated circuit. A thin wafer of
silicon is divided into a matrix of small areas, each a few millimeters square. The
identical circuit pattern is fabricated in each area, and the wafer is broken up into
chips. Each chip consists of many gates and/or memory cells plus a number of input
and output attachment points. This chip is then packaged in housing that protects
it and provides pins for attachment to devices beyond the chip. A number of these
packages can then be interconnected on a printed circuit board to produce larger
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured and
packaged together. These early integrated circuits are referred to as small-scale
integration (SSI). As time went on, it became possible to pack more and more com-
ponents on the same chip. This growth in density is illustrated in Figure 1.12; it is
one of the most remarkable technological trends ever recorded.® This figure reflects
the famous Moore’s law, which was propounded by Gordon Moore, cofounder of
Intel, in 1965 [MOORG65]. Moore observed that the number of transistors that could
be put on a single chip was doubling every year, and correctly predicted that this
pace would continue into the near future. To the surprise of many, including Moore,
the pace continued year after year and decade after decade. The pace slowed to a
doubling every 18 months in the 1970s but has sustained that rate ever since.

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of rapid
growth in density. This means that the cost of computer logic and memory cir-
cuitry has fallen at a dramatic rate.

TS Wafer
/[\
[\
| |
\]
\ /
N
_/
Chip
[[[
OFFHHAC

)

00000

Gate
Packaged
chip

Figure 1.11 Relationship among
Wafer, Chip, and Gate

8Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

22 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

2. Because logic and memory elements are placed closer together on more
densely packed chips, the electrical path length is shortened, increasing oper-
ating speed.

3. The computer becomes smaller, making it more convenient to place in a vari-
ety of environments.

4. There is a reduction in power requirements.

5. The interconnections on the integrated circuit are much more reliable than
solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

IBM SYSTEM/360 By 1964, IBM had a firm grip on the computer market with
its 7000 series of machines. In that year, IBM announced the System/360, a new
family of computer products. Although the announcement itself was no surprise, it
contained some unpleasant news for current IBM customers: the 360 product line
was incompatible with older IBM machines. Thus, the transition to the 360 would
be difficult for the current customer base, but IBM felt this was necessary to break
out of some of the constraints of the 7000 architecture and to produce a system
capable of evolving with the new integrated circuit technology [PADES81, GIFF87].
The strategy paid off both financially and technically. The 360 was the success of
the decade and cemented IBM as the overwhelmingly dominant computer vendor,
with a market share above 70%. And, with some modifications and extensions, the
architecture of the 360 remains to this day the architecture of IBM’s mainframe’
computers. Examples using this architecture can be found throughout this text.
The System/360 was the industry’s first planned family of computers. The family
covered a wide range of performance and cost. The models were compatible in the

.Q% S 6{\' &
¥ NCR RS
Q § 297 ¥
&L D 2° 3
&S F& S
] ‘)‘\g A .@% @ o&
§ & N
100 bn
/_,/ 10 bn
/ 1bn
/_/ 100 m
— 100,000
—— 10,000
——r 1,000
= 100
— 10
1 1 1 1 1 1 1 1 1 1 1 1 1
1947 50 55 60 65 70 75 80 85 90 95 2000 05 11

Figure 1.12 Growth in Transistor Count on Integrated Circuits

The term mainframe is used for the larger, most powerful computers other than supercomputers. Typical
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is
used in a central data processing facility.

1.3 / A BRIEF HISTORY OF COMPUTERS 23

sense that a program written for one model should be capable of being executed by
another model in the series, with only a difference in the time it takes to execute.
The concept of a family of compatible computers was both novel and extremely
successful. A customer with modest requirements and a budget to match could start
with the relatively inexpensive Model 30. Later, if the customer’s needs grew, it was
possible to upgrade to a faster machine with more memory without sacrificing the
investment in already-developed software. The characteristics of a family are as follows:

m Similar or identical instruction set: In many cases, the exact same set of
machine instructions is supported on all members of the family. Thus, a pro-
gram that executes on one machine will also execute on any other. In some
cases, the lower end of the family has an instruction set that is a subset of
that of the top end of the family. This means that programs can move up but
not down.

= Similar or identical operating system: The same basic operating system is
available for all family members. In some cases, additional features are added
to the higher-end members.

m Increasing speed: The rate of instruction execution increases in going from
lower to higher family members.

= Increasing number of I/0O ports: The number of I/O ports increases in going
from lower to higher family members.

® Increasing memory size: The size of main memory increases in going from
lower to higher family members.

= Increasing cost: At a given point in time, the cost of a system increases in going
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For
example, greater speed in the execution of a given instruction could be gained by
the use of more complex circuitry in the ALU, allowing suboperations to be car-
ried out in parallel. Another way of increasing speed was to increase the width of
the data path between main memory and the CPU. On the Model 30, only 1 byte
(8 bits) could be fetched from main memory at a time, whereas 8 bytes could be
fetched at a time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a pro-
found impact on the entire industry. Many of its features have become standard on
other large computers.

DEC PDP-8 In the same year that IBM shipped its first System/360, another
momentous first shipment occurred: PDP-8 from Digital Equipment Corporation
(DEC). At a time when the average computer required an air-conditioned room,
the PDP-8 (dubbed a minicomputer by the industry, after the miniskirt of the day)
was small enough that it could be placed on top of a lab bench or be built into
other equipment. It could not do everything the mainframe could, but at $16,000, it
was cheap enough for each lab technician to have one. In contrast, the System/360
series of mainframe computers introduced just a few months before cost hundreds
of thousands of dollars.

24 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

The low cost and small size of the PDP-8 enabled another manufacturer to
purchase a PDP-8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the
OEM market became and remains a major segment of the computer marketplace.

In contrast to the central-switched architecture (Figure 1.9) used by IBM on its
700/7000 and 360 systems, later models of the PDP-8 used a structure that became vir-
tually universal for microcomputers: the bus structure. This is illustrated in Figure 1.13.
The PDP-8 bus, called the Omnibus, consists of 96 separate signal paths, used to carry
control, address, and data signals. Because all system components share a common
set of signal paths, their use can be controlled by the CPU. This architecture is highly
flexible, allowing modules to be plugged into the bus to create various configurations.
It is only in recent years that the bus structure has given way to a structure known as
point-to-point interconnect, described in Chapter 3.

Later Generations

Beyond the third generation there is less general agreement on defining generations
of computers. Table 1.2 suggests that there have been a number of later generations,
based on advances in integrated circuit technology. With the introduction of large-
scale integration (LSI), more than 1,000 components can be placed on a single inte-
grated circuit chip. Very-large-scale integration (VLSI) achieved more than 10,000
components per chip, while current ultra-large-scale integration (ULSI) chips can
contain more than one billion components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the
classification by generation becomes less clear and less meaningful. In this section,
we mention two of the most important of developments in later generations.

SEMICONDUCTOR MEMORY The first application of integrated circuit technology
to computers was the construction of the processor (the control unit and the
arithmetic and logic unit) out of integrated circuit chips. But it was also found that
this same technology could be used to construct memories.

In the 1950s and 1960s, most computer memory was constructed from tiny
rings of ferromagnetic material, each about a sixteenth of an inch in diameter.
These rings were strung up on grids of fine wires suspended on small screens inside
the computer. Magnetized one way, a ring (called a core) represented a one; mag-
netized the other way, it stood for a zero. Magnetic-core memory was rather fast;
it took as little as a millionth of a second to read a bit stored in memory. But it was

Console CPU Main /o s 1[0)
controller memory module module

Figure 1.13 PDP-8 Bus Structure

1.3 / A BRIEF HISTORY OF COMPUTERS 25

expensive and bulky, and used destructive readout: The simple act of reading a core
erased the data stored in it. It was therefore necessary to install circuits to restore
the data as soon as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor
memory. This chip, about the size of a single core, could hold 256 bits of memory. It
was nondestructive and much faster than core. It took only 70 billionths of a second
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase in
physical memory density. This has led the way to smaller, faster machines with mem-
ory sizes of larger and more expensive machines from just a few years earlier. Devel-
opments in memory technology, together with developments in processor technology
to be discussed next, changed the nature of computers in less than a decade. Although
bulky, expensive computers remain a part of the landscape, the computer has also
been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1k, 4k,
16k, 64k, 256k, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 8 Gb
on a single chip (1k = 2% 1M = 2% 1G = 2%°). Each generation has provided
increased storage density, accompanied by declining cost per bit and declining
access time. Densities are projected to reach 16 Gb by 2018 and 32 Gb by 2023
[ITRS14].

MICROPROCESSORS Just as the density of elements on memory chips has continued
to rise, so has the density of elements on processor chips. As time went on, more
and more elements were placed on each chip, so that fewer and fewer chips were
needed to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The
4004 was the first chip to contain al/ of the components of a CPU on a single chip:
The microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today’s standards, the 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power.

This evolution can be seen most easily in the number of bits that the processor
deals with at a time. There is no clear-cut measure of this, but perhaps the best meas-
ure is the data bus width: the number of bits of data that can be brought into or sent
out of the processor at a time. Another measure is the number of bits in the accumu-
lator or in the set of general-purpose registers. Often, these measures coincide, but
not always. For example, a number of microprocessors were developed that operate
on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost
twice as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the
introduction in 1974 of the Intel 8080. This was the first general-purpose micropro-
cessor. Whereas the 4004 and the 8008 had been designed for specific applications,
the 8080 was designed to be the CPU of a general-purpose microcomputer. Like the

26 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer
instruction set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. How-
ever, it was not until the end of the 1970s that powerful, general-purpose 16-bit
microprocessors appeared. One of these was the 8086. The next step in this trend
occurred in 1981, when both Bell Labs and Hewlett-Packard developed 32-bit,
single-chip microprocessors. Intel introduced its own 32-bit microprocessor, the
80386, in 1985 (Table 1.3).

Table 1.3 Evolution of Intel Microprocessors (page 1 of 2)
(a) 1970s Processors

4004 8008 8080 8086 8088
Introduced 1971 1972 1974 1978 1979
Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz
Bus width 4 bits 8 bits 8 bits 16 bits 8 bits
Number of transistors 2,300 3,500 6,000 29,000 29,000
Feature size (uwm) 10 8 6 3 6
Addressable memory 640 bytes 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors

80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6-12.5 MHz 16-33 MHz 16-33 MHz 25-50 MHz
Bus width 16 bits 32 bits 16 bits 32 bits
Number of transistors 134,000 275,000 275,000 1.2 million
Feature size (um) 1.5 1 1 0.8-1
Addressable memory 16 MB 4GB 16 MB 4GB
Virtual memory 1GB 64 TB 64 TB 64 TB
Cache - - - 8 kB

(¢) 1990s Processors

486TM SX Pentium Pentium Pro Pentium II
Introduced 1991 1993 1995 1997
Clock speeds 16-33 MHz 60-166 MHz, 150-200 MHz 200-300 MHz
Bus width 32 bits 32 bits 64 bits 64 bits
Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million
Feature size (um) 1 0.8 0.6 0.35
Addressable memory 4GB 4GB 64 GB 64 GB
Virtual memory 64 TB 64 TB 64 TB 64 TB
Cache 8 kB 8 kB 512 kB L1 and 512 kB L2

1 MB L2

1.4 / THE EVOLUTION OF THE INTEL x86 ARCHITECTURE 27

(d) Recent Processors

Pentium IIT Pentium 4 Core 2 Duo Core i7 EE 4960X
Introduced 1999 2000 2006 2013
Clock speeds 450-660 MHz 1.3-1.8 GHz 1.06-1.2 GHz 4 GHz
Bus width 64 bits 64 bits 64 bits 64 bits
Number of transistors 9.5 million 42 million 167 million 1.86 billion
Feature size (nm) 250 180 65 22
Addressable memory 64 GB 64 GB 64 GB 64 GB
Virtual memory 64 TB 64 TB 64 TB 64 TB
Cache 512 kB L2 256 kB L2 2MBL2 1.5 MB L2/15 MB L3
Number of cores 1 1 2 6

1.4 THE EVOLUTION OF THE INTEL x86 ARCHITECTURE

Throughout this book, we rely on many concrete examples of computer design and
implementation to illustrate concepts and to illuminate trade-offs. Numerous sys-
tems, both contemporary and historical, provide examples of important computer
architecture design features. But the book relies principally on examples from two
processor families: the Intel x86 and the ARM architectures. The current x86 offer-
ings represent the results of decades of design effort on complex instruction set com-
puters (CISCs). The x86 incorporates the sophisticated design principles once found
only on mainframes and supercomputers and serves as an excellent example of CISC
design. An alternative approach to processor design is the reduced instruction set
computer (RISC). The ARM architecture is used in a wide variety of embedded sys-
tems and is one of the most powerful and best-designed RISC-based systems on the
market. In this section and the next, we provide a brief overview of these two systems.

In terms of market share, Intel has ranked as the number one maker of micro-
processors for non-embedded systems for decades, a position it seems unlikely to
yield. The evolution of its flagship microprocessor product serves as a good indica-
tor of the evolution of computer technology in general.

Table 1.3 shows that evolution. Interestingly, as microprocessors have grown
faster and much more complex, Intel has actually picked up the pace. Intel used
to develop microprocessors one after another, every four years. But Intel hopes
to keep rivals at bay by trimming a year or two off this development time, and has
done so with the most recent x86 generations.'”

O1ntel refers to this as the fick-tock model. Using this model, Intel has successfully delivered next-
generation silicon technology as well as new processor microarchitecture on alternating years for the
past several years. See http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-
model-general.html.

http://www.intel.com/content/www/us/en/ silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/ silicon-innovations/intel-tick-tock-model-general.html

28 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

It is worthwhile to list some of the highlights of the evolution of the Intel prod-

uct line:

8080: The world’s first general-purpose microprocessor. This was an 8-bit
machine, with an 8-bit data path to memory. The 8080 was used in the first
personal computer, the Altair.

8086: A far more powerful, 16-bit machine. In addition to a wider data path
and larger registers, the 8086 sported an instruction cache, or queue, that
prefetches a few instructions before they are executed. A variant of this pro-
cessor, the 8088, was used in IBM’s first personal computer, securing the suc-
cess of Intel. The 8086 is the first appearance of the x86 architecture.

80286: This extension of the 8086 enabled addressing a 16-MB memory instead
of just 1 MB.

80386: Intel’s first 32-bit machine, and a major overhaul of the product. With
a 32-bit architecture, the 80386 rivaled the complexity and power of minicom-
puters and mainframes introduced just a few years earlier. This was the first
Intel processor to support multitasking, meaning it could run multiple pro-
grams at the same time.

80486: The 80486 introduced the use of much more sophisticated and power-
ful cache technology and sophisticated instruction pipelining. The 80486 also
offered a built-in math coprocessor, offloading complex math operations from
the main CPU.

Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch
prediction, data flow analysis, and speculative execution.

Pentium II: The Pentium II incorporated Intel MMX technology, which is
designed specifically to process video, audio, and graphics data efficiently.

Pentium III: The Pentium III incorporates additional floating-point instruc-
tions: The Streaming SIMD Extensions (SSE) instruction set extension added
70 new instructions designed to increase performance when exactly the same
operations are to be performed on multiple data objects. Typical applications
are digital signal processing and graphics processing.

Pentium 4: The Pentium 4 includes additional floating-point and other
enhancements for multimedia.'!

Core: This is the first Intel x86 microprocessor with a dual core, referring to
the implementation of two cores on a single chip.

Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad
provides four cores on a single chip. More recent Core offerings have up to 10
cores per chip. An important addition to the architecture was the Advanced
Vector Extensions instruction set that provided a set of 256-bit, and then 512-
bit, instructions for efficient processing of vector data.

1With the Pentium 4, Intel switched from Roman numerals to Arabic numerals for model numbers.

1.5 / EMBEDDED SYSTEMS 29

Almost 40 years after its introduction in 1978, the x86 architecture continues to
dominate the processor market outside of embedded systems. Although the organiza-
tion and technology of the x86 machines have changed dramatically over the decades,
the instruction set architecture has evolved to remain backward compatible with ear-
lier versions. Thus, any program written on an older version of the x86 architecture
can execute on newer versions. All changes to the instruction set architecture have
involved additions to the instruction set, with no subtractions. The rate of change has
been the addition of roughly one instruction per month added to the architecture
[ANTHOS], so that there are now thousands of instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hard-
ware over the past 35 years. The 1978 8086 was introduced with a clock speed of
5 MHz and had 29,000 transistors. A six-core Core i7 EE 4960X introduced in 2013
operates at 4 GHz, a speedup of a factor of 800, and has 1.86 billion transistors,
about 64,000 times as many as the 8086. Yet the Core i7 EE 4960X is in only a
slightly larger package than the 8086 and has a comparable cost.

1.5 EMBEDDED SYSTEMS

The term embedded system refers to the use of electronics and software within a
product, as opposed to a general-purpose computer, such as a laptop or desktop sys-
tem. Millions of computers are sold every year, including laptops, personal comput-
ers, workstations, servers, mainframes, and supercomputers. In contrast, billions of
computer systems are produced each year that are embedded within larger devices.
Today, many, perhaps most, devices that use electric power have an embedded com-
puting system. It is likely that in the near future virtually all such devices will have
embedded computing systems.

Types of devices with embedded systems are almost too numerous to list.
Examples include cell phones, digital cameras, video cameras, calculators, micro-
wave ovens, home security systems, washing machines, lighting systems, ther-
mostats, printers, various automotive systems (e.g., transmission control, cruise
control, fuel injection, anti-lock brakes, and suspension systems), tennis rack-
ets, toothbrushes, and numerous types of sensors and actuators in automated
systems.

Often, embedded systems are tightly coupled to their environment. This can
give rise to real-time constraints imposed by the need to interact with the environ-
ment. Constraints, such as required speeds of motion, required precision of meas-
urement, and required time durations, dictate the timing of software operations. If
multiple activities must be managed simultaneously, this imposes more complex
real-time constraints.

Figure 1.14 shows in general terms an embedded system organization. In addi-
tion to the processor and memory, there are a number of elements that differ from
the typical desktop or laptop computer:

m There may be a variety of interfaces that enable the system to measure, manip-
ulate, and otherwise interact with the external environment. Embedded sys-
tems often interact (sense, manipulate, and communicate) with external world
through sensors and actuators and hence are typically reactive systems; a

30 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

Custom
logic
/ y
Processor Memory
Human Diagnostic
interface port
A/D D/A
conversion Conversion
Actuators/
Sensors o .
indicators

Figure 1.14 Possible Organization of an Embedded
System

reactive system is in continual interaction with the environment and executes
at a pace determined by that environment.

®m The human interface may be as simple as a flashing light or as complicated as
real-time robotic vision. In many cases, there is no human interface.

m The diagnostic port may be used for diagnosing the system that is being
controlled—not just for diagnosing the computer.

m Special-purpose field programmable (FPGA), application-specific (ASIC), or
even nondigital hardware may be used to increase performance or reliability.

m Software often has a fixed function and is specific to the application.

m Efficiency is of paramount importance for embedded systems. They are opti-
mized for energy, code size, execution time, weight and dimensions, and cost.

There are several noteworthy areas of similarity to general-purpose computer
systems as well:

= Even with nominally fixed function software, the ability to field upgrade to fix
bugs, to improve security, and to add functionality, has become very important
for embedded systems, and not just in consumer devices.

m One comparatively recent development has been of embedded system plat-
forms that support a wide variety of apps. Good examples of this are smart-
phones and audio/visual devices, such as smart TVs.

The Internet of Things

It is worthwhile to separately callout one of the major drivers in the proliferation of
embedded systems. The Internet of things (IoT) is a term that refers to the expanding

1.5 / EMBEDDED SYSTEMS 31

interconnection of smart devices, ranging from appliances to tiny sensors. A domi-
nant theme is the embedding of short-range mobile transceivers into a wide array of
gadgets and everyday items, enabling new forms of communication between people
and things, and between things themselves. The Internet now supports the intercon-
nection of billions of industrial and personal objects, usually through cloud systems.
The objects deliver sensor information, act on their environment, and, in some cases,
modify themselves, to create overall management of a larger system, like a factory
or city.

The 10T is primarily driven by deeply embedded devices (defined below).
These devices are low-bandwidth, low-repetition data-capture, and low-bandwidth
data-usage appliances that communicate with each other and provide data via user
interfaces. Embedded appliances, such as high-resolution video security cameras,
video VoIP phones, and a handful of others, require high-bandwidth streaming
capabilities. Yet countless products simply require packets of data to be intermit-
tently delivered.

With reference to the end systems supported, the Internet has gone through
roughly four generations of deployment culminating in the [oT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought
as IT devices by enterprise I'T people and primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built
by non-IT companies, such as medical machinery, SCADA (supervisory con-
trol and data acquisition), process control, and kiosks, bought as appliances by
enterprise OT people and primarily using wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT
devices by consumers (employees) exclusively using wireless connectivity and
often multiple forms of wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT,
and OT people exclusively using wireless connectivity, generally of a single
form, as part of larger systems.

It is the fourth generation that is usually thought of as the IoT, and it is marked
by the use of billions of embedded devices.

Embedded Operating Systems

There are two general approaches to developing an embedded operating system
(OS). The first approach is to take an existing OS and adapt it for the embedded
application. For example, there are embedded versions of Linux, Windows, and
Mac, as well as other commercial and proprietary operating systems specialized for
embedded systems. The other approach is to design and implement an OS intended
solely for embedded use. An example of the latter is TinyOS, widely used in wireless
sensor networks. This topic is explored in depth in [STALI15].

Application Processors versus Dedicated Processors

In this subsection, and the next two, we briefly introduce some terms commonly
found in the literature on embedded systems. Application processors are defined

32 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

by the processor’s ability to execute complex operating systems, such as Linux,
Android, and Chrome. Thus, the application processor is general-purpose in nature.
A good example of the use of an embedded application processor is the smartphone.
The embedded system is designed to support numerous apps and perform a wide
variety of functions.

Most embedded systems employ a dedicated processor, which, as the name
implies, is dedicated to one or a small number of specific tasks required by the host
device. Because such an embedded system is dedicated to a specific task or tasks,
the processor and associated components can be engineered to reduce size and cost.

Microprocessors versus Microcontrollers

As we have seen, early microprocessor chips included registers, an ALU, and some
sort of control unit or instruction processing logic. As transistor density increased, it
became possible to increase the complexity of the instruction set architecture, and
ultimately to add memory and more than one processor. Contemporary micropro-
cessor chips, as shown in Figure 1.2, include multiple cores and a substantial amount
of cache memory.

A microcontroller chip makes a substantially different use of the logic space
available. Figure 1.15 shows in general terms the elements typically found on a
microcontroller chip. As shown, a microcontroller is a single chip that contains the
processor, non-volatile memory for the program (ROM), volatile memory for input
and output (RAM), a clock, and an I/O control unit. The processor portion of the
microcontroller has a much lower silicon area than other microprocessors and much
higher energy efficiency. We examine microcontroller organization in more detail
in Section 1.6.

Also called a “computer on a chip,” billions of microcontroller units are
embedded each year in myriad products from toys to appliances to automobiles. For
example, a single vehicle can use 70 or more microcontrollers. Typically, especially
for the smaller, less expensive microcontrollers, they are used as dedicated proces-
sors for specific tasks. For example, microcontrollers are heavily utilized in automa-
tion processes. By providing simple reactions to input, they can control machinery,
turn fans on and off, open and close valves, and so forth. They are integral parts of
modern industrial technology and are among the most inexpensive ways to produce
machinery that can handle extremely complex functionalities.

Microcontrollers come in a range of physical sizes and processing power. Pro-
cessors range from 4-bit to 32-bit architectures. Microcontrollers tend to be much
slower than microprocessors, typically operating in the MHz range rather than the
GHz speeds of microprocessors. Another typical feature of a microcontroller is that
it does not provide for human interaction. The microcontroller is programmed for a
specific task, embedded in its device, and executes as and when required.

Embedded versus Deeply Embedded Systems

We have, in this section, defined the concept of an embedded system. A subset of
embedded systems, and a quite numerous subset, is referred to as deeply embed-
ded systems. Although this term is widely used in the technical and commercial

1.6 / ARM ARCHITECTURE 33

1 1
1 1
1 1
1 1
: Processor :
: :
1 1
1 1
1 1
Analog data] 3 A/D RAM ! (_ Temporary
acquisition I converter ! data

: :
1 1
1 1

Analog data « D/A ROM 1 (_ Program

transmission : converter : and data
: :
1 1

Send/receive ¢] 3 Serial I/O EEPROM . (_ Permanent
data 1 ports 1 data
1
: .
1 1
1 1
Peripheral ! Parallel /O TIMER 1 (_ Timing

interfaces : ports System ! (functions
! bus !
1 1

Figure 1.15 Typical Microcontroller Chip Elements

literature, you will search the Internet in vain (or at least I did) for a straightfor-
ward definition. Generally, we can say that a deeply embedded system has a proces-
sor whose behavior is difficult to observe both by the programmer and the user.
A deeply embedded system uses a microcontroller rather than a microprocessor, is
not programmable once the program logic for the device has been burned into ROM
(read-only memory), and has no interaction with a user.

Deeply embedded systems are dedicated, single-purpose devices that detect
something in the environment, perform a basic level of processing, and then do some-
thing with the results. Deeply embedded systems often have wireless capability and
appear in networked configurations, such as networks of sensors deployed over a large
area (e.g., factory, agricultural field). The Internet of things depends heavily on deeply
embedded systems. Typically, deeply embedded systems have extreme resource con-
straints in terms of memory, processor size, time, and power consumption.

1.6 ARM ARCHITECTURE

The ARM architecture refers to a processor architecture that has evolved from
RISC design principles and is used in embedded systems. Chapter 15 examines
RISC design principles in detail. In this section, we give a brief overview of the
ARM architecture.

34 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed by
ARM Holdings, Cambridge, England. The company doesn’t make processors but
instead designs microprocessor and multicore architectures and licenses them to man-
ufacturers. Specifically, ARM Holdings has two types of licensable products: proces-
sors and processor architectures. For processors, the customer buys the rights to use
ARM-supplied design in their own chips. For a processor architecture, the customer
buys the rights to design their own processor compliant with ARM’s architecture.

ARM chips are high-speed processors that are known for their small die size
and low power requirements. They are widely used in smartphones and other hand-
held devices, including game systems, as well as a large variety of consumer prod-
ucts. ARM chips are the processors in Apple’s popular iPod and iPhone devices,
and are used in virtually all Android smartphones as well. ARM is probably the
most widely used embedded processor architecture and indeed the most widely
used processor architecture of any kind in the world [VANC14].

The origins of ARM technology can be traced back to the British-based Acorn
Computers company. In the early 1980s, Acorn was awarded a contract by the Brit-
ish Broadcasting Corporation (BBC) to develop a new microcomputer architecture
for the BBC Computer Literacy Project. The success of this contract enabled Acorn
to go on to develop the first commercial RISC processor, the Acorn RISC Machine
(ARM). The first version, ARM1, became operational in 1985 and was used for
internal research and development as well as being used as a coprocessor in the
BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual
fabrication of the processor chips. VLSI was licensed to market the chip on its own
and had some success in getting other companies to use the ARM in their products,
particularly as an embedded processor.

The ARM design matched a growing commercial need for a high-performance,
low-power-consumption, small-size, and low-cost processor for embedded appli-
cations. But further development was beyond the scope of Acorn’s capabilities.
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Com-
puter as founding partners, known as ARM Ltd. The Acorn RISC Machine became
Advanced RISC Machines.'?

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of
the processor and efficient execution. All instructions are 32 bits long and follow a
regular format. This makes the ARM ISA suitable for implementation over a wide
range of products.

Augmenting the basic ARM ISA is the Thumb instruction set, which is a re-
encoded subset of the ARM instruction set. Thumb is designed to increase the per-
formance of ARM implementations that use a 16-bit or narrower memory data bus,

2The company dropped the designation Advanced RISC Machines in the late 1990s. It is now simply
known as the ARM architecture.

1.6 / ARM ARCHITECTURE 35

and to allow better code density than provided by the ARM instruction set. The
Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded
into 16-bit instructions. The current defined version is Thumb-2.

The ARM and Thumb-2 ISAs are discussed in Chapters 12 and 13.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related tech-
nologies, but the bulk of their product line is the Cortex family of microprocessor
architectures. There are three Cortex architectures, conveniently labeled with the
initials A, R, and M.

CORTEX-A/CORTEX-A50 The Cortex-A and Cortex-A50 are application
processors, intended for mobile devices such as smartphones and eBook readers,
as well as consumer devices such as digital TV and home gateways (e.g., DSL and
cable Internet modems). These processors run at higher clock frequency (over
1 GHz), and support a memory management unit (MMU), which is required for full
feature OSs such as Linux, Android, MS Windows, and mobile OSs. An MMU is
a hardware module that supports virtual memory and paging by translating virtual
addresses into physical addresses; this topic is explored in Chapter 8.

The two architectures use both the ARM and Thumb-2 instruction sets; the
principal difference is that the Cortex-A is a 32-bit machine, and the Cortex-AS50 is
a 64-bit machine.

CORTEX-R The Cortex-R is designed to support real-time applications, in which
the timing of events needs to be controlled with rapid response to events. They can
run at a fairly high clock frequency (e.g., 200MHz to 800MHz) and have very low
response latency. The Cortex-R includes enhancements both to the instruction set
and to the processor organization to support deeply embedded real-time devices.
Most of these processors do not have MMU; the limited data requirements and
the limited number of simultaneous processes eliminates the need for elaborate
hardware and software support for virtual memory. The Cortex-R does have a
Memory Protection Unit (MPU), cache, and other memory features designed for
industrial applications. An MPU is a hardware module that prohibits one program
in memory from accidentally accessing memory assigned to another active program.
Using various methods, a protective boundary is created around the program, and
instructions within the program are prohibited from referencing data outside of that
boundary.

Examples of embedded systems that would use the Cortex-R are automotive
braking systems, mass storage controllers, and networking and printing devices.

CORTEX-M Cortex-M series processors have been developed primarily for the
microcontroller domain where the need for fast, highly deterministic interrupt
management is coupled with the desire for extremely low gate count and
lowest possible power consumption. As with the Cortex-R series, the Cortex-M
architecture has an MPU but no MMU. The Cortex-M uses only the Thumb-2
instruction set. The market for the Cortex-M includes IoT devices, wireless
sensor/actuator networks used in factories and other enterprises, automotive
body electronics, and so on.

36 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

There are currently four versions of the Cortex-M series:

= Cortex-M0: Designed for 8- and 16-bit applications, this model emphasizes low
cost, ultra low power, and simplicity. It is optimized for small silicon die size
(starting from 12k gates) and use in the lowest cost chips.

= Cortex-M0+: An enhanced version of the MO that is more energy efficient.

m Cortex-M3: Designed for 16- and 32-bit applications, this model emphasizes
performance and energy efficiency. It also has comprehensive debug and trace
features to enable software developers to develop their applications quickly.

m Cortex-M4: This model provides all the features of the Cortex-M3, with addi-
tional instructions to support digital signal processing tasks.

In this text, we will primarily use the ARM Cortex-M3 as our example embed-
ded system processor. It is the best suited of all ARM models for general-purpose
microcontroller use. The Cortex-M3 is used by a variety of manufacturers of micro-
controller products. Initial microcontroller devices from lead partners already
combine the Cortex-M3 processor with flash, SRAM, and multiple peripherals to
provide a competitive offering at the price of just $1.

Figure 1.16 provides a block diagram of the EFM32 microcontroller from Sil-
icon Labs. The figure also shows detail of the Cortex-M3 processor and core com-
ponents. We examine each level in turn.

The Cortex-M3 core makes use of separate buses for instructions and data.
This arrangement is sometimes referred to as a Harvard architecture, in contrast
with the von Neumann architecture, which uses the same signal buses and mem-
ory for both instructions and data. By being able to read both an instruction and
data from memory at the same time, the Cortex-M3 processor can perform many
operations in parallel, speeding application execution. The core contains a decoder
for Thumb instructions, an advanced ALU with support for hardware multiply and
divide, control logic, and interfaces to the other components of the processor. In
particular, there is an interface to the nested vector interrupt controller (NVIC) and
the embedded trace macrocell (ETM) module.

The core is part of a module called the Cortex-M3 processor. This term is
somewhat misleading, because typically in the literature, the terms core and pro-
cessor are viewed as equivalent. In addition to the core, the processor includes the
following elements:

m NVIC: Provides configurable interrupt handling abilities to the processor. It
facilitates low-latency exception and interrupt handling, and controls power
management.

= ETM: An optional debug component that enables reconstruction of program
execution. The ETM is designed to be a high-speed, low-power debug tool
that only supports instruction trace.

= Debug access port (DAP): This provides an interface for external debug
access to the processor.

= Debug logic: Basic debug functionality includes processor halt, single-step,
processor core register access, unlimited software breakpoints, and full system
memory access.

J

-

/

Figure 1.16 Typical Microcontroller Chip Based on Cortex-M3

/Security\ € Analog Interfaces\ (Timers & Triggers) (“Parallel /O Ports | Serial Interfaces)
'
bus int)| counter Pin
Hard- - USART|| USB
ware A/D D/A Low Real
AES con- con- energy) (time ctr e
NEIEY ELED Pulse (Watch- UART || energy
counter) |dog tmr UART
\ U\ AN 9 Q
Peripheral bus
Y N\)
Voltage | | Voltage High fre- | [High freq Flash SRAM | | Debug DMA
regula- | | compar- || ||quency RC|| crystal memory | |[memory | | inter- control-
tor ator oscillator | | oscillator 64 kB 64 kB face ler
P Brown- Low fre- | [Low freq (St
o= out de- quency RC|| crystal protec- Cortex-M3 processor
O tector oscillator | | oscillator tion unit
77 \
\ Energy management) {_Clock management J{ 2 Core and memory N
. i J
7 AY
Microcontroller Chip /’
ICode SRAM &
interface peripheral I/F
Bus matrix
Debug logic
DAP Memory
protection unit
—""_——‘—__N—VIC ARM | oM
__________ core
———————— Cortex-M3 Core _ »
/ NVIC ETM) » Cortex-M3
interface interface , Processor
/
32-bit ALU .
Hardware 32-bit ,/'
divider multiplier 4
7/ //
Control Thumb R4
logic decode e
/
Instruction Data //'
interface interface 7

37

38 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

ICode interface: Fetches instructions from the code memory space.

SRAM & peripheral interface: Read/write interface to data memory and
peripheral devices.

Bus matrix: Connects the core and debug interfaces to external buses on the
microcontroller.

Memory protection unit: Protects critical data used by the operating system
from user applications, separating processing tasks by disallowing access
to each other’s data, disabling access to memory regions, allowing memory
regions to be defined as read-only, and detecting unexpected memory accesses
that could potentially break the system.

The upper part of Figure 1.16 shows the block diagram of a typical micro-

controller built with the Cortex-M3, in this case the EFM32 microcontroller. This
microcontroller is marketed for use in a wide variety of devices, including energy,
gas, and water metering; alarm and security systems; industrial automation devices;
home automation devices; smart accessories; and health and fitness devices. The sil-

icon chip consists of 10 main areas:

13

Core and memory: This region includes the Cortex-M3 processor, static RAM
(SRAM) data memory,'* and flash memory" for storing program instructions
and nonvarying application data. Flash memory is nonvolatile (data is not lost
when power is shut off) and so is ideal for this purpose. The SRAM stores
variable data. This area also includes a debug interface, which makes it easy to
reprogram and update the system in the field.

Parallel I/O ports: Configurable for a variety of parallel I/O schemes.
Serial interfaces: Supports various serial I/O schemes.

Analog interfaces: Analog-to-digital and digital-to-analog logic to support
sensors and actuators.

Timers and triggers: Keeps track of timing and counts events, generates out-
put waveforms, and triggers timed actions in other peripherals.

Clock management: Controls the clocks and oscillators on the chip. Multiple
clocks and oscillators are used to minimize power consumption and provide
short startup times.

Energy management: Manages the various low-energy modes of operation of

the processor and peripherals to provide real-time management of the energy
needs so as to minimize energy consumption.

Security: The chip includes a hardware implementation of the Advanced
Encryption Standard (AES).

13This discussion does not go into details about all of the individual modules; for the interested reader, an
in-depth discussion is provided in the document EFM32G200.pdf, available at box.com/COA10e.

4Static RAM (SRAM) is a form of random-access memory used for cache memory; see Chapter 5.

I5Flash memory is a versatile form of memory used both in microcontrollers and as external memory; it
is discussed in Chapter 6.

1.7 / CLOUD COMPUTING 39

m 32-bit bus: Connects all of the components on the chip.

= Peripheral bus: A network which lets the different peripheral module commu-
nicate directly with each other without involving the processor. This supports
timing-critical operation and reduces software overhead.

Comparing Figure 1.16 with Figure 1.2, you will see many similarities and
the same general hierarchical structure. Note, however, that the top level of a
microcontroller computer system is a single chip, whereas for a multicore com-
puter, the top level is a motherboard containing a number of chips. Another note-
worthy difference is that there is no cache, neither in the Cortex-M3 processor
nor in the microcontroller as a whole, which plays an important role if the code or
data resides in external memory. Though the number of cycles to read the instruc-
tion or data varies depending on cache hit or miss, the cache greatly improves the
performance when external memory is used. Such overhead is not needed for a
microcontroller.

1.7 CLOUD COMPUTING

Although the general concepts for cloud computing go back to the 1950s, cloud
computing services first became available in the early 2000s, particularly targeted
at large enterprises. Since then, cloud computing has spread to small and medium
size businesses, and most recently to consumers. Apple’s iCloud was launched in
2012 and had 20 million users within a week of launch. Evernote, the cloud-based
notetaking and archiving service, launched in 2008, approached 100 million users
in less than 6 years. In this section, we provide a brief overview. Cloud computing is
examined in more detail in Chapter 17

Basic Concepts

There is an increasingly prominent trend in many organizations to move a substantial
portion or even all information technology (IT) operations to an Internet-connected
infrastructure known as enterprise cloud computing. At the same time, individual
users of PCs and mobile devices are relying more and more on cloud computing
services to backup data, synch devices, and share, using personal cloud computing.
NIST defines cloud computing, in NIST SP-800-145 (The NIST Definition of Cloud
Computing), as follows:

Cloud computing: A model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

Basically, with cloud computing, you get economies of scale, professional
network management, and professional security management. These features can
be attractive to companies large and small, government agencies, and individual
PC and mobile users. The individual or company only needs to pay for the storage

40 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

capacity and services they need. The user, be it company or individual, doesn’t have
the hassle of setting up a database system, acquiring the hardware they need, doing
maintenance, and backing up the data—all these are part of the cloud service.

In theory, another big advantage of using cloud computing to store your data
and share it with others is that the cloud provider takes care of security. Alas, the
customer is not always protected. There have been a number of security failures
among cloud providers. Evernote made headlines in early 2013 when it told all of its
users to reset their passwords after an intrusion was discovered.

Cloud networking refers to the networks and network management function-
ality that must be in place to enable cloud computing. Most cloud computing solu-
tions rely on the Internet, but that is only a piece of the networking infrastructure.
One example of cloud networking is the provisioning of high-performance and/or
high-reliability networking between the provider and subscriber. In this case, some
or all of the traffic between an enterprise and the cloud bypasses the Internet and
uses dedicated private network facilities owned or leased by the cloud service pro-
vider. More generally, cloud networking refers to the collection of network capa-
bilities required to access a cloud, including making use of specialized services over
the Internet, linking enterprise data centers to a cloud, and using firewalls and other
network security devices at critical points to enforce access security policies.

We can think of cloud storage as a subset of cloud computing. In essence, cloud
storage consists of database storage and database applications hosted remotely on
cloud servers. Cloud storage enables small businesses and individual users to take
advantage of data storage that scales with their needs and to take advantage of a
variety of database applications without having to buy, maintain, and manage the
storage assets.

Cloud Services

The essential purpose of cloud computing is to provide for the convenient rental
of computing resources. A cloud service provider (CSP) maintains computing and
data storage resources that are available over the Internet or private networks.
Customers can rent a portion of these resources as needed. Virtually all cloud ser-
vice is provided using one of three models (Figure 1.17): SaaS, Paa$, and TaaS, which
we examine in this section.

SOFTWARE AS A SERVICE (SAAS) As the name implies, a SaaS cloud provides
service to customers in the form of software, specifically application software,
running on and accessible in the cloud. SaaS follows the familiar model of Web
services, in this case applied to cloud resources. SaaS enables the customer to use
the cloud provider’s applications running on the provider’s cloud infrastructure. The
applications are accessible from various client devices through a simple interface
such as a Web browser. Instead of obtaining desktop and server licenses for
software products it uses, an enterprise obtains the same functions from the cloud
service. SaaS saves the complexity of software installation, maintenance, upgrades,
and patches. Examples of services at this level are Gmail, Google’s e-mail service,
and Salesforce.com, which help firms keep track of their customers.

Common subscribers to SaaS are organizations that want to provide their
employees with access to typical office productivity software, such as document

1.7 / CLOUD COMPUTING 41

Traditional IT Infrastructure as Platform as a Software as a
architecture a service (IaaS) service (PaaS) service (SaaS)

Applications Applications Applications

Application [Application
Framework Framework

Compilers

Applications

]

1
Managed
by client

1]

1

Application
Framework

Application
Framework

Compilers Compilers Compilers

Run-time Run-time

environment

Run-time Run-time

environment

Operating
system

Virtual
machine

Managed by client

=]
=
g
o
5
-

Databases Databases Databases

Operating T
system

Operating
system

Virtual
machine

Operating
system

Virtual
machine

Managed by CSP

Virtual
machine

Managed by CSP

Server
hardware

Server
hardware

Server
hardware

Server
hardware
Storage Storage

Storage Storage

Networking

Networking

o
=
§
o
=
-

1

I

A
»n
Q
=
=
E -
%)
=)
&
=
Eﬂ

Networking Networking

More complex
More upfront cost
Less scalable
More customizable

Less complex
Lower upfront cost
More scalable

Less customizable

IT = information technology
CSP = cloud service provider

Figure 1.17 Alternative Information Technology Architectures

management and email. Individuals also commonly use the SaaS model to acquire
cloud resources. Typically, subscribers use specific applications on demand. The
cloud provider also usually offers data-related features such as automatic backup
and data sharing between subscribers.

PLATFORM AS A SERVICE (PAAS) A PaaS cloud provides service to customers in
the form of a platform on which the customer’s applications can run. PaaS enables
the customer to deploy onto the cloud infrastructure containing customer-created
or acquired applications. A PaaS cloud provides useful software building blocks,
plus a number of development tools, such as programming languages, run-time
environments, and other tools that assist in deploying new applications. In effect,
PaaS is an operating system in the cloud. PaaS is useful for an organization that
wants to develop new or tailored applications while paying for the needed computing
resources only as needed and only for as long as needed. Google App Engine and
the Salesforcel Platform from Salesforce.com are examples of PaaS.

42 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

INFRASTRUCTURE AS A SERVICE (I144S) With Iaa$, the customer has access to the
underlying cloud infrastructure. IaaS provides virtual machines and other abstracted
hardware and operating systems, which may be controlled through a service
application programming interface (API). IaaS offers the customer processing,
storage, networks, and other fundamental computing resources so that the customer
is able to deploy and run arbitrary software, which can include operating systems
and applications. IaaS enables customers to combine basic computing services,
such as number crunching and data storage, to build highly adaptable computer
systems. Examples of TaaS are Amazon Elastic Compute Cloud (Amazon EC2) and

Windows Azure.

KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

application processor

arithmetic and logic unit
(ALU)

ARM

central processing unit
(CPU)

chip

cloud computing

cloud networking

cloud storage

computer architecture

computer organization

control unit

core

dedicated processor

deeply embedded system

embedded system

gate

infrastructure as a service
(TaaS)

input-output (I/O)

instruction set architecture
(ISA)

integrated circuit

Intel x86

Internet of things (IoT)

main memory

memory cell

memory management unit
(MMU)

memory protection unit
(MPU)

microcontroller

microelectronics

microprocessor

motherboard

multicore

multicore processor

original equipment
manufacturer (OEM)

platform as a service
(PaaS)

printed circuit board

processor

registers

semiconductor

semiconductor memory

software as a service (SaaS)

system bus

system interconnection

vacuum tubes

Review Questions

1.1 What, in general terms, is the distinction between computer organization and com-

puter architecture?

1.2 What, in general terms, is the distinction between computer structure and computer

function?

1.3 What are the four main functions of a computer?

1.4 List and briefly define the main structural components of a computer.
1.5 List and briefly define the main structural components of a processor.
1.6 What is a stored program computer?
1.7 Explain Moore’s law.

1.8 List and explain the key characteristics of a computer family.
1.9 What is the key distinguishing feature of a microprocessor?

1.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 43

Problems

1.1

1.2

1.3

1.4

1.5
1.6

1.7

1.8

1.9

1.10

You are to write an IAS program to compute the results of the following equation.

N
Y=>X
X=1

Assume that the computation does not result in an arithmetic overflow and that X, Y,
and N are positive integers with N = 1. Note: The IAS did not have assembly language,
only machine language.

NN + 1)
2

b. Do it the “hard way,” without using the equation from part (a).

a. Use the equation Sum(Y) = when writing the IAS program.

a. On the IAS, what would the machine code instruction look like to load the con-
tents of memory address 2 to the accumulator?

b. How many trips to memory does the CPU need to make to complete this instruc-
tion during the instruction cycle?

On the IAS, describe in English the process that the CPU must undertake to read a
value from memory and to write a value to memory in terms of what is put into the
MAR, MBR, address bus, data bus, and control bus.

Given the memory contents of the IAS computer shown below,

Address Contents

08A 010FA210FB
08B 010FAOFOSD
08C 020FA210FB

show the assembly language code for the program, starting at address 08A. Explain
what this program does.

In Figure 1.6, indicate the width, in bits, of each data path (e.g., between AC and ALU).
In the IBM 360 Models 65 and 75, addresses are staggered in two separate main mem-
ory units (e.g., all even-numbered words in one unit and all odd-numbered words in
another). What might be the purpose of this technique?

The relative performance of the IBM 360 Model 75 is 50 times that of the 360 Model
30, yet the instruction cycle time is only 5 times as fast. How do you account for this
discrepancy?

While browsing at Billy Bob’s computer store, you overhear a customer asking Billy
Bob what is the fastest computer in the store that he can buy. Billy Bob replies,“You're
looking at our Macintoshes. The fastest Mac we have runs at a clock speed of 1.2 GHz.
If you really want the fastest machine, you should buy our 2.4-GHz Intel Pentium IV
instead.” Is Billy Bob correct? What would you say to help this customer?

The ENIAC, a precursor to the ISA machine, was a decimal machine, in which each
register was represented by a ring of 10 vacuum tubes. At any time, only one vacuum
tube was in the ON state, representing one of the 10 decimal digits. Assuming that
ENIAC had the capability to have multiple vacuum tubes in the ON and OFF state
simultaneously, why is this representation “wasteful” and what range of integer values
could we represent using the 10 vacuum tubes?

For each of the following examples, determine whether this is an embedded system,

explaining why or why not.

a. Are programs that understand physics and/or hardware embedded? For example,
one that uses finite-element methods to predict fluid flow over airplane wings?

b. Isthe internal microprocessor controlling a disk drive an example of an embedded
system?

44 CHAPTER 1 / BASIC CONCEPTS AND COMPUTER EVOLUTION

I/O drivers control hardware, so does the presence of an I/O driver imply that the
computer executing the driver is embedded?

Is a PDA (Personal Digital Assistant) an embedded system?

Is the microprocessor controlling a cell phone an embedded system?

Are the computers in a big phased-array radar considered embedded? These
radars are 10-story buildings with one to three 100-foot diameter radiating patches
on the sloped sides of the building.

Is a traditional flight management system (FMS) built into an airplane cockpit
considered embedded?

Are the computers in a hardware-in-the-loop (HIL) simulator embedded?

Is the computer controlling a pacemaker in a person’s chest an embedded
computer?

Is the computer controlling fuel injection in an automobile engine embedded?

CHAPTER

PERFORMANCE ISSUES

21

2.2
2.3

24

2.5

2.6

2.7

Designing for Performance
Microprocessor Speed
Performance Balance
Improvements in Chip Organization and Architecture

Multicore, MICs, and GPGPUs

Two Laws that Provide Insight: Amdahl’s Law and Little’s Law
Amdahl’s Law
Little’s Law

Basic Measures of Computer Performance
Clock Speed
Instruction Execution Rate

Calculating the Mean
Arithmetic Mean
Harmonic Mean
Geometric Mean

Benchmarks and SPEC
Benchmark Principles
SPEC Benchmarks

Key Terms, Review Questions, and Problems

45

46 CHAPTER 2 / PERFORMANCE ISSUES

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Understand the key performance issues that relate to computer design.

@ Explain the reasons for the move to multicore organization, and understand
the trade-off between cache and processor resources on a single chip.

@ Distinguish among multicore, MIC, and GPGPU organizations.

€ Summarize some of the issues in computer performance assessment.

@ Discuss the SPEC benchmarks.

@ Explain the differences among arithmetic, harmonic, and geometric means.

This chapter addresses the issue of computer system performance. We begin with a
consideration of the need for balanced utilization of computer resources, which pro-
vides a perspective that is useful throughout the book. Next we look at contemporary
computer organization designs intended to provide performance to meet current
and projected demand. Finally, we look at tools and models that have been devel-
oped to provide a means of assessing comparative computer system performance.

2.1 DESIGNING FOR PERFORMANCE

Year by year, the cost of computer systems continues to drop dramatically, while the
performance and capacity of those systems continue to rise equally dramatically.
Today’s laptops have the computing power of an IBM mainframe from 10 or 15
years ago. Thus, we have virtually “free” computer power. Processors are so inexpen-
sive that we now have microprocessors we throw away. The digital pregnancy test is
an example (used once and then thrown away). And this continuing technological
revolution has enabled the development of applications of astounding complex-
ity and power. For example, desktop applications that require the great power of
today’s microprocessor-based systems include

Image processing
Three-dimensional rendering
Speech recognition
Videoconferencing

Multimedia authoring

Voice and video annotation of files

Simulation modeling

Workstation systems now support highly sophisticated engineering and scientific
applications and have the capacity to support image and video applications. In addi-
tion, businesses are relying on increasingly powerful servers to handle transaction
and database processing and to support massive client/server networks that have
replaced the huge mainframe computer centers of yesteryear. As well, cloud service

2.1 / DESIGNING FOR PERFORMANCE 47

providers use massive high-performance banks of servers to satisfy high-volume,
high-transaction-rate applications for a broad spectrum of clients.

What is fascinating about all this from the perspective of computer organiza-
tion and architecture is that, on the one hand, the basic building blocks for today’s
computer miracles are virtually the same as those of the IAS computer from over
50 years ago, while on the other hand, the techniques for squeezing the maximum
performance out of the materials at hand have become increasingly sophisticated.

This observation serves as a guiding principle for the presentation in this
book. As we progress through the various elements and components of a computer,
two objectives are pursued. First, the book explains the fundamental functionality
in each area under consideration, and second, the book explores those techniques
required to achieve maximum performance. In the remainder of this section, we
highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling
power is the relentless pursuit of speed by processor chip manufacturers. The evolu-
tion of these machines continues to bear out Moore’s law, described in Chapter 1. So
long as this law holds, chipmakers can unleash a new generation of chips every three
years—with four times as many transistors. In memory chips, this has quadrupled
the capacity of dynamic random-access memory (DRAM), still the basic technology
for computer main memory, every three years. In microprocessors, the addition of
new circuits, and the speed boost that comes from reducing the distances between
them, has improved performance four- or fivefold every three years or so since Intel
launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless
it is fed a constant stream of work to do in the form of computer instructions. Any-
thing that gets in the way of that smooth flow undermines the power of the proces-
sor. Accordingly, while the chipmakers have been busy learning how to fabricate
chips of greater and greater density, the processor designers must come up with
ever more elaborate techniques for feeding the monster. Among the techniques
built into contemporary processors are the following:

= Pipelining: The execution of an instruction involves multiple stages of oper-
ation, including fetching the instruction, decoding the opcode, fetching oper-
ands, performing a calculation, and so on. Pipelining enables a processor to
work simultaneously on multiple instructions by performing a different phase
for each of the multiple instructions at the same time. The processor over-
laps operations by moving data or instructions into a conceptual pipe with all
stages of the pipe processing simultaneously. For example, while one instruc-
tion is being executed, the computer is decoding the next instruction. This is
the same principle as seen in an assembly line.

= Branch prediction: The processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups of instructions, are
likely to be processed next. If the processor guesses right most of the time, it
can prefetch the correct instructions and buffer them so that the processor is
kept busy. The more sophisticated examples of this strategy predict not just

48 CHAPTER 2 / PERFORMANCE ISSUES

the next branch but multiple branches ahead. Thus, branch prediction poten-
tially increases the amount of work available for the processor to execute.

= Superscalar execution: This is the ability to issue more than one instruction
in every processor clock cycle. In effect, multiple parallel pipelines are used.

= Data flow analysis: The processor analyzes which instructions are dependent
on each other’s results, or data, to create an optimized schedule of instruc-
tions. In fact, instructions are scheduled to be executed when ready, independ-
ent of the original program order. This prevents unnecessary delay.

= Speculative execution: Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead of their actual appearance
in the program execution, holding the results in temporary locations. This ena-
bles the processor to keep its execution engines as busy as possible by execut-
ing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer
power of the processor. Collectively they make it possible to execute many instruc-
tions per processor cycle, rather than to take many cycles per instruction.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance
balance: an adjustment/tuning of the organization and architecture to compensate
for the mismatch among the capabilities of the various components.

The problem created by such mismatches is particularly critical at the inter-
face between processor and main memory. While processor speed has grown rap-
idly, the speed with which data can be transferred between main memory and the
processor has lagged badly. The interface between processor and main memory is
the most crucial pathway in the entire computer because it is responsible for carry-
ing a constant flow of program instructions and data between memory chips and the
processor. If memory or the pathway fails to keep pace with the processor’s insist-
ent demands, the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which
are reflected in contemporary computer designs. Consider the following examples:

m Increase the number of bits that are retrieved at one time by making DRAMs
“wider” rather than “deeper” and by using wide bus data paths.

= Change the DRAM interface to make it more efficient by including a cache'
or other buffering scheme on the DRAM chip.

m Reduce the frequency of memory access by incorporating increasingly com-
plex and efficient cache structures between the processor and main memory.
This includes the incorporation of one or more caches on the processor chip as
well as on an off-chip cache close to the processor chip.

A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that
accesses the larger memory. The cache holds recently accessed data and is designed to speed up subse-
quent access to the same data. Caches are discussed in Chapter 4.

Ethernet modem

Graphics display |

2.1 / DESIGNING FOR PERFORMANCE 49

m [ncrease the interconnect bandwidth between processors and memory by using
higher-speed buses and a hierarchy of buses to buffer and structure data flow.

Another area of design focus is the handling of I/O devices. As computers
become faster and more capable, more sophisticated applications are developed
that support the use of peripherals with intensive I/O demands. Figure 2.1 gives
some examples of typical peripheral devices in use on personal computers and
workstations. These devices create tremendous data throughput demands. While
the current generation of processors can handle the data pumped out by these
devices, there remains the problem of getting that data moved between processor
and peripheral. Strategies here include caching and buffering schemes plus the use
of higher-speed interconnection buses and more elaborate interconnection struc-
tures. In addition, the use of multiple-processor configurations can aid in satisfying
I/O demands.

The key in all this is balance. Designers constantly strive to balance the
throughput and processing demands of the processor components, main memory,
I/0O devices, and the interconnection structures. This design must constantly be
rethought to cope with two constantly evolving factors:

m The rate at which performance is changing in the various technology areas
(processor, buses, memory, peripherals) differs greatly from one type of ele-
ment to another.

m New applications and new peripheral devices constantly change the nature of
the demand on the system in terms of typical instruction profile and the data
access patterns.

(max speed)

Wi-Fi modem |
(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse |

Keyboard
10! 102 103 10* 10° 10° 107 108 10° 100 101t
Data Rate (bps)

Figure 2.1 Typical I/O Device Data Rates

50 CHAPTER 2 / PERFORMANCE ISSUES

Thus, computer design is a constantly evolving art form. This book attempts to
present the fundamentals on which this art form is based and to present a survey of
the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with
that of main memory and other computer components, the need to increase pro-
cessor speed remains. There are three approaches to achieving increased processor
speed:

m Increase the hardware speed of the processor. This increase is fundamentally
due to shrinking the size of the logic gates on the processor chip, so that more
gates can be packed together more tightly and to increasing the clock rate.
With gates closer together, the propagation time for signals is significantly
reduced, enabling a speeding up of the processor. An increase in clock rate
means that individual operations are executed more rapidly.

m Increase the size and speed of caches that are interposed between the proces-
sor and main memory. In particular, by dedicating a portion of the processor
chip itself to the cache, cache access times drop significantly.

m Make changes to the processor organization and architecture that increase the
effective speed of instruction execution. Typically, this involves using parallel-
ism in one form or another.

Traditionally, the dominant factor in performance gains has been in increases
in clock speed due and logic density. However, as clock speed and logic density
increase, a number of obstacles become more significant [INTE04]:

= Power: As the density of logic and the clock speed on a chip increase, so does
the power density (Watts/cm?). The difficulty of dissipating the heat generated
on high-density, high-speed chips is becoming a serious design issue [GIBB04,
BORKO03].

m RC delay: The speed at which electrons can flow on a chip between transis-
tors is limited by the resistance and capacitance of the metal wires connecting
them; specifically, delay increases as the RC product increases. As components
on the chip decrease in size, the wire interconnects become thinner, increasing
resistance. Also, the wires are closer together, increasing capacitance.

= Memory latency and throughput: Memory access speed (latency) and transfer
speed (throughput) lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural
approaches to improving performance. These techniques are discussed in later
chapters of the text.

Beginning in the late 1980s, and continuing for about 15 years, two main strat-
egies have been used to increase performance beyond what can be achieved simply
by increasing clock speed. First, there has been an increase in cache capacity. There
are now typically two or three levels of cache between the processor and main mem-
ory. As chip density has increased, more of the cache memory has been incorpor-
ated on the chip, enabling faster cache access. For example, the original Pentium

2.1 / DESIGNING FOR PERFORMANCE 51

chip devoted about 10% of on-chip area to a cache. Contemporary chips devote
over half of the chip area to caches. And, typically, about three-quarters of the
other half is for pipeline-related control and buffering.

Second, the instruction execution logic within a processor has become increas-
ingly complex to enable parallel execution of instructions within the processor. Two
noteworthy design approaches have been pipelining and superscalar. A pipeline
works much as an assembly line in a manufacturing plant enabling different stages
of execution of different instructions to occur at the same time along the pipeline. A
superscalar approach in essence allows multiple pipelines within a single processor,
so that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of
diminishing returns. The internal organization of contemporary processors is
exceedingly complex and is able to squeeze a great deal of parallelism out of the
instruction stream. It seems likely that further significant increases in this direction
will be relatively modest [GIBB04]. With three levels of cache on the processor
chip, each level providing substantial capacity, it also seems that the benefits from
the cache are reaching a limit.

However, simply relying on increasing clock rate for increased performance
runs into the power dissipation problem already referred to. The faster the clock
rate, the greater the amount of power to be dissipated, and some fundamental phys-
ical limits are being reached.

Figure 2.2 illustrates the concepts we have been discussing.” The top line shows
that, as per Moore’s Law, the number of transistors on a single chip continues to

107
s
108 *
¢ Transistors (Thousands) $ ‘
o *% ¥
10° B Frequency (MHz) 2 ere®e
A Power (W)
104 Cores
103 * o
/
102 * * *
/ = A A A
10
3 > 2
e
0.1 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2.2 Processor Trends

’] am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.

52 CHAPTER 2 / PERFORMANCE ISSUES

grow exponentially.® Meanwhile, the clock speed has leveled off, in order to prevent
a further rise in power. To continue increasing performance, designers have had to
find ways of exploiting the growing number of transistors other than simply building
a more complex processor. The response in recent years has been the development
of the multicore computer chip.

2.2 MULTICORE, MICS, AND GPGPUS

With all of the difficulties cited in the preceding section in mind, designers have
turned to a fundamentally new approach to improving performance: placing multiple
processors on the same chip, with a large shared cache. The use of multiple proces-
sors on the same chip, also referred to as multiple cores, or multicore, provides the
potential to increase performance without increasing the clock rate. Studies indicate
that, within a processor, the increase in performance is roughly proportional to the
square root of the increase in complexity [BORKO03]. But if the software can support
the effective use of multiple processors, then doubling the number of processors
almost doubles performance. Thus, the strategy is to use two simpler processors on
the chip rather than one more complex processor.

In addition, with two processors, larger caches are justified. This is important
because the power consumption of memory logic on a chip is much less than that of
processing logic.

As the logic density on chips continues to rise, the trend for both more cores
and more cache on a single chip continues. Two-core chips were quickly followed
by four-core chips, then 8, then 16, and so on. As the caches became larger, it made
performance sense to create two and then three levels of cache on a chip, with ini-
tially, the first-level cache dedicated to an individual processor and levels two and
three being shared by all the processors. It is now common for the second-level
cache to also be private to each core.

Chip manufacturers are now in the process of making a huge leap forward in
the number of cores per chip, with more than 50 cores per chip. The leap in perform-
ance as well as the challenges in developing software to exploit such a large number
of cores has led to the introduction of a new term: many integrated core (MIC).

The multicore and MIC strategy involves a homogeneous collection of general-
purpose processors on a single chip. At the same time, chip manufacturers are
pursuing another design option: a chip with multiple general-purpose processors
plus graphics processing units (GPUs) and specialized cores for video processing
and other tasks. In broad terms, a GPU is a core designed to perform parallel oper-
ations on graphics data. Traditionally found on a plug-in graphics card (display
adapter), it is used to encode and render 2D and 3D graphics as well as process
video.

Since GPUs perform parallel operations on multiple sets of data, they are
increasingly being used as vector processors for a variety of applications that
require repetitive computations. This blurs the line between the GPU and the CPU

3The observant reader will note that the transistor count values in this figure are significantly less than
those of Figure 1.12. That latter figure shows the transistor count for a form of main memory known as
DRAM (discussed in Chapter 5), which supports higher transistor density than processor chips.

2.3 / TWO LAWS THAT PROVIDE INSIGHT: AHMDAHL’S LAW AND LITTLE'S LAW 53

[ARORI12, FATAO0S8, PROP11]. When a broad range of applications are supported by
such a processor, the term general-purpose computing on GPUs (GPGPU) is used.

We explore design characteristics of multicore computers in Chapter 18 and
GPGPUs in Chapter 19.

TWO LAWS THAT PROVIDE INSIGHT: AHMDAHL’S LAW

AND LITTLE’S LAW

In this section, we look at two equations, called “laws.” The two laws are unrelated
but both provide insight into the performance of parallel systems and multicore systems.

Amdahl’s Law

Computer system designers look for ways to improve system performance by
advances in technology or change in design. Examples include the use of parallel
processors, the use of a memory cache hierarchy, and speedup in memory access
time and I/O transfer rate due to technology improvements. In all of these cases, it is
important to note that a speedup in one aspect of the technology or design does not
result in a corresponding improvement in performance. This limitation is succinctly
expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in 1967 (JAMDAG67],
[AMDA13]) and deals with the potential speedup of a program using multiple pro-
cessors compared to a single processor. Consider a program running on a single
processor such that a fraction (1 — f) of the execution time involves code that is
inherently sequential, and a fraction fthat involves code that is infinitely paralleliz-
able with no scheduling overhead. Let T be the total execution time of the program
using a single processor. Then the speedup using a parallel processor with N pro-
cessors that fully exploits the parallel portion of the program is as follows:

Time to execute program on a single processor

Speedup =
PEECP ™ Time to execute program on N parallel processors
T -=-NH+TF 1
- f f
T - f) + — 1-f)+=
(-p+y G-N+y

This equation is illustrated in Figures 2.3 and 2.4. Two important conclusions
can be drawn:

1. When fis small, the use of parallel processors has little effect.

2. As N approaches infinity, speedup is bound by 1/(1 — f), so that there are
diminishing returns for using more processors.

These conclusions are too pessimistic, an assertion first put forward in
[GUSTSS]. For example, a server can maintain multiple threads or multiple tasks
to handle multiple clients and execute the threads or tasks in parallel up to the
limit of the number of processors. Many database applications involve computa-
tions on massive amounts of data that can be split up into multiple parallel tasks.

54 CHAPTER 2 / PERFORMANCE ISSUES

a-nNr fT

v

(-HT JTr
N

A

Figure 2.3 Illustration of Amdahl’s Law

Nevertheless, Amdahl’s law illustrates the problems facing industry in the develop-
ment of multicore machines with an ever-growing number of cores: The software
that runs on such machines must be adapted to a highly parallel execution environ-
ment to exploit the power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that
results in a speedup. The speedup can be expressed as

Speed Performance after enhancement Execution time before enhancement
eedup = = : :
P p Performance before enhancement Execution time after enhancement
2.1

Speedup

Number of Processors

Figure 2.4 Amdahl’s Law for Multiprocessors

2.3 / TWO LAWS THAT PROVIDE INSIGHT: AHMDAHL’S LAW AND LITTLE'S LAW 55

Suppose that a feature of the system is used during execution a fraction of the
time f, before enhancement, and that the speedup of that feature after enhancement
is SUy. Then the overall speedup of the system is

1
Speedup =

f
(1—f)+ST]f

I DN 1IN WA Suppose that a task makes extensive use of floating-point operations,
with 40% of the time consumed by floating-point operations. With a new hardware de-
sign, the floating-point module is sped up by a factor of K. Then the overall speedup is as
follows:

Speedup = Y
0.6 + —
K

Thus, independent of K, the maximum speedup is 1.67.

Little’s Law

A fundamental and simple relation with broad applications is Little’s Law [LITT61,
LITT11].* We can apply it to almost any system that is statistically in steady state,
and in which there is no leakage. Specifically, we have a steady state system to which
items arrive at an average rate of A items per unit time. The items stay in the system
an average of W units of time. Finally, there is an average of L units in the system at
any one time. Little’s Law relates these three variables as L. = AW.

Using queuing theory terminology, Little’s Law applies to a queuing system.
The central element of the system is a server, which provides some service to items.
Items from some population of items arrive at the system to be served. If the server
is idle, an item is served immediately. Otherwise, an arriving item joins a waiting
line, or queue. There can be a single queue for a single server, a single queue for
multiple servers, or multiples queues, one for each of multiple servers. When a ser-
ver has completed serving an item, the item departs. If there are items waiting in
the queue, one is immediately dispatched to the server. The server in this model can
represent anything that performs some function or service for a collection of items.
Examples: A processor provides service to processes; a transmission line provides a
transmission service to packets or frames of data; and an I/O device provides a read
or write service for I/O requests.

To understand Little’s formula, consider the following argument, which
focuses on the experience of a single item. When the item arrives, it will find on

“The second reference is a retrospective article on his law that Little wrote 50 years after his original
paper. That must be unique in the history of the technical literature, although Amdahl comes close, with
a 46-year gap between [AMDAG67] and [AMDA13].

56 CHAPTER 2 / PERFORMANCE ISSUES

average L items ahead of it, one being serviced and the rest in the queue. When
the item leaves the system after being serviced, it will leave behind on average the
same number of items in the system, namely L, because L is defined as the average
number of items waiting. Further, the average time that the item was in the system
was W. Since items arrive at a rate of A, we can reason that in the time W, a total of
AW items must have arrived. Thus w = AW.

To summarize, under steady state conditions, the average number of items in
a queuing system equals the average rate at which items arrive multiplied by the
average time that an item spends in the system. This relationship requires very few
assumptions. We do not need to know what the service time distribution is, what
the distribution of arrival times is, or the order or priority in which items are served.
Because of its simplicity and generality, Little’s Law is extremely useful and has
experienced somewhat of a revival due to the interest in performance problems
related to multicore computers.

A very simple example, from [LITT11], illustrates how Little’s Law might be
applied. Consider a multicore system, with each core supporting multiple threads
of execution. At some level, the cores share a common memory. The cores share a
common main memory and typically share a common cache memory as well. In any
case, when a thread is executing, it may arrive at a point at which it must retrieve a
piece of data from the common memory. The thread stops and sends out a request
for that data. All such stopped threads are in a queue. If the system is being used
as a server, an analyst can determine the demand on the system in terms of the rate
of user requests, and then translate that into the rate of requests for data from the
threads generated to respond to an individual user request. For this purpose, each
user request is broken down into subtasks that are implemented as threads. We
then have A = the average rate of total thread processing required after all mem-
bers’ requests have been broken down into whatever detailed subtasks are required.
Define L as the average number of stopped threads waiting during some relevant
time. Then W = average response time. This simple model can serve as a guide to
designers as to whether user requirements are being met and, if not, provide a quan-
titative measure of the amount of improvement needed.

2.4 BASIC MEASURES OF COMPUTER PERFORMANCE

In evaluating processor hardware and setting requirements for new systems, per-
formance is one of the key parameters to consider, along with cost, size, security,
reliability, and, in some cases, power consumption.

It is difficult to make meaningful performance comparisons among different
processors, even among processors in the same family. Raw speed is far less import-
ant than how a processor performs when executing a given application. Unfortu-
nately, application performance depends not just on the raw speed of the processor
but also on the instruction set, choice of implementation language, efficiency of the
compiler, and skill of the programming done to implement the application.

In this section, we look at some traditional measures of processor speed. In
the next section, we examine benchmarking, which is the most common approach
to assessing processor and computer system performance. The following section
discusses how to average results from multiple tests.

2.4 / BASIC MEASURES OF COMPUTER PERFORMANCE 57

Clock Speed

Operations performed by a processor, such as fetching an instruction, decoding the
instruction, performing an arithmetic operation, and so on, are governed by a system
clock. Typically, all operations begin with the pulse of the clock. Thus, at the most
fundamental level, the speed of a processor is dictated by the pulse frequency pro-
duced by the clock, measured in cycles per second, or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a
constant sine wave while power is applied. This wave is converted into a digital
voltage pulse stream that is provided in a constant flow to the processor circuitry
(Figure 2.5). For example, a 1-GHz processor receives 1 billion pulses per second.
The rate of pulses is known as the clock rate, or clock speed. One increment, or
pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between
pulses is the cycle time.

The clock rate is not arbitrary, but must be appropriate for the physical layout
of the processor. Actions in the processor require signals to be sent from one pro-
cessor element to another. When a signal is placed on a line inside the processor,
it takes some finite amount of time for the voltage levels to settle down so that an
accurate value (logical 1 or 0) is available. Furthermore, depending on the physical
layout of the processor circuits, some signals may change more rapidly than others.
Thus, operations must be synchronized and paced so that the proper electrical sig-
nal (voltage) values are available for each operation.

The execution of an instruction involves a number of discrete steps, such as
fetching the instruction from memory, decoding the various portions of the instruc-
tion, loading and storing data, and performing arithmetic and logical operations.
Thus, most instructions on most processors require multiple clock cycles to com-
plete. Some instructions may take only a few cycles, while others require dozens. In
addition, when pipelining is used, multiple instructions are being executed simulta-
neously. Thus, a straight comparison of clock speeds on different processors does
not tell the whole story about performance.

From Computer Desktop Encyclopedia
1998, The Computer Language Co.

Figure 2.5 System Clock

58 CHAPTER 2 / PERFORMANCE ISSUES

Instruction Execution Rate

A processor is driven by a clock with a constant frequency f or, equivalently, a con-
stant cycle time 7, where 7 = 1/f. Define the instruction count, /., for a program as
the number of machine instructions executed for that program until it runs to com-
pletion or for some defined time interval. Note that this is the number of instruction
executions, not the number of instructions in the object code of the program. An
important parameter is the average cycles per instruction (CPI) for a program. If all
instructions required the same number of clock cycles, then CPI would be a constant
value for a processor. However, on any given processor, the number of clock cycles
required varies for different types of instructions, such as load, store, branch, and so
on. Let CPI; be the number of cycles required for instruction type i, and I; be the
number of executed instructions of type i for a given program. Then we can calculate
an overall CPI as follows:

> (CPIL X I)
CPI = ; 2.2

The processor time 7 needed to execute a given program can be expressed as
T=1XCPIXr

We can refine this formulation by recognizing that during the execution of
an instruction, part of the work is done by the processor, and part of the time a
word is being transferred to or from memory. In this latter case, the time to transfer
depends on the memory cycle time, which may be greater than the processor cycle
time. We can rewrite the preceding equation as

T=I.X[p+(mXk)]Xr

where p is the number of processor cycles needed to decode and execute the instruc-
tion, m is the number of memory references needed, and k is the ratio between
memory cycle time and processor cycle time. The five performance factors in the
preceding equation (/. p, m, k, 7) are influenced by four system attributes: the
design of the instruction set (known as instruction set architecture); compiler tech-
nology (how effective the compiler is in producing an efficient machine language
program from a high-level language program); processor implementation; and
cache and memory hierarchy. Table 2.1 is a matrix in which one dimension shows
the five performance factors and the other dimension shows the four system attri-
butes. An X in a cell indicates a system attribute that affects a performance factor.

Table 2.1 Performance Factors and System Attributes

I, P m k T
Instruction set architecture X X
Compiler technology X X X
Processor implementation X X
Cache and memory hierarchy X X

2.5 / CALCULATING THE MEAN 59

A common measure of performance for a processor is the rate at which
instructions are executed, expressed as millions of instructions per second (MIPS),
referred to as the MIPS rate. We can express the MIPS rate in terms of the clock
rate and CPI as follows:

I f

MIPS rate = = G 2.3)
T X 10 CPI X 10

Consider the execution of a program that results in the execution of
2 million instructions on a 400-MHz processor. The program consists of four major types
of instructions. The instruction mix and the CPI for each instruction type are given below,
based on the result of a program trace experiment:

Instruction Type CPI | Instruction Mix (%)
Arithmetic and logic 1 60
Load/store with cache hit 2 18
Branch 4 12
Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with the above
trace results is CPI = 0.6 + (2 X 0.18) + (4 X 0.12) + (8 X 0.1) = 2.24. The corres-
ponding MIPS rate is (400 X 10°)/(2.24 x 10°) =~ 178.

Another common performance measure deals only with floating-point instruc-
tions. These are common in many scientific and game applications. Floating-point
performance is expressed as millions of floating-point operations per second
(MFLOPS), defined as follows:

Number of executed floating — point operations in a program

MFLOPS rate = - - G
Execution time X 10

2.5 CALCULATING THE MEAN

In evaluating some aspect of computer system performance, it is often the case that a
single number, such as execution time or memory consumed, is used to characterize
performance and to compare systems. Clearly, a single number can provide only a
very simplified view of a system’s capability. Nevertheless, and especially in the field
of benchmarking, single numbers are typically used for performance comparison
[SMITSS].

As is discussed in Section 2.6, the use of benchmarks to compare systems
involves calculating the mean value of a set of data points related to execution
time. It turns out that there are multiple alternative algorithms that can be used
for calculating a mean value, and this has been the source of some controversy in

60

CHAPTER 2 / PERFORMANCE ISSUES

the benchmarking field. In this section, we define these alternative algorithms and
comment on some of their properties. This prepares us for a discussion in the next
section of mean calculation in benchmarking.

The three common formulas used for calculating a mean are arithmetic, geo-
metric, and harmonic. Given a set of n real numbers (xq, X, ..., X,), the three means
are defined as follows:

Arithmetic mean

AM="1" T = Sy (2.4)

Geometric mean

n 1/n l < .)
GM = V5 X T Xx, = (Hx,-) - e<ni-211“(x‘) @.5)

i=1
Harmonic mean

HM = 1 =1 x>0 (2.6)

GG 360

It can be shown that the following inequality holds:
AM = GM = HM

The values are equal only if x; = x, = ... Xx,.

We can get a useful insight into these alternative calculations by defining the
functional mean. Let f(x) be a continuous monotonic function defined in the inter-
val 0 = y < o, The functional mean with respect to the function f(x) for n positive

real numbers (x1, X, ..., x,,) is defined as
+ flx,) 13
) =f l(n;f(xi))

1(f(xl) + o
n
where f~!(x) is the inverse of f(x). The mean values defined in Equations (2.1)
through (2.3) are special cases of the functional mean, as follows:

®m AM is the FM with respect to f(x) = x

= GM is the FM with respect to f(x) = Inx

= HM is the FM with respect to f(x) = 1/x

Functional mean FM = [~

Figure 2.6 illustrates the three means applied to various data sets, each
of which has eleven data points and a maximum data point value of 11. The median value
is also included in the chart. Perhaps what stands out the most in this figure is that the HM
has a tendency to produce a misleading result when the data is skewed to larger values or
when there is a small-value outlier.

2.5 / CALCULATING THE MEAN 61

MD
AM
@ gm
HM

MD
AM
®) oM
HM

MD
AM
©) om
HM

MD
AM
@D om
HM

MD
AM
©) om
HM

MD
AM
® om
HM

MD
AM
® om
HM

0 1 2 3 4 5 6 7 8 9 10 1

(a) Constant (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11) MD = median
(b) Clustered around a central value (3, 5,6,6,7,7,7,8,8,9, 11)
(¢) Uniform distribution (1, 2, 3,4,5,6,7,8,9, 10, 11)

(d) Large-number bias (1, 4,4,7,7,9,9, 10, 10, 11, 11)

(e) Small-number bias(1, 1, 2,2, 3,3,5,5,8,8, 11)

(f) Upper outlier (11, 1,1, 1,1, 1,1, 1,1, 1, 1)

(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

AM = arithmetic mean
GM = geometric mean
HM = harmonic mean

Figure 2.6 Comparison of Means on Various Data Sets (each set has a maximum data
point value of 11)

Let us now consider which of these means are appropriate for a given per-
formance measure. As a preface to these remarks, it should be noted that a num-
ber of papers ([CITRO06], [FLEMS86], [GILA95], [JACO95], [JOHNO04], MASHO04],
[SMITSS]) and books ([HENN12], [HWAN93], [JAIN91], [LILJOO]) over the years
have argued the pros and cons of the three means for performance analysis and
come to conflicting conclusions. To simplify a complex controversy, we just note
that the conclusions reached depend very much on the examples chosen and the
way in which the objectives are stated.

62 CHAPTER 2 / PERFORMANCE ISSUES

Arithmetic Mean

An AM is an appropriate measure if the sum of all the measurements is a meaningful
and interesting value. The AM is a good candidate for comparing the execution time per-
formance of several systems. For example, suppose we were interested in using a system
for large-scale simulation studies and wanted to evaluate several alternative products.
On each system we could run the simulation multiple times with different input val-
ues for each run, and then take the average execution time across all runs. The use of
multiple runs with different inputs should ensure that the results are not heavily biased
by some unusual feature of a given input set. The AM of all the runs is a good measure of
the system’s performance on simulations,and a good number to use for system comparison.

The AM used for a time-based variable (e.g., seconds), such as program exe-
cution time, has the important property that it is directly proportional to the total
time. So, if the total time doubles, the mean value doubles.

Harmonic Mean

For some situations, a system’s execution rate may be viewed as a more useful mea-
sure of the value of the system. This could be either the instruction execution rate,
measured in MIPS or MFLOPS, or a program execution rate, which measures the
rate at which a given type of program can be executed. Consider how we wish the
calculated mean to behave. It makes no sense to say that we would like the mean
rate to be proportional to the total rate, where the total rate is defined as the sum of
the individual rates. The sum of the rates would be a meaningless statistic. Rather,
we would like the mean to be inversely proportional to the total execution time. For
example, if the total time to execute all the benchmark programs in a suite of pro-
grams is twice as much for system C as for system D, we would want the mean value
of the execution rate to be half as much for system C as for system D.

Let us look at a basic example and first examine how the AM performs. Sup-
pose we have a set of n benchmark programs and record the execution times of each
program on a given system as fq, t, ..., t,. For simplicity, let us assume that each
program executes the same number of operations Z; we could weight the individual
programs and calculate accordingly but this would not change the conclusion of our
argument. The execution rate for each individual program is R; = Z/t;. We use the
AM to calculate the average execution rate.

n n n
AM = lERi — 1 g — g 1
ni= ni= G niEy
We see that the AM execution rate is proportional to the sum of the inverse
execution times, which is not the same as being inversely proportional to the sum of
the execution times. Thus, the AM does not have the desired property.
The HM yields the following result.

HM — n _ n _ nZz

5e) 2za) B

The HM is inversely proportional to the total execution time, which is the
desired property.

2.5 / CALCULATING THE MEAN 63

A simple numerical example will illustrate the difference between the
two means in calculating a mean value of the rates, shown in Table 2.2. The table compares
the performance of three computers on the execution of two programs. For simplicity, we
assume that the execution of each program results in the execution of 108 floating-point
operations. The left half of the table shows the execution times for each computer running
each program, the total execution time, and the AM of the execution times. Computer
A executes in less total time than B, which executes in less total time than C, and this is
reflected accurately in the AM.

The right half of the table provides a comparison in terms of rates, expressed
in MFLOPS. The rate calculation is straightforward. For example, program 1 executes
100 million floating-point operations. Computer A takes 2 seconds to execute the program
for a MFLOPS rate of 100/2 = 50. Next, consider the AM of the rates. The greatest value
is for computer A, which suggests that A is the fastest computer. In terms of total execu-
tion time, A has the minimum time, so it is the fastest computer of the three. But the AM
of rates shows B as slower than C, whereas in fact B is faster than C. Looking at the HM
values, we see that they correctly reflect the speed ordering of the computers. This confirms
that the HM is preferred when calculating rates.

The reader may wonder why go through all this effort. If we want to compare
execution times, we could simply compare the total execution times of the three
systems. If we want to compare rates, we could simply take the inverse of the total
execution time, as shown in the table. There are two reasons for doing the individ-
ual calculations rather than only looking at the aggregate numbers:

Table 2.2 A Comparison of Arithmetic and Harmonic Means for Rates

Computer
A time
(secs)

Computer
B time
(secs)

Computer
C time
(secs)

Computer
A rate
(MFLOPS)

Computer
B rate
(MFLOPS)

Computer
C rate
(MFLOPS)

Program 1
(10 FP ops)

2.0

1.0

0.75

50

100

133.33

Program 2
(10° FP ops)

0.75

2.0

4.0

133.33

50

25

Total
execution
time

2.75

3.0

4.75

Arithmetic
mean of
times

1.38

1.5

2.38

Inverse

of total
execution
time (1/sec)

0.36

0.33

0.21

Arithmetic
mean of
rates

91.67

75.00

79.17

Harmonic
mean of
rates

72.72

66.67

42.11

64 CHAPTER 2 / PERFORMANCE ISSUES

1. A customer or researcher may be interested not only in the overall average
performance but also performance against different types of benchmark pro-
grams, such as business applications, scientific modeling, multimedia appli-
cations, and systems programs. Thus, a breakdown by type of benchmark is
needed as well as a total.

2. Usually, the different programs used for evaluation are weighted differently.
In Table 2.2, it is assumed that the two test programs execute the same num-
ber of operations. If that is not the case, we may want to weight accordingly.
Or different programs could be weighted differently to reflect importance or
priority.

Let us see what the result is if test programs are weighted proportional to the
number of operations. Following the preceding notation, each program i executes
Zi instructions in a time #i. Each rate is weighted by the instructions count. The
weighted HM is therefore:

n
1 P
WHM = _ n _ il 177

(20 $((<2)w) 2
AW\YL.z \R AWz \z -

j=1 =1

2.7

We see that the weighted HM is the quotient of the sum of the operation
count divided by the sum of the execution times.

Geometric Mean

Looking at the equations for the three types of means, it is easier to get an intuitive
sense of the behavior of the AM and the HM than that of the GM. Several observa-
tions, from [FEIT15], may be helpful in this regard. First, we note that with respect to
changes in values, the GM gives equal weight to all of the values in the data set. For
example, suppose the set of data values to be averaged includes a few large values
and more small values. Here, the AM is dominated by the large values. A change of
10% in the largest value will have a noticeable effect, while a change in the smallest
value by the same factor will have a negligible effect. In contrast, a change in value
by 10% of any of the data values results in the same change in the GM: V1.1

| 0, %N\ 10 OPRS This point is illustrated by data set (e) in Figure 2.6. Here are the effects
of increasing either the maximum or the minimum value in the data set by 10%:

Geometric Mean Arithmetic Mean
Original value 3.37 4.45
Increase max value 3.40 (+ 0.87%) 4.55 (+2.24%)
from 11 to 12.1 (+10%)
Increase min value 3.40 (+ 0.87%) 4.46 (+ 0.20%)
from 1 to 1.1 (+10%)

2.5 / CALCULATING THE MEAN 65

A second observation is that for the GM of a ratio, the GM of the ratios equals
the ratio of the GMs:

(2.8)

n 1/n
n_ 7z \ln (‘—1 Zi)
GM = (l> _ =y 7

=1 L

Compare this with Equation 2.4.

For use with execution times, as opposed to rates, one drawback of the GM
is that it may be non-monotonic relative to the more intuitive AM. In other words
there may be cases where the AM of one data set is larger than that of another set,
but the GM is smaller.

| 9, C.N7 1 0O XY In Figure 2.6, the AM for data set d is larger than the AM for data set c,
but the opposite is true for the GM.

Data set ¢ Data set d
Arithmetic mean 7.00 7.55
Geometric mean 6.68 6.42

One property of the GM that has made it appealing for benchmark analy-
sis is that it provides consistent results when measuring the relative performance
of machines. This is in fact what benchmarks are primarily used for: to compare
one machine with another in terms of performance metrics. The results, as we have
seen, are expressed in terms of values that are normalized to a reference machine.

A simple example will illustrate the way in which the GM exhibits con-
sistency for normalized results. In Table 2.3, we use the same performance results as were
used in Table 2.2. In Table 2.3a, all results are normalized to Computer A, and the means
are calculated on the normalized values. Based on total execution time, A is faster than
B, which is faster than C. Both the AMs and GMs of the normalized times reflect this. In
Table 2.3b, the systems are now normalized to B. Again the GMs correctly reflect the rela-
tive speeds of the three computers, but now the AM produces a different ordering.

Sadly, consistency does not always produce correct results. In Table 2.4, some of the
execution times are altered. Once again, the AM reports conflicting results for the two
normalizations. The GM reports consistent results, but the result is that B is faster than A
and C, which are equal.

It is examples like this that have fueled the “benchmark means wars” in the
citations listed earlier. It is safe to say that no single number can provide all the
information that one needs for comparing performance across systems. However,

66 CHAPTER 2 / PERFORMANCE ISSUES

Table 2.3 A Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A time

Computer B time

Computer C time

normalized times

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)
Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)
Total execution time 2.75 3.0 4.75
Arithmetic mean of 1.00 1.58 2.85
normalized times

Geometric mean of 1.00 1.15 1.41

(b) Results normalized to Computer B

Computer A time

Computer B time

Computer C time

normalized times

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)
Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)
Total execution time 2.75 3.0 4.75
Arithmetic mean of 1.19 1.00 1.38
normalized times

Geometric mean of 0.87 1.00 1.22

Table 2.4 Another Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A time

Computer B time

Computer C time

normalized times

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)
Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)
Total execution time 24 3.00 4.2
Arithmetic mean of 1.00 2.75 5.05
normalized times

Geometric mean of 1.00 1.58 1.00

(b) Results normalized to Computer B

Computer A time

Computer B time

Computer C time

normalized times

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)
Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)
Total execution time 2.4 3.00 4.2
Arithmetic mean of 1.10 1.00 1.10
normalized times

Geometric mean of 0.63 1.00 0.63

2.6 / BENCHMARKS AND SPEC 67

despite the conflicting opinions in the literature, SPEC has chosen to use the GM,
for several reasons:

1. As mentioned, the GM gives consistent results regardless of which system is
used as a reference. Because benchmarking is primarily a comparison analysis,
this is an important feature.

2. Asdocumented in [MCMAU93], and confirmed in subsequent analyses by SPEC
analysts [MASHO04], the GM is less biased by outliers than the HM or AM.

3. [MASHO04] demonstrates that distributions of performance ratios are better
modeled by lognormal distributions than by normal ones, because of the gen-
erally skewed distribution of the normalized numbers. This is confirmed in
[CITRO6]. And, as shown in Equation (2.5), the GM can be described as the
back-transformed average of a lognormal distribution.

2.6 BENCHMARKS AND SPEC

Benchmark Principles

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the per-
formance of processors. Because of differences in instruction sets, the instruction execu-
tion rate is not a valid means of comparing the performance of different architectures.

| D, CN 10O RY Consider this high-level language statement:
A =B+ C /* assume all quantities in main memory */

With a traditional instruction set architecture, referred to as a complex instruction
set computer (CISC), this instruction can be compiled into one processor instruction:

add mem (B) , mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem(B), reg(l);
load mem(C), reg(2);
add reg(l), reg(2), reg(3);
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15), both ma-
chines may execute the original high-level language instruction in about the same time. If
this example is representative of the two machines, then if the CISC machine is rated at
1 MIPS, the RISC machine would be rated at 4 MIPS. But both do the same amount of
high-level language work in the same amount of time.

Another consideration is that the performance of a given processor on a given
program may not be useful in determining how that processor will perform on a
very different type of application. Accordingly, beginning in the late 1980s and
early 1990s, industry and academic interest shifted to measuring the performance of

68 CHAPTER 2 / PERFORMANCE ISSUES

systems using a set of benchmark programs. The same set of programs can be run on
different machines and the execution times compared. Benchmarks provide guid-
ance to customers trying to decide which system to buy, and can be useful to ven-
dors and designers in determining how to design systems to meet benchmark goals.

[WEIC90] lists the following as desirable characteristics of a benchmark program:

1. Itis written in a high-level language, making it portable across different machines.

2. Itisrepresentative of a particular kind of programming domain or paradigm, such
as systems programming, numerical programming, or commercial programming.

3. It can be measured easily.
4. It has wide distribution.

SPEC Benchmarks

The common need in industry and academic and research communities for generally
accepted computer performance measurements has led to the development of stan-
dardized benchmark suites. A benchmark suite is a collection of programs, defined
in a high-level language, that together attempt to provide a representative test of a
computer in a particular application or system programming area. The best known
such collection of benchmark suites is defined and maintained by the Standard
Performance Evaluation Corporation (SPEC), an industry consortium. This orga-
nization defines several benchmark suites aimed at evaluating computer systems.
SPEC performance measurements are widely used for comparison and research
purposes.

The best known of the SPEC benchmark suites is SPEC CPU2006. This is the
industry standard suite for processor-intensive applications. That is, SPEC CPU2006
is appropriate for measuring performance for applications that spend most of their
time doing computation rather than I/O.

Other SPEC suites include the following:

= SPECviewperf: Standard for measuring 3D graphics performance based on
professional applications.

= SPECwpc: benchmark to measure all key aspects of workstation performance
based on diverse professional applications, including media and entertain-
ment, product development, life sciences, financial services, and energy.

= SPECjvm2008: Intended to evaluate performance of the combined hardware
and software aspects of the Java Virtual Machine (JVM) client platform.

= SPECjbb2013 (Java Business Benchmark): A benchmark for evaluating serv-
er-side Java-based electronic commerce applications.

= SPECsfs2008: Designed to evaluate the speed and request-handling capabili-
ties of file servers.

= SPECvirt_sc2013: Performance evaluation of datacenter servers used in vir-
tualized server consolidation. Measures the end-to-end performance of all
system components including the hardware, virtualization platform, and the
virtualized guest operating system and application software. The benchmark
supports hardware virtualization, operating system virtualization, and hard-
ware partitioning schemes.

2.6 / BENCHMARKS AND SPEC 69

The CPU2006 suite is based on existing applications that have already been
ported to a wide variety of platforms by SPEC industry members. In order to make
the benchmark results reliable and realistic, the CPU2006 benchmarks are drawn
from real-life applications, rather than using artificial loop programs or synthetic
benchmarks. The suite consists of 12 integer benchmarks written in C and C++, and
17 floating-point benchmarks written in C, C++, and Fortran (Tables 2.5 and 2.6).
The suite contains over 3 million lines of code. This is the fifth generation of

Table 2.5 SPEC CPU2006 Integer Benchmarks

Reference | Instr count Application
Benchmark time (hours) (billion) Language Area Brief Description
400.perlbench 2.71 2378 @ Programming | PERL programming lan-
Language guage interpreter, applied
to a set of three programs.
401.bzip2 2.68 2472 C Compression | General-purpose data
compression with most
work done in memory,
rather than doing I/O.
403.gcc 2.24 1064 @© C Compiler Based on gce Version 3.2,
generates code for Opteron.
429.mcf 2.53 327 © Combinatorial | Vehicle scheduling
Optimization algorithm.
445.gobmk 291 1603 © Artificial Plays the game of Go,
Intelligence a simply described but
deeply complex game.
456.hmmer 2.59 3363 C Search Gene Protein sequence analysis
Sequence using profile-hidden
Markov models.
458.sjeng 3.36 2383 C Artificial A highly ranked chess
Intelligence program that also plays
several chess variants.
462.libquantum 5.76 3555 C Physics / Simulates a quantum
Quantum computer, running Shor’s
Computing polynomial-time factor-
ization algorithm.
464.h264ref 6.15 3731 @ Video H.264/AVC (Advanced
Compression | Video Coding) video
compression.
471.omnetpp 1.74 687 C++ Discrete Uses the OMNet++
Event discrete event simulator
Simulation to model a large Ethernet
campus network.
473.astar 1.95 1200 Ct++ Path-finding Pathfinding library for 2D
Algorithms maps.
483.xalancbmk 1.92 1184 C++ XML A modified version of
Processing Xalan-C++, which trans-
forms XML documents to
other document types.

70 CHAPTER 2 / PERFORMANCE ISSUES

Table 2.6 SPEC CPU2006 Floating-Point Benchmarks

Reference Instr count Application
Benchmark | time (hours) (billion) Language Area Brief Description
410.bwaves 3.78 1176 Fortran Fluid Computes 3D transonic
Dynamics transient laminar viscous
flow.
416.gamess 5.44 5189 Fortran Quantum Quantum chemical
Chemistry computations.
433.milc 2.55 937 © Physics / Simulates behavior of
Quantum quarks and gluons.
Chromody-
namics
434 zeusmp 2.53 1566 Fortran Physics / Computational fluid
CFD dynamics simulation of
astrophysical phenomena.
435.gromacs 1.98 1958 C, Fortran | Biochemistry | Simulates Newtonian
/ Molecular equations of motion for
Dynamics hundreds to millions of
particles.
436. 3.32 1376 C, Fortran | Physics/ Solves the Einstein evolu-
cactusADM General tion equations.
Relativity
437 leslie3d 2.61 1273 Fortran Fluid Models fuel injection
Dynamics flows.
444 namd 223 2483 C++ Biology / Simulates large biomolecu-
Molecular lar systems.
Dynamics
447 .dealll 3.18 2323 C++ Finite Program library targeted
Element at adaptive finite elements
Analysis and error estimation.
450.soplex 2.32 703 C++ Linear Pro- Test cases include railroad
gramming, planning and military
Optimization | airlift models.
453.povray 1.48 940 C++ Image 3D image rendering.
Ray-Tracing
454.calculix 2.29 3,04 C, Fortran | Structural Finite element code for
Mechanics linear and nonlinear 3D
structural applications.
459. 2.95 1320 Fortran Computa- Solves the Maxwell equa-
GemsFDTD tional Elec- tions in 3D.
tromagnetics
465.tonto 2.73 2392 Fortran Quantum Quantum chemistry pack-
Chemistry age, adapted for crystallo-
graphic tasks.
470.Ibm 3.82 1500 © Fluid Simulates incompressible
Dynamics fluids in 3D.
481.wrf 3.10 1684 C, Fortran | Weather Weather forecasting model.
482.sphinx3 541 2472 © Speech Speech recognition
Recognition software.

2.6 / BENCHMARKS AND SPEC 71

processor-intensive suites from SPEC, replacing SPEC CPU2000, SPEC CPU95,
SPEC CPU92, and SPEC CPU89 [HENNO7].

To better understand published results of a system using CPU2006, we define
the following terms used in the SPEC documentation:

= Benchmark: A program written in a high-level language that can be compiled
and executed on any computer that implements the compiler.

= System under test: This is the system to be evaluated.

= Reference machine: This is a system used by SPEC to establish a baseline per-
formance for all benchmarks. Each benchmark is run and measured on this
machine to establish a reference time for that benchmark. A system under test
is evaluated by running the CPU2006 benchmarks and comparing the results
for running the same programs on the reference machine.

= Base metric: These are required for all reported results and have strict guide-
lines for compilation. In essence, the standard compiler with more or less
default settings should be used on each system under test to achieve compar-
able results.

= Peak metric: This enables users to attempt to optimize system performance
by optimizing the compiler output. For example, different compiler options
may be used on each benchmark, and feedback-directed optimization is
allowed.

m Speed metric: This is simply a measurement of the time it takes to execute a
compiled benchmark. The speed metric is used for comparing the ability of a
computer to complete single tasks.

= Rate metric: This is a measurement of how many tasks a computer can accom-
plish in a certain amount of time; this is called a throughput, capacity, or rate
measure. The rate metric allows the system under test to execute simultaneous
tasks to take advantage of multiple processors.

SPEC uses a historical Sun system, the “Ultra Enterprise 2,” which was intro-
duced in 1997, as the reference machine. The reference machine uses a 296-MHz
UltraSPARC 1II processor. It takes about 12 days to do a rule-conforming run of
the base metrics for CINT2006 and CFP2006 on the CPU2006 reference machine.
Tables 2.5 and 2.6 show the amount of time to run each benchmark using the refer-
ence machine. The tables also show the dynamic instruction counts on the reference
machine, as reported in [PHANO7]. These values are the actual number of instruc-
tions executed during the run of each program.

We now consider the specific calculations that are done to assess a system. We
consider the integer benchmarks; the same procedures are used to create a floating-
point benchmark value. For the integer benchmarks, there are 12 programs in the
test suite. Calculation is a three-step process (Figure 2.7):

1. The first step in evaluating a system under test is to compile and run each pro-
gram on the system three times. For each program, the runtime is measured
and the median value is selected. The reason to use three runs and take the
median value is to account for variations in execution time that are not intrin-
sic to the program, such as disk access time variations, and OS kernel execu-
tion variations from one run to another.

72 CHAPTER 2 / PERFORMANCE ISSUES

Get next
program

!

Run program
three times

'

Select
median value

!

Ratio(prog) =
Ty f(prog)/Tgyr(prog)
Yes More No | Compute geometric
programs? mean of all ratios

End

Figure 2.7 SPEC Evaluation Flowchart

2. Next, each of the 12 results is normalized by calculating the runtime ratio of the
reference run time to the system run time. The ratio is calculated as follows:

_ Tref;

= Fut,

where Tref; is the execution time of benchmark program i on the reference

system and 7Tsut; is the execution time of benchmark program i on the system
under test. Thus, ratios are higher for faster machines.

2.9

T

3. Finally, the geometric mean of the 12 runtime ratios is calculated to yield the

overall metric:
12 \112
rg = (H ri)
i=1

For the integer benchmarks, four separate metrics can be calculated:
= SPECint2006: The geometric mean of 12 normalized ratios when the bench-
marks are compiled with peak tuning.

= SPECint_base2006: The geometric mean of 12 normalized ratios when the
benchmarks are compiled with base tuning.

= SPECint_rate2006: The geometric mean of 12 normalized throughput ratios
when the benchmarks are compiled with peak tuning.

= SPECint_rate_base2006: The geometric mean of 12 normalized throughput
ratios when the benchmarks are compiled with base tuning.

2.6 / BENCHMARKS AND SPEC 73

The results for the Sun Blade 1000 are shown in Table 2.7a. One of the SPEC
CPU2006 integer benchmark is 464.h264ref. This is a reference implementation of H.264/
AVC (Advanced Video Coding), the latest state-of-the-art video compression standard. The
Sun Blade 1000 executes this program in a median time of 5,259 seconds. The reference
implementation requires 22,130 seconds. The ratio is calculated as: 22,130/5,259 = 4.21.
The speed metric is calculated by taking the twelfth root of the product of the ratios:

(3.18 X 2.96 X 2.98 X 3.91 X 3.17 X 3.61 X 3.51 X 2.01 X
421 X 243 X 275 X 3.42)"12 = 312

The rate metrics take into account a system with multiple processors. To test
a machine, a number of copies N is selected —usually this is equal to the number of
processors or the number of simultaneous threads of execution on the test system.
Each individual test program’s rate is determined by taking the median of three
runs. Each run consists of N copies of the program running simultaneously on the
test system. The execution time is the time it takes for all the copies to finish (i.e.,
the time from when the first copy starts until the last copy finishes). The rate metric
for that program is calculated by the following formula:

Tref;
rate; = N X ——
TSM[Z‘
The rate score for the system under test is determined from a geometric mean of

rates for each program in the test suite.

The results for the Sun Blade X6250 are shown in Table 2.7b. This sys-
tem has two processor chips, with two cores per chip, for a total of four cores. To get the
rate metric, each benchmark program is executed simultaneously on all four cores, with
the execution time being the time from the start of all four copies to the end of the slowest
run. The speed ratio is calculated as before, and the rate value is simply four times the
speed ratio. The final rate metric is found by taking the geometric mean of the rate values:

(78.63 X 62.97 X 60.87 X 77.29 X 65.87 X 83.68 X 76.70 X 134.98 X
106.65 X 40.39 X 48.41 X 65.40)"1? = 71.59

Table 2.7 Some SPEC CINT2006 Results

(a) Sun Blade 1000
Execution Execution Execution Reference
Benchmark time (secs) time (secs) time (secs) time (secs) Ratio
400.perlbench 3077 3076 3080 9770 3.18
401.bzip2 3260 3263 3260 9650 2.96
403.gcc 2711 2701 2702 8050 2.98
429.mcf 2356 2331 2301 9120 391
445.gobmk 3319 3310 3308 10,490 3.17
456.hmmer 2586 2587 2601 9330 3.61

(Continued)

74 CHAPTER 2 / PERFORMANCE ISSUES

Table 2.7 (Continued)

(a) Sun Blade 1000
Execution Execution Execution Reference
Benchmark time (secs) time (secs) time (secs) time (secs) Ratio
458.sjeng 3452 3449 3449 12,100 3.51
462.libquantum 10,318 10,319 10,273 20,720 2.01
464.h264ref 5246 5290 5259 22,130 421
471.omnetpp 2565 2572 2582 6250 2.43
473.astar 2522 2554 2565 7020 2.75
483.xalancbmk 2014 2018 2018 6900 3.42
(b) Sun Blade X6250
Execution Execution Execution Reference

Benchmark time (secs) | time (secs) | time (secs) | time (secs) Ratio Rate
400.perlbench 497 497 497 9770 19.66 78.63
401.bzip2 613 614 613 9650 15.74 62.97
403.gcc 529 529 529 8050 15.22 60.87
429.mcf 472 472 473 9120 19.32 77.29
445.gobmk 637 637 637 10,490 16.47 65.87
456.hmmer 446 446 446 9330 20.92 83.68
458.sjeng 631 632 630 12,100 19.18 76.70
462.libquantum 614 614 614 20,720 33.75 134.98
464.h264ref 830 830 830 22,130 26.66 106.65
471.omnetpp 619 620 619 6250 10.10 40.39
473.astar 580 580 580 7020 12.10 48.41
483.xalancbmk 422 422 422 6900 16.35 65.40

2.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
Amdahl’s law functional mean (FM) MIiCroprocessor
arithmetic mean (AM) general-purpose computing MIPS rate
base metric on GPU (GPGPU) multicore

benchmark
clock cycle

clock rate
clock speed
clock tick

clock cycle time

cycles per instruction (CPI)

geometric mean (GM)

graphics processing unit
(GPU)

harmonic mean (HM)

instruction execution rate

Little’s law

many integrated core (MIC)

peak metric

rate metric
reference machine
speed metric
SPEC

system under test
throughput

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 75

Review Questions

2.1 List and briefly define some of the techniques used in contemporary processors to
increase speed.
2.2 Explain the concept of performance balance.
2.3 Explain the differences among multicore systems, MICs, and GPGPUs.
2.4 Briefly characterize Amdahl’s law.
2.5 Briefly characterize Little’s law.
2.6 Define MIPS and FLOPS.
2.7 List and define three methods for calculating a mean value of a set of data values.
2.8 List the desirable characteristics of a benchmark program.
2.9 What are the SPEC benchmarks?
2.10 What are the differences among base metric, peak metric, speed metric, and rate
metric?
Problems
2.1 A benchmark program is run on a 40 MHz processor. The executed program consists
of 100,000 instruction executions, with the following instruction mix and clock cycle
count:
Instruction Type Instruction Count | Cycles per Instruction
Integer arithmetic 45,000 1
Data transfer 32,000 2
Floating point 15,000 2
Control transfer 8000 2
Determine the effective CPI, MIPS rate, and execution time for this program.
2.2 Consider two different machines, with two different instruction sets, both of which

have a clock rate of 200 MHz. The following measurements are recorded on the two
machines running a given set of benchmark programs:

Instruction Cycles per
Instruction Type Count (millions) | Instruction
Machine A
Arithmetic and logic 8 1
Load and store 4 3
Branch 2 4
Others 4 3
Machine A
Arithmetic and logic 10 1
Load and store 8 2
Branch 2 4
Others 4 3

a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.

76 CHAPTER 2 / PERFORMANCE ISSUES

2.3

24

2.5

Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000,
respectively. Using a typical benchmark program, the following machine characteris-
tics result:

Clock Frequency Performance CPU Time
Processor (MHz) (MIPS) (secs)
VAX 11/780 5 1 12 x
IBM RS/6000 25 18 X

The final column shows that the VAX required 12 times longer than the IBM mea-

sured in CPU time.

a. What is the relative size of the instruction count of the machine code for this
benchmark program running on the two machines?

b. What are the CPI values for the two machines?

Four benchmark programs are executed on three computers with the following results:

Computer A | Computer B | Computer C
Program 1 1 10 20
Program 2 1000 100 20
Program 3 500 1000 50
Program 4 100 800 100

The table shows the execution time in seconds, with 100,000,000 instructions exe-
cuted in each of the four programs. Calculate the MIPS values for each computer
for each program. Then calculate the arithmetic and harmonic means assuming equal
weights for the four programs, and rank the computers based on arithmetic mean and
harmonic mean.

The following table, based on data reported in the literature [HEAT84], shows the
execution times, in seconds, for five different benchmark programs on three machines.

Processor
Benchmark
R M Z
E 417 244 134
F 83 70 70
H 66 153 135
| 39,449 35,527 66,000
K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to
machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated
using Equation (2.5) with R treated as the reference system. Then compute the
arithmetic mean value for each system using Equation (2.3). This is the approach
taken in [HEATS84].

b. Repeat part (a) using M as the reference machine. This calculation was not tried
in [HEATS4].

c. Which machine is the slowest based on each of the preceding two calculations?

d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in
Equation (2.6). Which machine is the slowest based on the two calculations?

2.6

2.7

2.8

2.9

2.10

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 77

To clarify the results of the preceding problem, we look at a simpler example.

Processor
Benchmark
X Y Z
1 20 10 40
2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference
machine and then using Y as the reference machine. Argue that intuitively the
three machines have roughly equivalent performance and that the arithmetic
mean gives misleading results.

b. Compute the geometric mean value for each system using X as the reference
machine and then using Y as the reference machine. Argue that the results are
more realistic than with the arithmetic mean.

Consider the example in Section 2.5 for the calculation of average CPI and MIPS rate,
which yielded the result of CPI = 2.24 and MIPS rate = 178. Now assume that the
program can be executed in eight parallel tasks or threads with roughly equal num-
ber of instructions executed in each task. Execution is on an 8-core system with each
core (processor) having the same performance as the single processor originally used.
Coordination and synchronization between the parts adds an extra 25,000 instruction
executions to each task. Assume the same instruction mix as in the example for each
task, but increase the CPI for memory reference with cache miss to 12 cycles due to
contention for memory.

Determine the average CPI.

Determine the corresponding MIPS rate.

Calculate the speedup factor.

Compare the actual speedup factor with the theoretical speedup factor deter-
mined by Amdhal’s law.

A processor accesses main memory with an average access time of 75. A smaller cache
memory is interposed between the processor and main memory. The cache has a sig-
nificantly faster access time of 7| < T5. The cache holds, at any time, copies of some
main memory words and is designed so that the words more likely to be accessed
in the near future are in the cache. Assume that the probability that the next word
accessed by the processor is in the cache is H, known as the hit ratio.

a. For any single memory access, what is the theoretical speedup of accessing the
word in the cache rather than in main memory?

b. Let 7T be the average access time. Express 7 as a function of 7y, T,, and H. What is
the overall speedup as a function of H?

c. In practice, a system may be designed so that the processor must first access the
cache to determine if the word is in the cache and, if it is not, then access main
memory, so that on a miss (opposite of a hit), memory access time is 7} + T5.
Express T as a function of Ty, 75, and H. Now calculate the speedup and compare
to the result produced in part (b).

The owner of a shop observes that on average 18 customers per hour arrive and there

are typically 8 customers in the shop. What is the average length of time each cus-

tomer spends in the shop?

We can gain more insight into Little’s law by considering Figure 2.8a. Over a period

of time 7, a total of C items arrive at a system, wait for service, and complete service.

The upper solid line shows the time sequence of arrivals, and the lower solid line

shows the time sequence of departures. The shaded area bounded by the two lines

represents the total “work” done by the system in units of job-seconds; let A be the
total work. We wish to derive the relationship among L, W, and \.

po P

78 CHAPTER 2 / PERFORMANCE ISSUES

211

a. Figure 2.8b divides the total area into horizontal rectangles, each with a height of
one job. Picture sliding all these rectangles to the left so that their left edges line
up at t = 0. Develop an equation that relates A, C,and W.

b. Figure 2.8c divides the total area into vertical rectangles, defined by the vertical
transition boundaries indicated by the dashed lines. Picture sliding all these rect-
angles down so that their lower edges line up at N(r) = 0. Develop an equation
that relates A, T, and L.

c. Finally, derive L = AW from the results of (a) and (b).

In Figure 2.8a,jobs arrive at times ¢ = 0, 1, 1.5, 3.25, 5.25, and 775. The corresponding

completion times are t = 2, 3, 3.5, 4.25, 8.25, and 8.75.

a. Determine the area of each of the six rectangles in Figure 2.8b and sum to get the
total area A. Show your work.

b. Determine the area of each of the 10 rectangles in Figure 2.8c and sum to get the
total area A. Show your work.

2.12 In Section 2.6, we specified that the base ratio used for comparing a system under test
to a reference system is:
Tref;
rp=
Tsut;
MO NG
A A
1% e et (O B e e S St el
E E Tot?al ari‘iv:als E I , E E E E E E E E 0 \
Lo AN Lo S I B P
. . i Tdtal completipn$ | ' ! ! : Co
0 pon v > 0 T L
0 T ¢ 0 T ¢

(b) Viewed as horizontal rectangles

|

U U U

i

~Y

(c) Viewed as vertical rectangles

Figure 2.8 Illustration of Little’s Law

2.13

2.14

2.15

2.16

217

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 79

a. The preceding equation provides a measure of the speedup of the system under
test compared to the reference system. Assume that the number of floating-point
operations executed in the test program is /;. Now show the speedup as a function
of the instruction execution rate FLOPS,.

b. Another technique for normalizing performance is to express the performance
of a system as a percent change relative to the performance of another system.
Express this relative change first as a function of instruction execution rate, and
then as a function of execution times.

Assume that a benchmark program executes in 480 seconds on a reference

machine A. The same program executes on systems B, C, and D in 360, 540, and

210 seconds, respectively.

a. Show the speedup of each of the three systems under test relative to A.

b. Now show the relative speedup of the three systems. Comment on the three ways
of comparing machines (execution time, speedup, relative speedup).

Repeat the preceding problem using machine D as the reference machine. How does

this affect the relative rankings of the four systems?

Recalculate the results in Table 2.2 using the computer time data of Table 2.4 and

comment on the results.

Equation 2.5 shows two different formulations of the geometric mean, one using a

product operator and one using a summation operator.

a. Show that the two formulas are equivalent.

b. Why would the summation formulation be preferred for calculating the geometric
mean?

Project. Section 2.5 lists a number of references that document the “benchmark

means wars.” All of the referenced papers are available at box.com/COA10e. Read

these papers and summarize the case for and against the use of the geometric mean

for SPEC calculations.

PARTTwWO THE COMPUTER

SYSTEM L e N
CHAPTER

A Topr-LEVEL VIEW OF
COMPUTER FUNCTION AND
INTER CONNECTION

3.1 Computer Components

3.2 Computer Function
Instruction Fetch and Execute
Interrupts
I/O Function

3.3 Interconnection Structures
3.4 Bus Interconnection

3.5 Point-to-Point Interconnect
QPI Physical Layer
QPI Link Layer
QPI Routing Layer
QPI Protocol Layer

3.6 PCI Express
PCI Physical and Logical Architecture
PCle Physical Layer
PClIe Transaction Layer
PCle Data Link Layer

3.7 Key Terms, Review Questions, and Problems

80

3.1 / COMPUTER COMPONENTS 81

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Understand the basic elements of an instruction cycle and the role of
interrupts.

@ Describe the concept of interconnection within a computer system.

@ Assess the relative advantages of point-to-point interconnection compared to
bus interconnection.

@ Present an overview of QPI.
@ Present an overview of PCle.

At a top level, a computer consists of CPU (central processing unit), memory, and
I/O components, with one or more modules of each type. These components are
interconnected in some fashion to achieve the basic function of the computer,
which is to execute programs. Thus, at a top level, we can characterize a computer
system by describing (1) the external behavior of each component, that is, the data
and control signals that it exchanges with other components, and (2) the intercon-
nection structure and the controls required to manage the use of the interconnec-
tion structure.

This top-level view of structure and function is important because of its
explanatory power in understanding the nature of a computer. Equally important is
its use to understand the increasingly complex issues of performance evaluation. A
grasp of the top-level structure and function offers insight into system bottlenecks,
alternate pathways, the magnitude of system failures if a component fails, and the
ease of adding performance enhancements. In many cases, requirements for greater
system power and fail-safe capabilities are being met by changing the design rather
than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component
interconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional overview is
provided. We are then prepared to examine the use of buses to interconnect system
components.

3.1 COMPUTER COMPONENTS

As discussed in Chapter 1, virtually all contemporary computer designs are based
on concepts developed by John von Neumann at the Institute for Advanced Studies,
Princeton. Such a design is referred to as the von Neumann architecture and is based
on three key concepts:

m Data and instructions are stored in a single read—write memory.

m The contents of this memory are addressable by location, without regard to
the type of data contained there.

82 CHAPTER3/ATOP-LEVEL VIEW OF COMPUTER FUNCTION AND INTER CONNECTION

m Execution occurs in a sequential fashion (unless explicitly modified) from one
instruction to the next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth
summarizing here. There is a small set of basic logic components that can be com-
bined in various ways to store binary data and perform arithmetic and logical
operations on that data. If there is a particular computation to be performed, a con-
figuration of logic components designed specifically for that computation could be
constructed. We can think of the process of connecting the various components in
the desired configuration as a form of programming. The resulting “program” is in
the form of hardware and is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose con-
figuration of arithmetic and logic functions. This set of hardware will perform vari-
ous functions on data depending on control signals applied to the hardware. In the
original case of customized hardware, the system accepts data and produces results
(Figure 3.1a). With general-purpose hardware, the system accepts data and control
signals and produces results. Thus, instead of rewiring the hardware for each new
program, the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The
entire program is actually a sequence of steps. At each step, some arithmetic or
logical operation is performed on some data. For each step, a new set of control sig-
nals is needed. Let us provide a unique code for each possible set of control signals,

Sequence of
arithmetic
and logic
functions

Data ——> —> Results

(a) Programming in hardware

Instruction Instruction
—
codes interpreter

Control
signals

General-purpose
Data ————— > arlthmeflc > Results
and logic

functions

(b) Programming in software

Figure 3.1 Hardware and Software Approaches

3.2 / COMPUTER FUNCTION 83

and let us add to the general-purpose hardware a segment that can accept a code
and generate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each
new program, all we need to do is provide a new sequence of codes. Each code is, in
effect, an instruction, and part of the hardware interprets each instruction and gen-
erates control signals. To distinguish this new method of programming, a sequence
of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction
interpreter and a module of general-purpose arithmetic and logic functions. These
two constitute the CPU. Several other components are needed to yield a function-
ing computer. Data and instructions must be put into the system. For this we need
some sort of input module. This module contains basic components for accepting
data and instructions in some form and converting them into an internal form
of signals usable by the system. A means of reporting results is needed, and this
is in the form of an output module. Taken together, these are referred to as /O
components.

One more component is needed. An input device will bring instructions and
data in sequentially. But a program is not invariably executed sequentially; it may
jump around (e.g., the IAS jump instruction). Similarly, operations on data may
require access to more than just one element at a time in a predetermined sequence.
Thus, there must be a place to temporarily store both instructions and data. That
module is called memory, or main memory, to distinguish it from external storage or
peripheral devices. Von Neumann pointed out that the same memory could be used
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interac-
tions among them. The CPU exchanges data with memory. For this purpose, it typ-
ically makes use of two internal (to the CPU) registers: a memory address register
(MAR), which specifies the address in memory for the next read or write, and a
memory buffer register (MBR), which contains the data to be written into memory
or receives the data read from memory. Similarly, an I/O address register (I/OAR)
specifies a particular I/O device. An I/O buffer register (I/OBR) is used for the
exchange of data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a binary number that can be interpreted as
either an instruction or data. An I/O module transfers data from external devices to
CPU and memory, and vice versa. It contains internal buffers for temporarily hold-
ing these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview
of how these components function together to execute programs.

3.2 COMPUTER FUNCTION

The basic function performed by a computer is execution of a program, which con-
sists of a set of instructions stored in memory. The processor does the actual work by
executing instructions specified in the program. This section provides an overview of

84 CHAPTER3/ATOP-LEVEL VIEW OF COMPUTER FUNCTION AND INTER CONNECTION

CPU Main memory
0
System : 1
. 2
PC MAR bus :
Instruction .
Instruction :
IR MBR Instruction
I/O AR I)
/O BR Data
Data
Data
I/O Module . no2
n-1
. PC = Program counter
Buffers IR = Instruction register .
MAR = Memory address register
MBR = Memory buffer register
I/0 AR = Input/output address register
1/0 BR = Input/output buffer register

Figure 3.2 Computer Components: Top-Level View

the key elements of program execution. In its simplest form, instruction processing
consists of two steps: The processor reads (fetches) instructions from memory one
at a time and executes each instruction. Program execution consists of repeating
the process of instruction fetch and instruction execution. The instruction execution
may involve several operations and depends on the nature of the instruction (see, for
example, the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction cycle.
Using the simplified two-step description given previously, the instruction cycle is
depicted in Figure 3.3. The two steps are referred to as the fetch cycle and the execute
cycle. Program execution halts only if the machine is turned off, some sort of unrecov-
erable error occurs, or a program instruction that halts the computer is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from
memory. In a typical processor, a register called the program counter (PC) holds the
address of the instruction to be fetched next. Unless told otherwise, the processor

3.2 / COMPUTER FUNCTION 85

Fetch cycle Execute cycle

(> Fetch next Execute
START instruction instruction HALT

Figure 3.3 Basic Instruction Cycle

always increments the PC after each instruction fetch so that it will fetch the next
instruction in sequence (i.e., the instruction located at the next higher memory
address). So, for example, consider a computer in which each instruction occupies
one 16-bit word of memory. Assume that the program counter is set to memory loca-
tion 300, where the location address refers to a 16-bit word. The processor will next
fetch the instruction at location 300. On succeeding instruction cycles, it will fetch
instructions from locations 301, 302, 303, and so on. This sequence may be altered, as
explained presently.

The fetched instruction is loaded into a register in the processor known as
the instruction register (IR). The instruction contains bits that specify the action
the processor is to take. The processor interprets the instruction and performs the
required action. In general, these actions fall into four categories:

m Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

m Processor-1/0: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/0 module.

= Data processing: The processor may perform some arithmetic or logic oper-
ation on data.

= Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor will
remember this fact by setting the program counter to 182. Thus, on the next
fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical machine that includes the
characteristics listed in Figure 3.4. The processor contains a single data register,
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is
convenient to organize memory using 16-bit words. The instruction format provides
4 bits for the opcode, so that there can be as many as 2* = 16 different opcodes, and
up to 22 = 4096 (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant por-
tions of memory and processor registers.! The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at

'Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient nota-
tion for representing the contents of memory and registers when the word length is a multiple of 4. See
Chapter 9 for a basic refresher on number systems (decimal, binary, hexadecimal).

86

CHAPTER 3/ ATOP-LEVELVIEW OF COMPUTER FUNCTION AND INTERCONNECTION

0 3 4 15

Opcode Address

(a) Instruction format

Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

Memory CPU registers Memory CPU registers
300(1 9 4 0 3 0 0]PC 300(1 9 4 0 3 0 1]PC
30159411 AC| 3015 9 4 1 000 3|AC
302(2 9 4 1 1 9 4 0|IR [302[2 9 4 1 19 4 0|/IR
940[{0 0 0 3 940[0 0 0 3

9410 0 0 2 9410 0 0 2

Step 1 Step 2

Memory CPU registers Memory CPU registers
300(1 9 4 3 0 1]PC 300[1 9 4 0 3 0 2]PC
301594110003AC3015941 000 5|AC
30202 9 4 1 59 4 1|IR 3022941(5941}1}1
940(0 0 0 3 940(0 0 0 3 3+42=5

941[0 0 0 2 o410 0 0 2—7

Step 3 Step 4

Memory CPU registers Memory CPU registers
300[1 9 4 0 3 0 2]pC 300[1 9 4 0 3 0 3]pC
301|159 41 000 5/AC|301|5 9 41 000 5|AC
3022 9 4 1 2 9 4 I|IR [302[2 9 4 1 2 9 4 1|IR
940(0 0 0 3 940(0 0 0 3

94100 0 0 2 941(0 0 0 5

Step 5 Step 6

Figure 3.5 Example of Program Execution (contents of memory and
registers in hexadecimal)

3.2 / COMPUTER FUNCTION 87

address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute cycles, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the instruction register IR, and
the PC is incremented. Note that this process involves the use of a memory
address register and a memory buffer register. For simplicity, these intermedi-
ate registers are ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded. The remaining 12 bits (three hexadecimal digits) specify the address
(940) from which data are to be loaded.

3. The next instruction (5941) is fetched from location 301, and the PC is
incremented.

4. The old contents of the AC and the contents of location 941 are added, and
the result is stored in the AC.

5. The next instruction (2941) is fetched from location 302, and the PC is
incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an
execute cycle, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer cycles would be needed. Some older
processors, for example, included instructions that contain more than one memory
address. Thus, the execution cycle for a particular instruction on such processors
could involve more than one reference to memory. Also, instead of memory refer-
ences, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symboli-
cally as ADD B,A, that stores the sum of the contents of memory locations B and A
into memory location A. A single instruction cycle with the following steps occurs:

m Fetch the ADD instruction.
m Read the contents of memory location A into the processor.

m Read the contents of memory location B into the processor. In order that the
contents of A are not lost, the processor must have at least two registers for
storing memory values, rather than a single accumulator.

® Add the two values.

m Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one
reference to memory. Also, instead of memory references, an instruction may specify
an I/O operation. With these additional considerations in mind, Figure 3.6 provides a
more detailed look at the basic instruction cycle of Figure 3.3. The figure is in the form
of a state diagram. For any given instruction cycle, some states may be null and others
may be visited more than once. The states can be described as follows:

= Instruction address calculation (iac): Determine the address of the next
instruction to be executed. Usually, this involves adding a fixed number to

88 CHAPTER3/ATOP-LEVEL VIEW OF COMPUTER FUNCTION AND INTER CONNECTION

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction Operand Operand
; Data
address operation ——- address onerationll address
calculation decoding calculation P calculation
Instruction complete, Return for string
fetch next instruction or vector data

Figure 3.6 Instruction Cycle State Diagram

the address of the previous instruction. For example, if each instruction is 16
bits long and memory is organized into 16-bit words, then add 1 to the previ-
ous address. If, instead, memory is organized as individually addressable 8-bit
bytes, then add 2 to the previous address.

= Instruction fetch (if): Read instruction from its memory location into the
processor.

= Instruction operation decoding (iod): Analyze instruction to determine type
of operation to be performed and operand(s) to be used.

= Operand address calculation (oac): If the operation involves reference to an
operand in memory or available via I/O, then determine the address of the
operand.

= Operand fetch (of): Fetch the operand from memory or read it in from I/O.
= Data operation (do): Perform the operation indicated in the instruction.
= Operand store (0s): Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the pro-
cessor and either memory or an I/0O module. States in the lower part of the diagram
involve only internal processor operations. The oac state appears twice, because
an instruction may involve a read, a write, or both. However, the action performed
during that state is fundamentally the same in both cases, and so only a single state
identifier is needed.

Also note that the diagram allows for multiple operands and multiple results,
because some instructions on some machines require this. For example, the PDP-11
instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of,
oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be per-
formed on a vector (one-dimensional array) of numbers or a string (one-dimensional

3.2 / COMPUTER FUNCTION 89

array) of characters. As Figure 3.6 indicates, this would involve repetitive operand
fetch and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, memory)
may interrupt the normal processing of the processor. Table 3.1 lists the most com-
mon classes of interrupts. The specific nature of these interrupts is examined later in
this book, especially in Chapters 7 and 14. However, we need to introduce the concept
now to understand more clearly the nature of the instruction cycle and the impli-
cations of interrupts on the interconnection structure. The reader need not be con-
cerned at this stage about the details of the generation and processing of interrupts,
but only focus on the communication between modules that results from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency.
For example, most external devices are much slower than the processor. Suppose
that the processor is transferring data to a printer using the instruction cycle scheme
of Figure 3.3. After each write operation, the processor must pause and remain
idle until the printer catches up. The length of this pause may be on the order of
many hundreds or even thousands of instruction cycles that do not involve memory.
Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a ser-
ies of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to
sequences of instructions that do not involve I/O. The WRITE calls are to an I/O
program that is a system utility and that will perform the actual I/O operation. The
I/O program consists of three sections:

= A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O
operation. This may include copying the data to be output into a special buffer
and preparing the parameters for a device command.

m The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically poll the device). The program might wait by simply
repeatedly performing a test operation to determine if the I/O operation is done.

m A sequence of instructions, labeled 5 in the figure, to complete the operation.
This may include setting a flag indicating the success or failure of the operation.

Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to exe-
cute an illegal machine instruction, or reference outside a user’s allowed
memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.

/0 Generated by an I/O controller, to signal normal completion of an
operation, request service from the processor, or to signal a variety of
error conditions.

Hardware Failure Generated by a failure such as power failure or memory parity error.

06

User /0
Program Program
—_ =
. 4.7
O | A (O]
: ///I] |
T T
—_— ‘/ /A |C d
WRITE /o 1-omman
el N
*~
IS
I SNy ——
| // // Y N
o |/,
[/
[//
I
I /l P
1/,
1Yy
Vs
WRITE Ii
-1 !
|
|
|
|
|
Q| |
|
|
|
|
i
WRITE

User 1/0
Program Program
=", L T
| AT
I
@ : //;’1 | @
L e
I Y// /’/’7‘/ Command
WRITE IA” // /
- / //
| I
| /
I ,’///
>
N
(IS S~ Interrupt
| TN ~a_ Handler
V// \\ | T
-1V S |
WRITEP / \Ik\ ! ®
T S TNy ==
| / - N
e |/
/7 s
*// e
/
X 7
I
I
\

WRITE

=h

®

z
31

WR

lRE

/0
Program

v
(O]
\

10
Command

O
\
\
Y~
\
\
\

Y
0
\

/ Interrupt
! Handler

(6]

/ /\\\Y —N_

STttt
\\\\
\
\
\
\
X
I

/

¥

(a) No interrupts

(b) Interrupts; short I/O wait

X = interrupt occurs during course of execution of user program

Figure 3.7 Program Flow of Control without and with Interrupts

(c) Interrupts; long I/0 wait

3.2 / COMPUTER FUNCTION 91

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

INTERRUPTS AND THE INSTRUCTION CYCLE With interrupts, the processor can
be engaged in executing other instructions while an I/O operation is in progress.
Consider the flow of control in Figure 3.7b. As before, the user program reaches a
point at which it makes a system call in the form of a WRITE call. The I/O program
that is invoked in this case consists only of the preparation code and the actual I/O
command. After these few instructions have been executed, control returns to the
user program. Meanwhile, the external device is busy accepting data from computer
memory and printing it. This I/O operation is conducted concurrently with the
execution of instructions in the user program.

When the external device becomes ready to be serviced —that is, when it is
ready to accept more data from the processor—the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program, branching off to a program to service
that particular I/O device, known as an interrupt handler, and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program
that contains two WRITE commands. There is a segment of code at the beginning,
then one WRITE command, then a second segment of code, then a second WRITE
command, then a third and final segment of code. The WRITE command invokes
the I/O program provided by the OS. Similarly, the I/O program consists of a seg-
ment of code, followed by an I/O command, followed by another segment of code.
The I/O command invokes a hardware /O operation.

USER PROGRAM

(statement)
(statement)
: Code segment 1 I/0 PROGRAM
(stafement) (statement)
(statement)
WRITE : Code segment 4
(statement)
(statement)
(statement) \ o e segment 2 I1/0 command
(statement) (statement)
(statsment) Code segment &5
WRITE ; - g
(statement)
(statement)
(statement)

Code segment 3

(statement)

92 CHAPTER3/ATOP-LEVEL VIEW OF COMPUTER FUNCTION AND INTER CONNECTION

User program Interrupt handler
1 —_—
2
i
Interrupt
occurs here it1
M

Figure 3.8 Transfer of Control via Interrupts

From the point of view of the user program, an interrupt is just that: an interrup-
tion of the normal sequence of execution. When the interrupt processing is completed,
execution resumes (Figure 3.8). Thus, the user program does not have to contain any
special code to accommodate interrupts; the processor and the operating system are
responsible for suspending the user program and then resuming it at the same point.

To accommodate interrupts, an interrupt cycle is added to the instruction
cycle, as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if
any interrupts have occurred, indicated by the presence of an interrupt signal. If no
interrupts are pending, the processor proceeds to the fetch cycle and fetches the
next instruction of the current program. If an interrupt is pending, the processor
does the following:

m [t suspends execution of the current program being executed and saves its
context. This means saving the address of the next instruction to be executed

Fetch cycle Execute cycle Interrupt cycle

Interrupts
disabled

heck f
START Fetch next Execute i(I:It::‘:l"ll Otr
instruction instruction Interrupts -

process interrupt
enabled

(HALT)

Figure 3.9 Instruction Cycle with Interrupts

3.2 / COMPUTER FUNCTION 93

(current contents of the program counter) and any other data relevant to the
processor’s current activity.

m [tsets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction
in the interrupt handler program, which will service the interrupt. The interrupt
handler program is generally part of the operating system. Typically, this program
determines the nature of the interrupt and performs whatever actions are needed.
In the example we have been using, the handler determines which I/O module gen-
erated the interrupt and may branch to a program that will write more data out to
that I/O module. When the interrupt handler routine is completed, the processor
can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the inter-
rupt and to decide on the appropriate action. Nevertheless, because of the relatively
large amount of time that would be wasted by simply waiting on an I/O operation,
the processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing
diagram based on the flow of control in Figures 3.7a and 3.7b. In this figure, user
program code segments are shaded green, and I/O program code segments are

Time

ol

1/0 operation
concurrent with
processor executing

I/0 operation;
processor waits

1/0 operation
concurrent with

processor executing
1/0 operation;
processor waits

eleje[e|eje|e|ofe)

(b) With interrupts

©
]
O

®
O
]
O

©

(a) Without interrupts

Figure 3.10 Program Timing: Short I/O Wait

94 CHAPTER3/ATOP-LEVEL VIEW OF COMPUTER FUNCTION AND INTER CONNECTION

shaded gray. Figure 3.10a shows the case in which interrupts are not used. The pro-
cessor must wait while an I/O operation is performed.

Figures 3.7b and 3.10b assume that the time required for the I/O operation is rela-
tively short: less than the time to complete the execution of instructions between write
operations in the user program. In this case, the segment of code labeled code segment 2
is interrupted. A portion of the code (2a) executes (while the I/O operation is performed)
and then the interrupt occurs (upon the completion of the I/O operation). After the inter-
rupt is serviced, execution resumes with the remainder of code segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the
I/O operation will take much more time than executing a sequence of user instruc-
tions. Figure 3.7c indicates this state of affairs. In this case, the user program reaches
the second WRITE call before the I/O operation spawned by the first call is com-
plete. The result is that the user program is hung up at that point. When the preced-
ing I/O operation is completed, this new WRITE call may be processed, and a new
I/O operation may be started. Figure 3.11 shows the timing for this situation with

Time

o o

1/0 operation
concurrent with
processor executing;
then processor
waits

1/0 operation;
processor waits

I/0 operation
concurrent with
processor executing;
then processor
waits

1/0 operation;
processor waits

O ®
B E
© B
© BN
el gol
ﬁ @
© o
®

(b) With interrupts

(a) Without interrupts

Figure 3.11 Program Timing: Long I/O Wait

3.2 / COMPUTER FUNCTION 95

and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is under way overlaps with
the execution of user instructions.

Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing.

MULTIPLE INTERRUPTS The discussion so far has focused only on the occurrence
of a single interrupt. Suppose, however, that multiple interrupts can occur. For
example, a program may be receiving data from a communications line and
printing results. The printer will generate an interrupt every time it completes
a print operation. The communication line controller will generate an interrupt
every time a unit of data arrives. The unit could either be a single character or a
block, depending on the nature of the communications discipline. In any case, it is
possible for a communications interrupt to occur while a printer interrupt is being
processed.

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means that the processor can and will ignore that interrupt request signal.
If an interrupt occurs during this time, it generally remains pending and will be
checked by the processor after the processor has enabled interrupts. Thus, when a
user program is executing and an interrupt occurs, interrupts are disabled immedi-
ately. After the interrupt handler routine completes, interrupts are enabled before
resuming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is nice and simple, as interrupts are handled in strict
sequential order (Figure 3.13a).

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt
of higher priority to cause a lower-priority interrupt handler to be itself interrupted
(Figure 3.13b). As an example of this second approach, consider a system with three
I/0O devices: a printer, a disk, and a communications line, with increasing priori-
ties of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible sequence. A user
program begins at ¢t = 0. At ¢+ = 10, a printer interrupt occurs; user information is
placed on the system stack and execution continues at the printer interrupt service
routine (ISR). While this routine is still executing, at t = 15, a communications inter-
rupt occurs. Because the communications line has higher priority than the printer,
the interrupt is honored. The printer ISR is interrupted, its state is pushed onto the
stack, and execution continues at the communications ISR. While this routine is exe-
cuting, a disk interrupt occurs (¢ = 20). Because this interrupt is of lower priority, it
is simply held, and the communications ISR runs to completion.

When the communications ISR is complete (¢t = 25), the previous proces-
sor state is restored, which is the execution of the printer ISR. However, before
even a single instruction in that routine can be executed, the processor honors the
higher-priority disk interrupt and control transfers to the disk ISR. Only when that

96

Figure 3.12

Instruction complete,
fetch next instruction

Return for string
or vector data

Multiple
results

interrupt

Instruction Cycle State Diagram, with Interrupts

User program

Interrupt
handler X

\

\

(a) Sequential interrupt processing

User program

\

(b) Nested interrupt processing
Figure 3.13 Transfer of Control with Multiple Interrupts

|

Interrupt
handler X

Interrupt
handler Y

=

/

7 _

Interrupt
handler Y

¥

i

97

98 CHAPTER3/ATOP-LEVEL VIEW OF COMPUTER FUNCTION AND INTER CONNECTION

Printer Communication
interrupt interrupt
User program service routine service routine

R
h

Q
éx

////r\

Disk
interrupt
service routine

/

/

{

Figure 3.14 Example Time Sequence of Multiple Interrupts

routine is complete (¢ = 35) is the printer ISR resumed. When that routine com-
pletes (z = 40), control finally returns to the user program.

I/0O Function

Thus far, we have discussed the operation of the computer as controlled by the pro-
cessor, and we have looked primarily at the interaction of processor and memory.
The discussion has only alluded to the role of the I/O component. This role is dis-
cussed in detail in Chapter 7 but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the
processor. Just as the processor can initiate a read or write with memory, desig-
nating the address of a specific location, the processor can also read data from or
write data to an I/O module. In this latter case, the processor identifies a specific
device that is controlled by a particular I/O module. Thus, an instruction sequence
similar in form to that of Figure 3.5 could occur, with I/O instructions rather than
memory-referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with
memory. In such a case, the processor grants to an I/O module the authority to read
from or write to memory, so that the I/O-memory transfer can occur without tying
up the processor. During such a transfer, the I/O module issues read or write com-
mands to memory, relieving the processor of responsibility for the exchange. This
operation is known as direct memory access (DMA) and is examined in Chapter 7.

3.3 / INTERCONNECTION STRUCTURES 99

3.3 INTERCONNECTION STRUCTURES

A computer consists of a set of components or modules of three basic types (pro-
cessor, memory, [/O) that communicate with each other. In effect, a computer is a
network of basic modules. Thus, there must be paths for connecting the modules.

The collection of paths connecting the various modules is called the intercon-
nection structure. The design of this structure will depend on the exchanges that
must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the
major forms of input and output for each module type?:

® Memory: Typically, a memory module will consist of N words of equal length.
Each word is assigned a unique numerical address (0, 1, ... , N—1). A word of
data can be read from or written into the memory. The nature of the operation

Read
- Memory
Write
N words
Address (.) OTTTT1T] Data >
Data N-1 [0
Read
romedste T >
Write data
—_—
I External
Address M ports data
Internal
External signals
data
Instructions Address >
- Control
Data CPU signals
Interrupt Data >
signals

Figure 3.15 Computer Modules

>The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each
narrow arrow represents a single signal line.

100 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

is indicated by read and write control signals. The location for the operation is
specified by an address.

I/0 module: From an internal (to the computer system) point of view, I/O is
functionally similar to memory. There are two operations; read and write. Fur-
ther, an I/O module may control more than one external device. We can refer
to each of the interfaces to an external device as a port and give each a unique
address (e.g.,0,1, ... , M—1). In addition, there are external data paths for
the input and output of data with an external device. Finally, an I/O module
may be able to send interrupt signals to the processor.

Processor: The processor reads in instructions and data, writes out data after
processing, and uses control signals to control the overall operation of the sys-
tem. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection

structure must support the following types of transfers:

Memory to processor: The processor reads an instruction or a unit of data
from memory.

Processor to memory: The processor writes a unit of data to memory.

I/0 to processor: The processor reads data from an I/O device via an I/O
module.

Processor to 1/0: The processor sends data to the I/O device.

I/0 to or from memory: For these two cases, an I/O module is allowed to
exchange data directly with memory, without going through the processor,
using direct memory access.

Over the years, a number of interconnection structures have been tried. By far

the most common are (1) the bus and various multiple-bus structures, and (2) point-
to-point interconnection structures with packetized data transfer. We devote the
remainder of this chapter for a discussion of these structures.

3.4 BUS INTERCONNECTION

The bus was the dominant means of computer system component interconnection
for decades. For general-purpose computers, it has gradually given way to various
point-to-point interconnection structures, which now dominate computer system
design. However, bus structures are still commonly used for embedded systems, par-
ticularly microcontrollers. In this section, we give a brief overview of bus structure.
Appendix C provides more detail.

A bus is a communication pathway connecting two or more devices. A key

characteristic of a bus is that it is a shared transmission medium. Multiple devices
connect to the bus, and a signal transmitted by any one device is available for recep-
tion by all other devices attached to the bus. If two devices transmit during the same
time period, their signals will overlap and become garbled. Thus, only one device at
a time can successfully transmit.

3.4 / BUS INTERCONNECTION 101

Typically, a bus consists of multiple communication pathways, or lines. Each
line is capable of transmitting signals representing binary 1 and binary 0. Over time,
a sequence of binary digits can be transmitted across a single line. Taken together,
several lines of a bus can be used to transmit binary digits simultaneously (in paral-
lel). For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways
between components at various levels of the computer system hierarchy. A bus that
connects major computer components (processor, memory, I/O) is called a system
bus. The most common computer interconnection structures are based on the use of
one or more system buses.

A system bus consists, typically, of from about fifty to hundreds of separate
lines. Each line is assigned a particular meaning or function. Although there are
many different bus designs, on any bus the lines can be classified into three func-
tional groups (Figure 3.16): data, address, and control lines. In addition, there may
be power distribution lines that supply power to the attached modules.

The data lines provide a path for moving data among system modules. These
lines, collectively, are called the data bus. The data bus may consist of 32, 64, 128,
or even more separate lines, the number of lines being referred to as the width of
the data bus. Because each line can carry only one bit at a time, the number of
lines determines how many bits can be transferred at a time. The width of the data
bus is a key factor in determining overall system performance. For example, if the
data bus is 32 bits wide and each instruction is 64 bits long, then the processor must
access the memory module twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on
the data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits)
of data from memory, it puts the address of the desired word on the address lines.
Clearly, the width of the address bus determines the maximum possible memory capac-
ity of the system. Furthermore, the address lines are generally also used to address I/O
ports. Typically, the higher-order bits are used to select a particular module on the
bus, and the lower-order bits select a memory location or I/O port within the module.
For example, on an 8-bit address bus, address 01111111 and below might reference
locations in a memory module (module 0) with 128 words of memory, and address
10000000 and above refer to devices attached to an I/O module (module 1).

The control lines are used to control the access to and the use of the data and
address lines. Because the data and address lines are shared by all components,

CPU Memory || ®*° | Memory 1[0 oee /0

Control lines

Address lines Bus

Data lines

Figure 3.16 Bus Interconnection Scheme

102 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

there must be a means of controlling their use. Control signals transmit both com-
mand and timing information among system modules. Timing signals indicate the
validity of data and address information. Command signals specify operations to be
performed. Typical control lines include:

Memory write: causes data on the bus to be written into the addressed location.
Memory read: causes data from the addressed location to be placed on the bus.
I/0 write: causes data on the bus to be output to the addressed I/O port.

I/0 read: causes data from the addressed I/O port to be placed on the bus.

Transfer ACK: indicates that data have been accepted from or placed on the
bus.

Bus request: indicates that a module needs to gain control of the bus.

Bus grant: indicates that a requesting module has been granted control of the
bus.

Interrupt request: indicates that an interrupt is pending.
Interrupt ACK: acknowledges that the pending interrupt has been recognized.
Clock: is used to synchronize operations.

Reset: initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to

another, it must do two things: (1) obtain the use of the bus, and (2) transfer data
via the bus. If one module wishes to request data from another module, it must
(1) obtain the use of the bus, and (2) transfer a request to the other module over the
appropriate control and address lines. It must then wait for that second module to
send the data.

3.5 POINT-TO-POINT INTERCONNECT

The shared bus architecture was the standard approach to interconnection between
the processor and other components (memory, I/O, and so on) for decades. But con-
temporary systems increasingly rely on point-to-point interconnection rather than
shared buses.

The principal reason driving the change from bus to point-to-point intercon-

nect was the electrical constraints encountered with increasing the frequency of wide
synchronous buses. At higher and higher data rates, it becomes increasingly diffi-
cult to perform the synchronization and arbitration functions in a timely fashion.
Further, with the advent of multicore chips, with multiple processors and significant
memory on a single chip, it was found that the use of a conventional shared bus on
the same chip magnified the difficulties of increasing bus data rate and reducing bus
latency to keep up with the processors. Compared to the shared bus, the point-to-
point interconnect has lower latency, higher data rate, and better scalability.

In this section, we look at an important and representative example of the

point-to-point interconnect approach: Intel’s QuickPath Interconnect (QPI), which
was introduced in 2008.

3.5 / POINT-TO-POINT INTERCONNECT 103

The following are significant characteristics of QPI and other point-to-point
interconnect schemes:

= Multiple direct connections: Multiple components within the system enjoy
direct pairwise connections to other components. This eliminates the need for
arbitration found in shared transmission systems.

= Layered protocol architecture: As found in network environments, such as
TCP/IP-based data networks, these processor-level interconnects use a lay-
ered protocol architecture, rather than the simple use of control signals found
in shared bus arrangements.

= Packetized data transfer: Data are not sent as a raw bit stream. Rather, data
are sent as a sequence of packets, each of which includes control headers and
error control codes.

Figure 3.17 illustrates a typical use of QPI on a multicore computer. The QPI
links (indicated by the green arrow pairs in the figure) form a switching fabric that
enables data to move throughout the network. Direct QPI connections can be estab-
lished between each pair of core processors. If core A in Figure 3.17 needs to access
the memory controller in core D, it sends its request through either cores B or C,
which must in turn forward that request on to the memory controller in core D.
Similarly, larger systems with eight or more processors can be built using processors
with three links and routing traffic through intermediate processors.

In addition, QPI is used to connect to an I/O module, called an I/O hub (IOH).
The IOH acts as a switch directing traffic to and from I/O devices. Typically in newer

1I/O Hub

—

|I/0 devicel
|1/o devicel

Core
B

|DRAM|

— || Core
C || D

|DRAM|

|DRAM|
Q Q
-~ n«— i>§ |<—
— —
|DRAM|

] @

< 9

z =

= <—>ﬂ 1/0 Hub |

=} <)
[= | [= |
4_’ R -~

QPIL PCI Express Memory bus

Figure 3.17 Multicore Configuration Using QPI

104 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

Packets
Protocol Protocol
Routing Routing
Flits
Link Link
Physical Phits Physical

Figure 3.18 QPI Layers

systems, the link from the IOH to the I/O device controller uses an interconnect
technology called PCI Express (PCle), described later in this chapter. The IOH
translates between the QPI protocols and formats and the PCle protocols and for-
mats. A core also links to a main memory module (typically the memory uses dynamic
access random memory (DRAM) technology) using a dedicated memory bus.

QPI is defined as a four-layer protocol architecture,® encompassing the fol-
lowing layers (Figure 3.18):

= Physical: Consists of the actual wires carrying the signals, as well as circuitry
and logic to support ancillary features required in the transmission and receipt
of the 1s and Os. The unit of transfer at the Physical layer is 20 bits, which is
called a Phit (physical unit).

m Link: Responsible for reliable transmission and flow control. The Link layer’s
unit of transfer is an 80-bit Flit (flow control unit).

= Routing: Provides the framework for directing packets through the fabric.

m Protocol: The high-level set of rules for exchanging packets of data between
devices. A packet is comprised of an integral number of Flits.

QPI Physical Layer

Figure 3.19 shows the physical architecture of a QPI port. The QPI port consists of
84 individual links grouped as follows. Each data path consists of a pair of wires that
transmits data one bit at a time; the pair is referred to as a lane. There are 20 data
lanes in each direction (transmit and receive), plus a clock lane in each direction.
Thus, QPI is capable of transmitting 20 bits in parallel in each direction. The 20-bit
unit is referred to as a phit. Typical signaling speeds of the link in current products
calls for operation at 6.4 GT/s (transfers per second). At 20 bits per transfer, that
adds up to 16 GB/s, and since QPI links involve dedicated bidirectional pairs, the
total capacity is 32 GB/s.

3The reader unfamiliar with the concept of a protocol architecture will find a brief overview in Appendix D.

3.5 / POINT-TO-POINT INTERCONNECT 105

COMPONENT A
Intel QuickPath Interconnect Port

Transmission Lanes Reception Lanes

Rev Clk

=
@)
)
=
=

Reception Lanes Transmission Lanes

Rev Clk

Fwd Clk

Intel QuickPath Interconnect Port
COMPONENT B

Figure 3.19 Physical Interface of the Intel QPI Interconnect

The lanes in each direction are grouped into four quadrants of 5 lanes each.
In some applications, the link can also operate at half or quarter widths in order to
reduce power consumption or work around failures.

The form of transmission on each lane is known as differential signaling, or
balanced transmission. With balanced transmission, signals are transmitted as a cur-
rent that travels down one conductor and returns on the other. The binary value
depends on the voltage difference. Typically, one line has a positive voltage value
and the other line has zero voltage, and one line is associated with binary 1 and one
line is associated with binary 0. Specifically, the technique used by QPI is known as
low-voltage differential signaling (LVDS). In a typical implementation, the trans-
mitter injects a small current into one wire or the other, depending on the logic
level to be sent. The current passes through a resistor at the receiving end, and then
returns in the opposite direction along the other wire. The receiver senses the polar-
ity of the voltage across the resistor to determine the logic level.

Another function performed by the physical layer is that it manages the trans-
lation between 80-bit flits and 20-bit phits using a technique known as multilane
distribution. The flits can be considered as a bit stream that is distributed across the
data lanes in a round-robin fashion (first bit to first lane, second bit to second lane,
etc.), as illustrated in Figure 3.20. This approach enables QPI to achieve very high
data rates by implementing the physical link between two ports as multiple parallel
channels.

QPI Link Layer

The QPI link layer performs two key functions: flow control and error control. These
functions are performed as part of the QPI link layer protocol, and operate on the
level of the flit (flow control unit). Each flit consists of a 72-bit message payload and

106 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

eeo |#2n+1” #n+1 “ # | 1311210

bit stream of flits L e o a2 [mme][2 | X!

lane 1
— i —
[#2n+1|[#2n | o o o [#ns2||tn+1|| #n |ooo]| #2 |[#1 .
.
oo o[|[n [0] 2,

Figure 3.20 QPI Multilane Distribution

an 8-bit error control code called a cyclic redundancy check (CRC). We discuss error
control codes in Chapter 5.

A flit payload may consist of data or message information. The data flits
transfer the actual bits of data between cores or between a core and an IOH. The
message flits are used for such functions as flow control, error control, and cache
coherence. We discuss cache coherence in Chapters 5 and 17.

The flow control function is needed to ensure that a sending QPI entity does
not overwhelm a receiving QPI entity by sending data faster than the receiver can
process the data and clear buffers for more incoming data. To control the flow of
data, QPI makes use of a credit scheme. During initialization, a sender is given a set
number of credits to send flits to a receiver. Whenever a flit is sent to the receiver,
the sender decrements its credit counters by one credit. Whenever a buffer is freed
at the receiver, a credit is returned to the sender for that buffer. Thus, the receiver
controls that pace at which data is transmitted over a QPI link.

Occasionally, a bit transmitted at the physical layer is changed during trans-
mission, due to noise or some other phenomenon. The error control function at the
link layer detects and recovers from such bit errors, and so isolates higher layers
from experiencing bit errors. The procedure works as follows for a flow of data
from system A to system B:

1. As mentioned, each 80-bit flit includes an 8-bit CRC field. The CRC is a func-
tion of the value of the remaining 72 bits. On transmission, A calculates a
CRC value for each flit and inserts that value into the flit.

2. When a flit is received, B calculates a CRC value for the 72-bit payload and
compares this value with the value of the incoming CRC value in the flit. If the
two CRC values do not match, an error has been detected.

3. When B detects an error, it sends a request to A to retransmit the flit that is
in error. However, because A may have had sufficient credit to send a stream
of flits, so that additional flits have been transmitted after the flit in error and

3.6 / PCI EXPRESS 107

before A receives the request to retransmit. Therefore, the request is for A to
back up and retransmit the damaged flit plus all subsequent flits.

QPI Routing Layer

The routing layer is used to determine the course that a packet will traverse across
the available system interconnects. Routing tables are defined by firmware and
describe the possible paths that a packet can follow. In small configurations, such as
a two-socket platform, the routing options are limited and the routing tables quite
simple. For larger systems, the routing table options are more complex, giving the
flexibility of routing and rerouting traffic depending on how (1) devices are popu-
lated in the platform, (2) system resources are partitioned, and (3) reliability events
result in mapping around a failing resource.

QPI Protocol Layer

In this layer, the packet is defined as the unit of transfer. The packet contents definition
is standardized with some flexibility allowed to meet differing market segment require-
ments. One key function performed at this level is a cache coherency protocol, which
deals with making sure that main memory values held in multiple caches are consistent.
A typical data packet payload is a block of data being sent to or from a cache.

3.6 PCI EXPRESS

The peripheral component interconnect (PCI) is a popular high-bandwidth,
processor-independent bus that can function as a mezzanine or peripheral bus.
Compared with other common bus specifications, PCI delivers better system perfor-
mance for high-speed I/O subsystems (e.g., graphic display adapters, network inter-
face controllers, and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon
released all the patents to the public domain and promoted the creation of an
industry association, the PCI Special Interest Group (SIG), to develop further and
maintain the compatibility of the PCI specifications. The result is that PCI has been
widely adopted and is finding increasing use in personal computer, workstation, and
server systems. Because the specification is in the public domain and is supported
by a broad cross-section of the microprocessor and peripheral industry, PCI prod-
ucts built by different vendors are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI
scheme has not been able to keep pace with the data rate demands of attached
devices. Accordingly, a new version, known as PCI Express (PCle) has been devel-
oped. PCle, as with QPI, is a point-to-point interconnect scheme intended to replace
bus-based schemes such as PCI.

A key requirement for PCle is high capacity to support the needs of higher
data rate I/O devices, such as Gigabit Ethernet. Another requirement deals with
the need to support time-dependent data streams. Applications such as video-on-
demand and audio redistribution are putting real-time constraints on servers too.
Many communications applications and embedded PC control systems also pro-
cess data in real-time. Today’s platforms must also deal with multiple concurrent

108 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

transfers at ever-increasing data rates. It is no longer acceptable to treat all data as
equal —it is more important, for example, to process streaming data first since late
real-time data is as useless as no data. Data needs to be tagged so that an I/O system
can prioritize its flow throughout the platform.

PCI Physical and Logical Architecture

Figure 3.21 shows a typical configuration that supports the use of PCle. A root
complex device, also referred to as a chipset or a host bridge, connects the processor
and memory subsystem to the PCI Express switch fabric comprising one or more
PCIe and PClIe switch devices. The root complex acts as a buffering device, to deal
with difference in data rates between I/O controllers and memory and processor
components. The root complex also translates between PCle transaction formats and
the processor and memory signal and control requirements. The chipset will typically
support multiple PCle ports, some of which attach directly to a PCle device, and one
or more that attach to a switch that manages multiple PCle streams. PCle links from
the chipset may attach to the following kinds of devices that implement PCle:

m Switch: The switch manages multiple PCle streams.

= PCle endpoint: An I/O device or controller that implements PCle, such as
a Gigabit ethernet switch, a graphics or video controller, disk interface, or a
communications controller.

Core Core

G C (O\ (
igabit PCle
—
Chipset
PCIe-PCI || PCle —

bridge y

. J .

PCIe
PCle PCle
PCle PCle

Legacy PCle PClIe PCle
endpoint endpoint endpoint endpoint

Figure 3.21 Typical Configuration Using PCle

3.6 / PCI EXPRESS 109

m Legacy endpoint: Legacy endpoint category is intended for existing designs
that have been migrated to PCI Express, and it allows legacy behaviors such
as use of I/O space and locked transactions. PCI Express endpoints are not
permitted to require the use of I/O space at runtime and must not use locked
transactions. By distinguishing these categories, it is possible for a system
designer to restrict or eliminate legacy behaviors that have negative impacts
on system performance and robustness.

= PCle/PCI bridge: Allows older PCI devices to be connected to PCle-based
systems.

As with QPI, PCle interactions are defined using a protocol architecture. The
PCle protocol architecture encompasses the following layers (Figure 3.22):

m Physical: Consists of the actual wires carrying the signals, as well as circuitry
and logic to support ancillary features required in the transmission and receipt
of the 1s and Os.

= Data link: Is responsible for reliable transmission and flow control. Data pack-
ets generated and consumed by the DLL are called Data Link Layer Packets
(DLLPs).

= Transaction: Generates and consumes data packets used to implement load/
store data transfer mechanisms and also manages the flow control of those
packets between the two components on a link. Data packets generated and
consumed by the TL are called Transaction Layer Packets (TLPs).

Above the TL are software layers that generate read and write requests that
are transported by the transaction layer to the I/O devices using a packet-based
transaction protocol.

PClIe Physical Layer

Similar to QPI, PCle is a point-to-point architecture. Each PCle port consists of a
number of bidirectional lanes (note that in QPI, the lane refers to transfer in one
direction only). Transfer in each direction in a lane is by means of differential signal-
ing over a pair of wires. A PCI port can provide 1,4, 6,16, or 32 lanes. In what follows,
we refer to the PCle 3.0 specification, introduced in late 2010.

As with QPI, PCle uses a multilane distribution technique. Figure 3.23 shows
an example for a PCle port consisting of four lanes. Data are distributed to the four

Transaction layer

packets (TLPs)
Transaction Transaction
Data link layer
packets (DLLPs)
Data link Data link
Physical Physical

Figure 3.22 PCle Protocol Layers

01T

128b/ PCle
e m 130b lane 0
byte stream

— A

PCI

eee B7 || B6 || B5 |[B4 |[B3 [[B2 || B1 || BO

PCI
e laneeZ

e

Figure 3.23 PCle Multilane Distribution

3.6 / PCI EXPRESS 111

lanes 1 byte at a time using a simple round-robin scheme. At each physical lane,
data are buffered and processed 16 bytes (128 bits) at a time. Each block of 128 bits
is encoded into a unique 130-bit codeword for transmission; this is referred to as
128b/130b encoding. Thus, the effective data rate of an individual lane is reduced by
a factor of 128/130.

To understand the rationale for the 128b/130b encoding, note that unlike QPI,
PClIe does not use its clock line to synchronize the bit stream. That is, the clock line
is not used to determine the start and end point of each incoming bit; it is used for
other signaling purposes only. However, it is necessary for the receiver to be syn-
chronized with the transmitter, so that the receiver knows when each bit begins and
ends. If there is any drift between the clocks used for bit transmission and reception
of the transmitter and receiver, errors may occur. To compensate for the possibil-
ity of drift, PCle relies on the receiver synchronizing with the transmitter based on
the transmitted signal. As with QPI, PCle uses differential signaling over a pair of
wires. Synchronization can be achieved by the receiver looking for transitions in
the data and synchronizing its clock to the transition. However, consider that with
a long string of 1s or Os using differential signaling, the output is a constant voltage
over a long period of time. Under these circumstances, any drift between the clocks
of transmitter and receiver will result in loss of synchronization between the two.

A common approach, and the one used in PCle 3.0, to overcoming the prob-
lem of a long string of bits of one value is scrambling. Scrambling, which does not
increase the number of bits to be transmitted, is a mapping technique that tends to
make the data appear more random. The scrambling tends to spread out the num-
ber of transitions so that they appear at the receiver more uniformly spaced, which
is good for synchronization. Also, other transmission properties, such as spectral
properties, are enhanced if the data are more nearly of a random nature rather than
constant or repetitive. For more discussion of scrambling, see Appendix E.

Another technique that can aid in synchronization is encoding, in which add-
itional bits are inserted into the bit stream to force transitions. For PCle 3.0, each
group of 128 bits of input is mapped into a 130-bit block by adding a 2-bit block sync
header. The value of the header is 10 for a data block and 01 for what is called an
ordered set block, which refers to a link-level information block.

Figure 3.24 illustrates the use of scrambling and encoding. Data to be trans-
mitted are fed into a scrambler. The scrambled output is then fed into a 128b/130b
encoder, which buffers 128 bits and then maps the 128-bit block into a 130-bit block.
This block then passes through a parallel-to-serial converter and transmitted one bit
at a time using differential signaling.

At the receiver, a clock is synchronized to the incoming data to recover the bit
stream. This then passes through a serial-to-parallel converter to produce a stream
of 130-bit blocks. Each block is passed through a 128b/130b decoder to recover the
original scrambled bit pattern, which is then descrambled to produce the original
bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final
detail to mention; each transmission of a block of data over a PCI link begins and
ends with an 8-bit framing sequence intended to give the receiver time to synchro-
nize with the incoming physical layer bit stream.

112 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

D+ D-
Scrambler lefer.entlal
receiver
8b 1b Clock recovery
circuit
i Data recovery
128b/130b Encoding IR I
circuit
130b 1b

ial llel
Parallel to serial Serial to paralle

130b
1b
Transmitter differential .
driver 128b/130b decoding
l 1 128b
D+ D-
(a) Transmitter Descrambler

e

(b) Receiver

Figure 3.24 PCle Transmit and Receive Block Diagrams

PCle Transaction Layer

The transaction layer (TL) receives read and write requests from the software above
the TL and creates request packets for transmission to a destination via the link
layer. Most transactions use a split transaction technique, which works in the follow-
ing fashion. A request packet is sent out by a source PCle device, which then waits
for a response, called a completion packet. The completion following a request is
initiated by the completer only when it has the data and/or status ready for delivery.
Each packet has a unique identifier that enables completion packets to be directed
to the correct originator. With the split transaction technique, the completion is sep-
arated in time from the request, in contrast to a typical bus operation in which both
sides of a transaction must be available to seize and use the bus. Between the request
and the completion, other PCle traffic may use the link.

TL messages and some write transactions are posted transactions, meaning
that no response is expected.

The TL packet format supports 32-bit memory addressing and extended
64-bit memory addressing. Packets also have attributes such as “no-snoop,”

3.6 / PCI EXPRESS 113

“relaxedordering,” and “priority,” which may be used to optimally route these
packets through the I/O subsystem.

ADDRESS SPACES AND TRANSACTION TYPES The TL supports four address spaces:

® Memory: The memory space includes system main memory. It also includes
PClIe I/O devices. Certain ranges of memory addresses map into I/O devices.

m I/O: This address space is used for legacy PCI devices, with reserved memory
address ranges used to address legacy I/O devices.

= Configuration: This address space enables the TL to read/write configuration
registers associated with I/O devices.

m Message: This address space is for control signals related to interrupts, error
handling, and power management.

Table 3.2 shows the transaction types provided by the TL. For memory, I/O, and
configuration address spaces, there are read and write transactions. In the case of
memory transactions, there is also a read lock request function. Locked operations
occur as a result of device drivers requesting atomic access to registers on a PCle
device. A device driver, for example, can atomically read, modify, and then write
to a device register. To accomplish this, the device driver causes the processor to
execute an instruction or set of instructions. The root complex converts these pro-
cessor instructions into a sequence of PCle transactions, which perform individual
read and write requests for the device driver. If these transactions must be executed
atomically, the root complex locks the PCle link while executing the transactions.
This locking prevents transactions that are not part of the sequence from occur-
ring. This sequence of transactions is called a locked operation. The particular set

Table 3.2 PCle TLP Transaction Types

Address Space TLP Type Purpose
Memory Read Request
o e (e Lt [Transfer data to or from a location in the system
memory map.
Memory Write Request
I/O Read Request Transfer data to or from a location in the system
/O Write Request memory map for legacy devices.

Config Type 0 Read Request

. Config Type 0 Write Request Transfer data to or from a location in the configura-
Configuration . :
Config Type 1 Read Request tion space of a PCle device.
Config Type 1 Write Request
Message Request _ .
Message - Provides in-band messaging and event reporting.
Message Request with Data
Completion
Completion with Data
Memory, U.O’ P Returned for certain requests.
Configuration Completion Locked

Completion Locked with Data

114 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

of processor instructions that can cause a locked operation to occur depends on the
system chip set and processor architecture.

To maintain compatibility with PCI, PCle supports both Type 0 and Type 1 con-
figuration cycles. A Type 1 cycle propagates downstream until it reaches the bridge
interface hosting the bus (link) that the target device resides on. The configuration
transaction is converted on the destination link from Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, I/O,
and configuration transactions.

TLP PACKET ASSEMBLY PCle transactions are conveyed using transaction layer
packets, which are illustrated in Figure 3.25a. A TLP originates in the transaction layer
of the sending device and terminates at the transaction layer of the receiving device.

Number
of octets
1 STP framing 1 Start
T~
=
2 < |Sequence number] 4 DLLP T = z
= =
\
S&| £
2 CRC 2
<
12 or 16 < Header 1 End
f s [2 |3
O I
-
E |2 | 3
s |3z | 2
w - -
£ = =
Ere e
=~ Ev =
z =1
= = "]
0 to 4096 < Data = ~ 2
|2 | &
S | & | <
Oor4 ECRC]
4 LCRC
1 STP framing
(a) Transaction Layer Packet (b) Data Link Layer Packet

Figure 3.25 PCle Protocol Data Unit Format

3.6 / PCI EXPRESS 115

Upper layer software sends to the TL the information needed for the TL to
create the core of the TLP, which consists of the following fields:

m Header: The header describes the type of packet and includes information
needed by the receiver to process the packet, including any needed routing
information. The internal header format is discussed subsequently.

m Data: A data field of up to 4096 bytes may be included in the TLP. Some TLPs
do not contain a data field.

= ECRC: An optional end-to-end CRC field enables the destination TL layer to
check for errors in the header and data portions of the TLP.

PClIe Data Link Layer

The purpose of the PCle data link layer is to ensure reliable delivery of packets
across the PCle link. The DLL participates in the formation of TLPs and also trans-
mits DLLPs.

DATA LINK LAYER PACKETS Data link layer packets originate at the data link
layer of a transmitting device and terminate at the DLL of the device on the
other end of the link. Figure 3.25b shows the format of a DLLP. There are three
important groups of DLLPs used in managing a link: flow control packets, power
management packets, and TLP ACK and NAK packets. Power management
packets are used in managing power platform budgeting. Flow control packets
regulate the rate at which TLPs and DLLPs can be transmitted across a link. The
ACK and NAK packets are used in TLP processing, discussed in the following
paragraphs.

TRANSACTION LAYER PACKET PROCESSING The DLL adds two ficlds to the
core of the TLP created by the TL (Figure 3.25a): a 16-bit sequence number and a
32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only
used at the destination TL, the two fields added by the DLL are processed at each
intermediate node on the way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and
LCRC fields and checks the LCRC. There are two possibilities:

1. If no errors are detected, the core portion of the TLP is handed up to the local
transaction layer. If this receiving device is the intended destination, then the
TL processes the TLP. Otherwise, the TL determines a route for the TLP and
passes it back down to the DLL for transmission over the next link on the way
to the destination.

2. If an error is detected, the DLL schedules an NAK DLL packet to return back
to the remote transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives
an NAK for the TLP with this sequence number, it retransmits the TLP. When it
receives an ACK, it discards the buffered TLP.

116 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

3.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

address bus

address lines
arbitration

balanced transmission
bus

control lines

data bus

data lines

differential signaling
disabled interrupt
distributed arbitration
error control function

execute cycle

fetch cycle

flit

flow control function

instruction cycle

interrupt

interrupt handler

interrupt service routine (ISR)

lane

memory address register
(MAR)

memory buffer register (MBR)

multilane distribution

packets

PCI Express (PCle)

peripheral component
interconnect (PCI)

phit

QuickPath Interconnect
(QPI)

root complex

system bus

Review Questions

3.1 What general categories of functions are specified by computer instructions?
3.2 List and briefly define the possible states that define an instruction execution.
3.3 List and briefly define two approaches to dealing with multiple interrupts.
3.4 What types of transfers must a computer’s interconnection structure (e.g., bus)
support?
3.5 List and briefly define the QPI protocol layers.
3.6 List and briefly define the PCle protocol layers.
Problems
3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:
0011 = Load AC from I/O
0111 = Store ACto I/O
In these cases, the 12-bit address identifies a particular I/O device. Show the program
execution (using the format of Figure 3.5) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.
Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.
3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand

this description to show the use of the MAR and MBR.

3.3

3.4

3.5

3.6

3.7

3.8

3.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 117

Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields: the first byte contains the opcode and the remainder the immediate oper-
and or an operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has:

1. 32-bit local address bus and a 16-bit local data bus, or

2. 16-bit local address bus and a 16-bit local data bus.
c¢. How many bits are needed for the program counter and the instruction register?

Consider a hypothetical microprocessor generating a 16-bit address (for example,
assume that the program counter and the address registers are 16 bits wide) and hav-
ing a 16-bit data bus.

a. What is the maximum memory address space that the processor can access directly
if it is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access directly
if it is connected to an “8-bit memory”?

c. What architectural features will allow this microprocessor to access a separate
“I/O space”?

d. If an input and an output instruction can specify an 8-bit /O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across the
bus that this microprocessor can sustain, in bytes/sec? To increase its performance,
would it be better to make its external data bus 32 bits or to double the external clock
frequency supplied to the microprocessor? State any other assumptions you make,
and explain. Hint: Determine the number of bytes that can be transferred per bus
cycle.

Consider a computer system that contains an I/O module controlling a simple key-
board/printer teletype. The following registers are contained in the processor and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit

IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled

by the I/O module. The teletype is able to encode an alphanumeric symbol to an 8-bit

word and decode an 8-bit word into an alphanumeric symbol.

a. Describe how the processor, using the first four registers listed in this problem, can
achieve I/O with the teletype.

b. Describe how the function can be performed more efficiently by also
employing IEN.

Consider two microprocessors having 8- and 16-bit-wide external data buses, respec-

tively. The two processors are identical otherwise and their bus cycles take just as long.

a. Suppose all instructions and operands are two bytes long. By what factor do the
maximum data transfer rates differ?

b. Repeat assuming that half of the operands and instructions are one byte long.

Figure 3.26 indicates a distributed arbitration scheme that can be used with an obso-

lete bus scheme known as Multibus 1. Agents are daisy-chained physically in priority

order. The left-most agent in the diagram receives a constant bus priority in (BPRN)

signal indicating that no higher-priority agent desires the bus. If the agent does not

require the bus, it asserts its bus priority out (BPRO) line. At the beginning of a clock

118 CHAPTER3/ATOP-LEVELVIEW OFCOMPUTER FUNCTIONANDINTER CONNECTION

Bus

terminator

Figure 3.26

| N

Bus
terminator

BPRN BPRO BPRN BPRO BPRN BPRO
(highest priority) (lowest priority)

Master 1 Master 2 Master 3

39

3.10

311

312

Multibus I Distributed Arbitration

cycle, any agent can request control of the bus by lowering its BPRO line. This lowers
the BPRN line of the next agent in the chain, which is in turn required to lower its
BPRO line. Thus, the signal is propagated the length of the chain. At the end of this
chain reaction, there should be only one agent whose BPRN is asserted and whose
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not
busy (BUSY inactive), the agent that has priority may seize control of the bus by
asserting the BUSY line.

It takes a certain amount of time for the BPR signal to propagate from the
highest-priority agent to the lowest. Must this time be less than the clock cycle? Explain.

The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI
device (i.e., processor, memory, I/O module) has a unique priority and is assigned a
unique transfer request (TR) line. The SBI has 16 such lines (TR0, TR1, . . ., TR15),
with TRO having the highest priority. When a device wants to use the bus, it places a
reservation for a future time slot by asserting its TR line during the current time slot.
At the end of the current time slot, each device with a pending reservation examines
the TR lines; the highest-priority device with a reservation uses the next time slot.
A maximum of 17 devices can be attached to the bus. The device with priority

16 has no TR line. Why not?

On the VAX SBI, the lowest-priority device usually has the lowest average wait time.
For this reason, the processor is usually given the lowest priority on the SBI. Why
does the priority 16 device usually have the lowest average wait time? Under what
circumstances would this not be true?

For a synchronous read operation (Figure 3.18), the memory module must place the

data on the bus sufficiently ahead of the falling edge of the Read signal to allow for

signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read

signal begins to fall in the middle of the second half of 75.

a. Determine the length of the memory read instruction cycle.

b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the
settling of data lines.

Consider a microprocessor that has a memory read timing as shown in Figure 3.18.
After some analysis, a designer determines that the memory falls short of providing
read data on time by about 180 ns.

a. How many wait states (clock cycles) need to be inserted for proper system opera-
tion if the bus clocking rate is 8§ MHz?

b. To enforce the wait states, a Ready status line is employed. Once the processor
has issued a Read command, it must wait until the Ready line is asserted before
attempting to read data. At what time interval must we keep the Ready line low in
order to force the processor to insert the required number of wait states?

3.13

3.14

3.15

3.16

3.17

3.18

3.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 119

A microprocessor has a memory write timing as shown in Figure 3.18. Its manufac-

turer specifies that the width of the Write signal can be determined by 7—50, where T

is the clock period in ns.

a. What width should we expect for the Write signal if bus clocking rate is S MHz?

b. The data sheet for the microprocessor specifies that the data remain valid for 20 ns
after the falling edge of the Write signal. What is the total duration of valid data
presentation to memory?

c¢. How many wait states should we insert if memory requires valid data presentation
for at least 190 ns?

A microprocessor has an increment memory direct instruction, which adds 1 to the

value in a memory location. The instruction has five stages: fetch opcode (four bus

clock cycles), fetch operand address (three cycles), fetch operand (three cycles), add 1

to operand (three cycles), and store operand (three cycles).

a. By what amount (in percent) will the duration of the instruction increase if we have
to insert two bus wait states in each memory read and memory write operation?

b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

The Intel 8088 microprocessor has a read bus timing similar to that of Figure 3.18, but
requires four processor clock cycles. The valid data is on the bus for an amount of time
that extends into the fourth processor clock cycle. Assume a processor clock rate of
8 MHz.

a. What is the maximum data transfer rate?

b. Repeat, but assume the need to insert one wait state per byte transferred.

The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086
uses a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order
byte has an even address. However, the 8086 allows both even- and odd-aligned word
operands. If an odd-aligned word is referenced, two memory cycles, each consisting of
four bus cycles, are required to transfer the word. Consider an instruction on the 8086
that involves two 16-bit operands. How long does it take to fetch the operands? Give
the range of possible answers. Assume a clocking rate of 4 MHz and no wait states.

Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a
16-bit microprocessor. Assume that, on average, 20% of the operands and instruc-
tions are 32 bits long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate
the improvement achieved when fetching instructions and operands with the 32-bit
MiCroprocessor.

The microprocessor of Problem 3.14 initiates the fetch operand stage of the incre-
ment memory direct instruction at the same time that a keyboard actives an interrupt
request line. After how long does the processor enter the interrupt processing cycle?
Assume a bus clocking rate of 10 MHz.

P D

CHAPTER |

CACHE MEMORY

4.1 Computer Memory System Overview
Characteristics of Memory Systems
The Memory Hierarchy

4.2 Cache Memory Principles

4.3 Elements of Cache Design
Cache Addresses
Cache Size
Mapping Function
Replacement Algorithms
Write Policy
Line Size
Number of Caches

4.4 Pentium 4 Cache Organization
4.5 Key Terms, Review Questions, and Problems

Appendix 4A Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

120

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 121

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Present an overview of the main characteristics of computer memory systems
and the use of a memory hierarchy.

@ Describe the basic concepts and intent of cache memory.

@ Discuss the key elements of cache design.

@ Distinguish among direct mapping, associative mapping, and set-associative
mapping.

@ Explain the reasons for using multiple levels of cache.

@ Understand the performance implications of multiple levels of memory.

Although seemingly simple in concept, computer memory exhibits perhaps the wid-
est range of type, technology, organization, performance, and cost of any feature
of a computer system. No single technology is optimal in satisfying the memory
requirements for a computer system. As a consequence, the typical computer system
is equipped with a hierarchy of memory subsystems, some internal to the system
(directly accessible by the processor) and some external (accessible by the processor
via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6
is devoted to external memory. To begin, the first section examines key character-
istics of computer memories. The remainder of the chapter examines an essential
element of all modern computer systems: cache memory.

4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal or exter-
nal to the computer. Internal memory is often equated with main memory, but there
are other forms of internal memory. The processor requires its own local memory,
in the form of registers (e.g., see Figure 2.3). Further, as we will see, the control unit
portion of the processor may also require its own internal memory. We will defer
discussion of these latter two types of internal memory to later chapters. Cache is
another form of internal memory. External memory consists of peripheral storage
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this
is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in
terms of bytes.

122 CHAPTER 4 / CACHE MEMORY

Table 4.1 Key Characteristics of Computer Memory Systems

Location Performance
Internal (e.g., processor registers, cache, main Access time
memory) Cycle time
External (e.g., optical disks, magnetic Transfer rate
disks, tapes) Physical Type
Capacity Semiconductor
Number of words Magnetic
Number of bytes Optical
Unit of Transfer Magneto-optical
Word Physical Characteristics
Block Volatile/nonvolatile
Access Method Erasable/nonerasable
Sequential Organization
Direct Memory modules
Random
Associative

A related concept is the unit of transfer. For internal memory, the unit
of transfer is equal to the number of electrical lines into and out of the memory
module. This may be equal to the word length, but is often larger, such as 64, 128, or
256 bits. To clarify this point, consider three related concepts for internal memory:

® Word: The “natural” unit of organization of memory. The size of a word is typically
equal to the number of bits used to represent an integer and to the instruction
length. Unfortunately, there are many exceptions. For example, the CRAY C90
(an older model CRAY supercomputer) has a 64-bit word length but uses a 46-bit
integer representation. The Intel x86 architecture has a wide variety of instruction
lengths, expressed as multiples of bytes, and a word size of 32 bits.

m Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the byte level. In any case, the rela-
tionship between the length in bits A of an address and the number N of
addressable units is 24 = N.

= Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or
an addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of
data. These include the following:

m Sequential access: Memory is organized into units of data, called records.
Access must be made in a specific linear sequence. Stored addressing infor-
mation is used to separate records and assist in the retrieval process. A shared
read-write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record.
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access.

= Direct access: As with sequential access, direct access involves a shared
read—write mechanism. However, individual blocks or records have a unique

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 123

address based on physical location. Access is accomplished by direct access
to reach a general vicinity plus sequential searching, counting, or waiting to
reach the final location. Again, access time is variable. Disk units, discussed in
Chapter 6, are direct access.

= Random access: Each addressable location in memory has a unique, physically
wired-in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main memory
and some cache systems are random access.

m Associative: This is a random access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a
portion of its contents rather than its address. As with ordinary random-access
memory, each location has its own addressing mechanism, and retrieval time
is constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user’s point of view, the two most important characteristics of memory are
capacity and performance. Three performance parameters are used:

m Access time (latency): For random-access memory, this is the time it takes
to perform a read or write operation, that is, the time from the instant that
an address is presented to the memory to the instant that data have been
stored or made available for use. For non-random-access memory, access
time is the time it takes to position the read—write mechanism at the desired
location.

= Memory cycle time: This concept is primarily applied to random-access memory
and consists of the access time plus any additional time required before a second
access can commence. This additional time may be required for transients to die
out on signal lines or to regenerate data if they are read destructively. Note that
memory cycle time is concerned with the system bus, not the processor.

= Transfer rate: This is the rate at which data can be transferred into or out of
a memory unit. For random-access memorys, it is equal to 1/(cycle time). For
non-random-access memory, the following relationship holds:

n
T,=T4 +— 41
n A R ()

where
T, = Average time to read or write n bits
T, = Average access time
n = Number of bits
R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and
tape, and optical and magneto-optical.

124 CHAPTER 4 / CACHE MEMORY

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched
off. In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion. Magnetic-surface memories are nonvolatile. Semiconductor memory (memory
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory
cannot be altered, except by destroying the storage unit. Semiconductor memory of
this type is known as read-only memory (ROM). Of necessity, a practical nonerasa-
ble memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. In this con-
text, organization refers to the physical arrangement of bits to form words. The
obvious arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

m Faster access time, greater cost per bit;
m Greater capacity, smaller cost per bit;
m Greater capacity, slower access time.

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the cap-
acity is needed and because the cost per bit is low. However, to meet performance
requirements, the designer needs to use expensive, relatively lower-capacity mem-
ories with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit;

b. Increasing capacity;

c. Increasing access time;

d. Decreasing frequency of access of the memory by the processor.

Thus, smaller, more expensive, faster memories are supplemented by
larger, cheaper, slower memories. The key to the success of this organization

4.1 / COMPUTER. MEMORY SYSTEM OVERVIEW 125

Figure 4.1 The Memory Hierarchy

is item (d): decreasing frequency of access. We examine this concept in greater
detail when we discuss the cache, later in this chapter, and virtual memory in
Chapter 8. A brief explanation is provided at this point.

The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENNG68]. During the course of execution of a program, memory ref-
erences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. Simi-
larly, operations on tables and arrays involve access to a clustered set of data words.
Over a long period of time, the clusters in use change, but over a short period of
time, the processor is primarily working with fixed clusters of memory references.

126 CHAPTER 4 / CACHE MEMORY

Suppose that the processor has access to two levels of memory. Level 1
contains 1000 words and has an access time of 0.01 us; level 2 contains 100,000 words and
has an access time of 0.1 ws. Assume that if a word to be accessed is in level 1, then the
processor accesses it directly. If it is in level 2, then the word is first transferred to level 1
and then accessed by the processor. For simplicity, we ignore the time required for the pro-
cessor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the general
shape of the curve that covers this situation. The figure shows the average access time to
a two-level memory as a function of the hit ratio H, where H is defined as the fraction of
all memory accesses that are found in the faster memory (e.g., the cache), T} is the access
time to level 1, and 75 is the access time to level 2.1 As can be seen, for high percentages
of level 1 access, the average total access time is much closer to that of level 1 than that
of level 2.

In our example, suppose 95% of the memory accesses are found in level 1. Then the
average time to access a word can be expressed as

(0.95)(0.01 s) + (0.05)(0.01 s + 0.1 us) = 0.0095 + 0.0055 = 0.015 s

The average access time is much closer to 0.01 ws than to 0.1 us, as desired.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2

T, + T,

Average access time

Fraction of accesses involving only level 1 (hit ratio)

Figure 4.2 Performance of Accesses Involving only
Level 1 (hit ratio)

'If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 127

memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have
to be swapped back to level 2 to make room for a new cluster coming in to level 1.
On average, however, most references will be to instructions and data contained in
level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Main memory is the principal internal memory system of the
computer. Each location in main memory has a unique address. Main memory is usu-
ally extended with a higher-speed, smaller cache. The cache is not usually visible to
the programmer or, indeed, to the processor. It is a device for staging the movement
of data between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape,
and optical storage. External, nonvolatile memory is also referred to as secondary
memory or auxiliary memory. These are used to store program and data files and
are usually visible to the programmer only in terms of files and records, as opposed
to individual bytes or words. Disk is also used to provide an extension to main mem-
ory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as expanded storage.
This uses a semiconductor technology that is slower and less expensive than that
of main memory. Strictly speaking, this memory does not fit into the hierarchy but
is a side branch: Data can be moved between main memory and expanded storage
but not between expanded storage and external memory. Other forms of secondary
memory include optical and magneto-optical disks. Finally, additional levels can be
effectively added to the hierarchy in software. A portion of main memory can be
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache,? improves performance in two ways:

m Disk writes are clustered. Instead of many small transfers of data, we have
a few large transfers of data. This improves disk performance and minimizes
processor involvement.

m Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory
structures.

2 Disk cache is generally a purely software technique and is not examined in this book. See [STAL15] for
a discussion.

128 CHAPTER 4 / CACHE MEMORY

4.2 CACHE MEMORY PRINCIPLES

Cache memory is designed to combine the memory access time of expensive, high-
speed memory combined with the large memory size of less expensive, lower-speed
memory. The concept is illustrated in Figure 4.3a. There is a relatively large and slow
main memory together with a smaller, faster cache memory. The cache contains a
copy of portions of main memory. When the processor attempts to read a word of
memory, a check is made to determine if the word is in the cache. If so, the word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of words, is read into the cache and then the word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/main-memory system. Main mem-
ory consists of up to 2" addressable words, with each word having a unique n-bit
address. For mapping purposes, this memory is considered to consist of a number
of fixed-length blocks of K words each. That is, there are M = 2"/K blocks in main
memory. The cache consists of m blocks, called lines.’ Each line contains K words,

Block transfer

Word transfer

CPU Cache Main memory
Fast Slow
(a) Single cache
CPU Level 1 |+—>| Level 2 Level 3 Main
(L1) cache|{«—(L2) cache (L3) cache memory
Fastest Fast
Less Slow
fast

(b) Three-level cache organization

Figure 4.3 Cache and Main Memory

*In referring to the basic unit of the cache, the term line is used, rather than the term block, for two rea-
sons: (1) to avoid confusion with a main memory block, which contains the same number of data words as
a cache line; and (2) because a cache line includes not only K words of data, just as a main memory block,
but also includes tag and control bits.

4.2 / CACHE MEMORY PRINCIPLES 129

Line Memory
number Tag Block address
0 0
1 1
2 2 Block 0
3 (K words)
Cc-1
Block length
(K words) .
(a) Cache :
Block M-1
2"-1
Word
length

(b) Main memory

Figure 4.4 Cache/Main Memory Structure

plus a tag of a few bits. Each line also includes control bits (not shown), such as a
bit to indicate whether the line has been modified since being loaded into the cache.
The length of a line, not including tag and control bits, is the line size. The line size
may be as small as 32 bits, with each “word” being a single byte; in this case the
line size is 4 bytes. The number of lines is considerably less than the number of
main memory blocks (m << M). At any time, some subset of the blocks of mem-
ory resides in lines in the cache. If a word in a block of memory is read, that block
is transferred to one of the lines of the cache. Because there are more blocks than
lines, an individual line cannot be uniquely and permanently dedicated to a par-
ticular block. Thus, each line includes a tag that identifies which particular block is
currently being stored. The tag is usually a portion of the main memory address, as
described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read
address (RA) of a word to be read. If the word is contained in the cache, it is deliv-
ered to the processor. Otherwise, the block containing that word is loaded into the
cache, and the word is delivered to the processor. Figure 4.5 shows these last two
operations occurring in parallel and reflects the organization shown in Figure 4.6,
which is typical of contemporary cache organizations. In this organization, the cache
connects to the processor via data, control, and address lines. The data and address
lines also attach to data and address buffers, which attach to a system bus from

130 CHAPTER 4 / CACHE MEMORY

START

Receive address
RA from CPU

Is block
containing RA
in cache?

No Access main
memory for block
containing RA

Fetch RA word Allocate cache
and deliver line for main
to CPU memory block

Load main
memory block
into cache line

Deliver RA word
to CPU

(DONE r

Figure 4.5 Cache Read Operation

which main memory is reached. When a cache hit occurs, the data and address buff-
ers are disabled and communication is only between processor and cache, with no
system bus traffic. When a cache miss occurs, the desired address is loaded onto the
system bus and the data are returned through the data buffer to both the cache and
the processor. In other organizations, the cache is physically interposed between
the processor and the main memory for all data, address, and control lines. In this
latter case, for a cache miss, the desired word is first read into the cache and then
transferred from cache to processor.

A discussion of the performance parameters related to cache use is contained
in Appendix 4A.

4.3 / ELEMENTS OF CACHE DESIGN 131

Address
>

Address
buffer

Control Control
Processor Cache

System bus

Data
buffer

Data <]

Figure 4.6 Typical Cache Organization

4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some typi-
cal results. We occasionally refer to the use of caches in high-performance computing
(HPC). HPC deals with supercomputers and their software, especially for scientific
applications that involve large amounts of data, vector and matrix computation, and the
use of parallel algorithms. Cache design for HPC is quite different than for other hard-
ware platforms and applications. Indeed, many researchers have found that HPC appli-
cations perform poorly on computer architectures that employ caches [BAIL93]. Other
researchers have since shown that a cache hierarchy can be useful in improving perfor-
mance if the application software is tuned to exploit the cache [WANG99, PRES01].4

Although there are a large number of cache implementations, there are a few
basic design elements that serve to classify and differentiate cache architectures.
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without
regard to the amount of main memory physically available. When virtual memory is
used, the address fields of machine instructions contain virtual addresses. For reads

“For a general discussion of HPC, see [DOWD9S].

132 CHAPTER 4 / CACHE MEMORY

Table 4.2 Elements of Cache Design

Cache Addresses Write Policy
Logical Write through
Physical Write back

Cache Size Line Size

Mapping Function Number of Caches
Direct Single or two level
Associative Unified or split
Set associative

Replacement Algorithm
Least recently used (LRU)

First in first out (FIFO)
Least frequently used (LFU)
Random

to and writes from main memory, a hardware memory management unit (MMU)
translates each virtual address into a physical address in main memory.

When virtual addresses are used, the system designer may choose to place the
cache between the processor and the MMU or between the MMU and main mem-
ory (Figure 4.7). A logical cache, also known as a virtual cache, stores data using

Logical address Physical address
g MMU L
Main
memor
Cache emory
Data
(a) Logical cache
Logical address Physical address
g MMU y
Main
memor
Cache emory
Data
(b) Physical cache

Figure 4.7 Logical and Physical Caches

4.3 / ELEMENTS OF CACHE DESIGN 133

virtual addresses. The processor accesses the cache directly, without going through
the MMU. A physical cache stores data using main memory physical addresses.

One obvious advantage of the logical cache is that cache access speed is faster
than for a physical cache, because the cache can respond before the MMU performs
an address translation. The disadvantage has to do with the fact that most virtual
memory systems supply each application with the same virtual memory address
space. That is, each application sees a virtual memory that starts at address 0. Thus,
the same virtual address in two different applications refers to two different phys-
ical addresses. The cache memory must therefore be completely flushed with each
application context switch, or extra bits must be added to each line of the cache to
identify which virtual address space this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the
scope of this book. For a more in-depth discussion, see [CEKL97] and [JACOO8].

Cache Size

The second item in Table 4.2, cache size, has already been discussed. We would
like the size of the cache to be small enough so that the overall average cost per
bit is close to that of main memory alone and large enough so that the overall
average access time is close to that of the cache alone. There are several other
motivations for minimizing cache size. The larger the cache, the larger the num-
ber of gates involved in addressing the cache. The result is that large caches tend
to be slightly slower than small ones—even when built with the same integrated
circuit technology and put in the same place on chip and circuit board. The avail-
able chip and board area also limits cache size. Because the performance of the
cache is very sensitive to the nature of the workload, it is impossible to arrive at
a single “optimum” cache size. Table 4.3 lists the cache sizes of some current and
past processors.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is
needed for mapping main memory blocks into cache lines. Further, a means is
needed for determining which main memory block currently occupies a cache
line. The choice of the mapping function dictates how the cache is organized.
Three techniques can be used: direct, associative, and set-associative. We examine
each of these in turn. In each case, we look at the general structure and then a
specific example.

I D, GNP WY For all three cases, the example includes the following elements:

® The cache can hold 64 kB.

® Data are transferred between main memory and the cache in blocks of 4 bytes
each. This means that the cache is organized as 16K = 2'# lines of 4 bytes each.

® The main memory consists of 16 MB, with each byte directly addressable by a
24-bit address (22* = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.

134 CHAPTER 4 / CACHE MEMORY

Table 4.3 Cache Sizes of Some Processors

Year of
Processor Type Introduction | L1 Cache® L2 Cache L3 Cache
IBM 360/85 Mainframe 1968 16-32 kB — —
PDP-11/70 Minicomputer 1975 1kB — —
VAX 11/780 Minicomputer 1978 16 kB — —
IBM 3033 Mainframe 1978 64 kB — —
IBM 3090 Mainframe 1985 128-256 kB — —
Intel 80486 PC 1989 8 kB — —
Pentium PC 1993 8 kB/8 kB 256-512 kB —
PowerPC 601 PC 1993 32kB — —
PowerPC 620 PC 1996 32 kB/32 kB — —
PowerPC G4 PC/server 1999 32 kB/32 kB 256 kB to 1 MB 2MB
IBM S/390 G6 Mainframe 1999 256 kB 8 MB —
Pentium 4 PClserver 2000 8 kB/8 kB 256 kB —
IBM SP High-end server/ 2000 64 kB/32 kB 8 MB -
supercomputer
CRAY MTAP Supercomputer 2000 8 kB 2MB —
Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB
Itanium 2 PC/server 2002 32kB 256 kB 6 MB
IBM POWERS5 High-end server 2003 64 kB 1.9 MB 36 MB
CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1 MB —
IBM POWERG6 PC/server 2007 64 kB/64 kB 4 MB 32 MB
IBM z10 Mainframe 2008 64 kB/128 kB 3MB 24-48 MB
Intel Core i7 EE990 | Workstation/ 2011 6 % 32 kB/ 15 MB 12 MB
server 32 kB
IBM zEnterprise 196 Masi:rfi;‘?e/ 2011 24 12861‘:];‘3/ 24 X 1.5 MB 129421‘13?3&1

Notes: Two values separated by a slash refer to instruction and data caches. ® Both caches are instruction only;

no data caches.

DIRECT MAPPING The simplest technique, known as direct mapping, maps each block
of main memory into only one possible cache line. The mapping is expressed as

where

i = cache line number

i = jmodulo m

j = main memory block number

m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory. Each
block of main memory maps into one unique line of the cache. The next m blocks

4.3 / ELEMENTS OF CACHE DESIGN 135

b t b

B ———

B, Ly
L] L] o 3
[] L] L] é
. ° ° 8
Bm_l Lm—l
First m blocks of Cache memory
main memory
(equal to size of cache) b = length of block in bit:

t = length of tag in bits
(a) Direct mapping

t b
Ly
L) °
L[] L]
One block of ° °
main memory
Lm—l

Cache memory
(b) Associative mapping

Figure 4.8 Mapping from Main Memory to Cache: Direct and Associative

of main memory map into the cache in the same fashion; that is, block B,, of main
memory maps into line L, of cache, block B,,;; maps into line L, and so on.

The mapping function is easily implemented using the main memory address.
Figure 4.9 illustrates the general mechanism. For purposes of cache access, each
main memory address can be viewed as consisting of three fields. The least signifi-
cant w bits identify a unique word or byte within a block of main memory; in most
contemporary machines, the address is at the byte level. The remaining s bits specify
one of the 2’ blocks of main memory. The cache logic interprets these s bits as a tag
of s — rbits (most significant portion) and a line field of r bits. This latter field iden-
tifies one of the m = 2" lines of the cache. To summarize,

m Address length = (s + w) bits
= Number of addressable units = 25" words or bytes
m Block size = line size = 2" words or bytes

2s+w
Number of blocks in main memory = o 2°
Number of lines in cache = m = 2"
Size of cache = 2™ words or bytes
Size of tag = (s — r) bits

136 CHAPTER 4 / CACHE MEMORY

s+w,
7
Cache Main memory
Memory address Tag Data W0
[Tag] Line [Word | [W1 Bo
w2
s-rk ry wh Lo W3
/ / /] | |
| | !
I I
s=r e R
: ° | | . |
| | | :
: : !
~ N
X W4,
X w L; ® Wit
Compare w () B;
p 4 W(4j+2) J
A | | W(4j+3)
(Hit in cache) | ® I A
1 if match e | loe
0 if no match | I e !
° | | |
| | . |
L
Lm—l
0 if match
1if no match (Miss in cache)

Figure 4.9 Direct-Mapping Cache Organization

| DN 1NN WEY Figure 4.10 shows our example system using direct mapping.5 In the example,
m = 16K = 2'*and i = j modulo 2!*. The mapping becomes

Cache Line Starting Memory Address of Block

0 000000, 010000, ..., FF0000
1 000004, 010004, ..., FF0004
o1 _ 1 O00FFFC, 01FFFC, ..., FFFFFC

Note that no two blocks that map into the same line number have the same tag number. Thus,
blocks with starting addresses 000000, 010000, ..., FFO000 have tag numbers 00,01, ..., FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is presented
with a 24-bit address. The 14-bit line number is used as an index into the cache to access a particular
line. If the 8-bit tag number matches the tag number currently stored in that line, then the 2-bit word
number is used to select one of the 4 bytes in that line. Otherwise, the 22-bit tag-plus-line field is
used to fetch a block from main memory. The actual address that is used for the fetch is the 22-bit
tag-plus-line concatenated with two 0 bits, so that 4 bytes are fetched starting on a block boundary.

3In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9
for a basic refresher on number systems (decimal, binary, hexadecimal).

4.3 / ELEMENTS OF CACHE DESIGN 137

Main memory address (binary)

——

Tag

Ta, Line+Word
(hex) a8 Data
00 6@65@3@@0000@@@,@3@ 13579246 ——-- .
00 000000000000000000000100 !
|
|
e e |
|
|
|
00 00000000T 11111 ITI1ILI000 |
00 000000001111111111111100 I
° |
. : Line
o o o | Tag Data number
16 10001,01100000000000000000 [77777777 L —— 00 [13579246 | 0000
16 000101100000000000000100 | 11235813 —————————— 16 | 11235813 | 0001
16 [00070110001100I11001L1100 | FEDCBA98 -—————————— 16 | FEDCBA98 | OCE7
fm——— 1 FF | 11223344 | 3FFE
16 000T0I10IITIATIITI11T{100 [12345678 | ———— Lo 16 | 12345678 | 3FFF
: | e
. | 8bits 32 bits
FF I .
FF : 16K line cache
|
|
N ~No |
|
|
|
e |
FF TIITTTIIIIITITITI1III000 | 11223344 ~———— -
FF TI1111131111111111131100 | 24682468

Note: Memory address values are
32 bits in binary represe.ntatlon;)
other values are in hexadecimal.
16-Mb main memory

Tag Line Word
Main memory address = | |

8 bits 14 bits 2 bits

Figure 4.10 Direct Mapping Example

The effect of this mapping is that blocks of main memory are assigned to lines
of the cache as follows:

Cache line Main memory blocks assigned

0 0,m2m, ... 2> —m

1 Ilm+12m+1,... .2 —m+1
m—1 m—12m—-13m—-1,...,2° -1

Thus, the use of a portion of the address as a line number provides a unique
mapping of each block of main memory into the cache. When a block is actually

138 CHAPTER 4 / CACHE MEMORY

read into its assigned line, it is necessary to tag the data to distinguish it from other
blocks that can fit into that line. The most significant s — r bits serve this purpose.

The direct mapping technique is simple and inexpensive to implement. Its
main disadvantage is that there is a fixed cache location for any given block. Thus,
if a program happens to reference words repeatedly from two different blocks that
map into the same line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing).

\Q\gractrve 5,
3&
=

Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded in
case it is needed again. Since the discarded data has already been fetched, it can be
used again at a small cost. Such recycling is possible using a victim cache. Victim cache
was originally proposed as an approach to reduce the conflict misses of direct mapped
caches without affecting its fast access time. Victim cache is a fully associative cache,
whose size is typically 4 to 16 cache lines, residing between a direct mapped L1 cache
and the next level of memory. This concept is explored in Appendix F.

ASSOCIATIVE MAPPING Associative mapping overcomes the disadvantage of direct
mapping by permitting each main memory block to be loaded into any line of the
cache (Figure 4.8b). In this case, the cache control logic interprets a memory address
simply as a Tag and a Word field. The Tag field uniquely identifies a block of main
memory. To determine whether a block is in the cache, the cache control logic must
simultaneously examine every line’s tag for a match. Figure 4.11 illustrates the logic.

S+w
Cache Main memory
Memory address Tag Data WO
| Tag [Word] | W1 B
L W2 0
s 0 w3
‘ ! l l
w rC | |
! ° | I ° I
l I e | i LI
| I
| |
>—r L o |
¥ X W4
W(4j+1)
Compare | : } > W(4j+2) B;
| 1 1 W@Ej+3)
| (Hit in cache) I d ! I I
1 if match | I
0 if no match s | P
Lm—l } ° }
| |
0 if match e
M (Miss in cache)

Figure 4.11 Fully Associative Cache Organization

4.3 / ELEMENTS OF CACHE DESIGN 139

Figure 4.12 shows our example using associative mapping. A main
memory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be
stored with the 32-bit block of data for each line in the cache. Note that it is the leftmost
(most significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal
address 16339C has the 22-bit tag 058CE7. This is easily seen in binary notation:

Memory address 0001 0110 0011 0011 1001 1100 (binary)
1 6 3 3 9 C (hex)

Tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary)
0 5 8 @© g 7 (hex)

Main memory address (binary)

Tag (hex) E’E W(.)rd Data
000000 000000000000000000000000 [13579246 |~~~
000001 000000000000000000000100! |
|
|
~_ ~ |
|
|
|
|
|
|
|
| Line
: Tag Data numbel
| | 3FFFFE| 11223344 | 0000
Ir——ll-——.——— 058CE7 | FEDCBA98 | 0001
e e ¥ ~ | |
058CE6 00010II0UOITI0ITIG0IT00 P
058CE7 10001,01100011,001110011100 | FEDCBA98 |- —- | : e N~
058CE8 [0001,01100011001110100000 : |
N N |
r——+--1-—{3FFFFD| 33333333 | 3FFD
1 ———1-——|000000| 13579246 | 3FFE
: Ir--JI--- 3FFFFF | 24682468 | 3FFF
| | |
| ! | 22 bits 32 bits
~ : I : 16K line cache
|
| | |
bl
| ! |
~ N~ | |
| ! |
S A [
3FFFFD %111 1113 ITI131711301I00 | 33333333 -~ | |
3FFFFE 0111101110111 1111111110001 | 11223344 -———- T .
3FFFFF M11111111111111111111100 | 24682468 |- ———- 4 Note: Memory address values are
in binary representation;
32 bits other values are in hexadecimal.
16-Mb main memory
Tag Word
Main memory address = | |
22 bits 2 bits

Figure 4.12 Associative Mapping Example

140 CHAPTER 4 / CACHE MEMORY

Note that no field in the address corresponds to the line number, so that the number
of lines in the cache is not determined by the address format. To summarize,

m Address length = (s + w) bits
= Number of addressable units = 2" words or bytes
m Block size = line size = 2" words or bytes

23+w

Number of blocks in main memory = T 2’
Number of lines in cache = undetermined

Size of tag = s bits

With associative mapping, there is flexibility as to which block to replace when
a new block is read into the cache. Replacement algorithms, discussed later in this
section, are designed to maximize the hit ratio. The principal disadvantage of asso-
ciative mapping is the complex circuitry required to examine the tags of all cache
lines in parallel. gede s,

§Q@
S

Cache Time Analysis Simulator

SET-ASSOCIATIVE MAPPING Set-associative mapping is a compromise that
exhibits the strengths of both the direct and associative approaches while reducing
their disadvantages.

In this case, the cache consists of number sets, each of which consists of a num-
ber of lines. The relationships are

m=v Xk

i = jmodulo v

where
i = cache set number
j = main memory block number
m = number of lines in the cache
v = number of sets
k = number of lines in each set

This is referred to as k-way set-associative mapping. With set-associative map-
ping, block B; can be mapped into any of the lines of set j. Figure 4.13a illustrates
this mapping for the first v blocks of main memory. As with associative mapping,
each word maps into multiple cache lines. For set-associative mapping, each word
maps into all the cache lines in a specific set, so that main memory block By maps
into set 0, and so on. Thus, the set-associative cache can be physically implemented
as v associative caches. It is also possible to implement the set-associative cache as
k direct mapping caches, as shown in Figure 4.13b. Each direct-mapped cache is
referred to as a way, consisting of v lines. The first v lines of main memory are direct
mapped into the v lines of each way; the next group of v lines of main memory are
similarly mapped, and so on. The direct-mapped implementation is typically used

Bv—l

(equal to number of sets)

4.3 / ELEMENTS OF CACHE DESIGN

By Ly
° 1)
. : g
. ° =
. © 2
L
Cache memory-set 0
By_1 N
First v blocks of
main memory °
(equal to number of sets) :
L]
.
Cache memory-set v—1
(a) v associative—mapped caches
777
/4 S s —— One
: [2t
L] L] L] L] L] L] set
L] L] L] L] e o o L] L]
L] L] L] L] L] L]
AN
A\
NN\

L v-1
Cache memory—way k

(b) k direct-mapped caches

First v blocks of \ Cache memory—way 1
main memory

Figure 4.13 Mapping from Main Memory to Cache: k-Way Set Associative

141

v lines

for small degrees of associativity (small values of k) while the associative-mapped

implementation is typically used for higher degrees of associativity [JACOO0S].

For set-associative mapping, the cache control logic interprets a memory
address as three fields: Tag, Set, and Word. The d set bits specify one of v = 29 sets.
The s bits of the Tag and Set fields specify one of the 2° blocks of main memory.
Figure 4.14 illustrates the cache control logic. With fully associative mapping, the
tag in a memory address is quite large and must be compared to the tag of every line
in the cache. With k-way set-associative mapping, the tag in a memory address is
much smaller and is only compared to the k tags within a single set. To summarize,

m Address length = (s + w) bits
® Number of addressable units = 2°" words or bytes

142 CHAPTER 4 / CACHE MEMORY

s+w
Cache Main memory
Memory address Tag Data B
0
[Tag] Set | word F,
B
s—d d w |_ F, !
| |
I I !
| ° : Set 0 : :
: ° : | b |
|
e ! L
| ° !
s—d = Fiy | :
1 | |
|
(I— F; s+w !
—FF~— B;
cee | ° |
2 ! ° | | |
(X) ' | |
Compare £ ﬁ L Frii Set 1 : ° :
| | ° !
| |
] | | L e !
|
(Hit in cache) (. | I !
1if match Lo)
0 if no match | 1
! l
! I
0 if match L !
1if no match (Miss in cache)

Figure 4.14 k-Way Set-Associative Cache Organization

m Block size = line size = 2" words or bytes

2s+w

m Number of blocks in main memory = T 2

= Number of lines inset = k

= Number of sets = v = 2¢

® Number of lines in cache = m = kv = k X 2¢
= Size of cache = k X 297" words or bytes

m Size of tag = (s — d) bits

Figure 4.15 shows our example using set-associative mapping with
two lines in each set, referred to as two-way set-associative. The 13-bit set number iden-
tifies a unique set of two lines within the cache. It also gives the number of the block in
main memory, modulo 2'3. This determines the mapping of blocks into lines. Thus, blocks
000000,008000, ..., FF8000 of main memory map into cache set 0. Any of those blocks can
be loaded into either of the two lines in the set. Note that no two blocks that map into the
same cache set have the same tag number. For a read operation, the 13-bit set number is
used to determine which set of two lines is to be examined. Both lines in the set are exam-
ined for a match with the tag number of the address to be accessed.

1348

Tag
(hex)

000
000

000
000

02C
02c

02c

02c

1FF
1FF

1FF
1FF

Figure 4.15

Main memory address (binary)

——

Tag

Set + Word

A

e R e e O 0 T 0

Data

13579246

77777777
11235813

N~ N

FEDCBA98

_ ~

Main memory address =

12345678

11223344

24682468

Tag Set Word
9 bits 13 bits 2 bits
Set |
Tag Data number Tag Data !
e 000] 13579246 | 0000 [02C] 77777777 |-~
02C| 11235813 | 0001
02C| FEDCBA98 | OCE7
i———|1FF| 11223344 | 1FFE
02C)| 12345678 | 1FFF |1FF| 24682468 |- -
-~ > B ———
9 bits 32 bits 9 bits 32 bits
16K line cache

32 bits

16-Mb main memory

Two-Way Set-Associative Mapping Example

Note: Memory address values are
in binary representation;

other values are in hexadecimal.

144 CHAPTER 4 / CACHE MEMORY

1.0 _
0.9 - 7 [
0.8
0.7
o 0.6 1
£ 0.5
= 04
0.3
0.2
0.1
0.0 - - - = = = - - - -
1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M
Cache size (bytes)
[Direct
[Two-way
= Four-way
[Eight-way
Bl Sixteen-way

Figure 4.16 Varying Associativity over Cache Size

In the extreme case of v = m, k = 1, the set-associative technique reduces to
direct mapping, and for v = 1, k = m, it reduces to associative mapping. The use of
two lines per set (v = m/2, k = 2) is the most common set-associative organization.
It significantly improves the hit ratio over direct mapping. Four-way set associative
(v = m/4, k = 4) makes a modest additional improvement for a relatively small
additional cost [MAYBS84, HILL89]. Further increases in the number of lines per
set have little effect.

Figure 4.16 shows the results of one simulation study of set-associative cache
performance as a function of cache size [GENUO04]. The difference in performance
between direct and two-way set associative is significant up to at least a cache size of
64 kB. Note also that the difference between two-way and four-way at 4 kB is much
less than the difference in going from for 4 kB to 8 kB in cache size. The complexity
of the cache increases in proportion to the associativity, and in this case would not
be justifiable against increasing cache size to 8 or even 16 kB. A final point to note
is that beyond about 32 kB, increase in cache size brings no significant increase in
performance.

The results of Figure 4.16 are based on simulating the execution of a GCC
compiler. Different applications may yield different results. For example, [CANTO1]
reports on the results for cache performance using many of the CPU2000 SPEC
benchmarks. The results of [CANTO1] in comparing hit ratio to cache size follow
the same pattern as Figure 4.16, but the specific values are somewhat different.

\‘\\e(aﬁﬁve &

%
3

Cache Simulator
Multitask Cache Simulator

4.3 / ELEMENTS OF CACHE DESIGN 145

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one of
the existing blocks must be replaced. For direct mapping, there is only one possible
line for any particular block, and no choice is possible. For the associative and set-
associative techniques, a replacement algorithm is needed. To achieve high speed,
such an algorithm must be implemented in hardware. A number of algorithms have
been tried. We mention four of the most common. Probably the most effective is least
recently used (LRU): Replace that block in the set that has been in the cache longest
with no reference to it. For two-way set associative, this is easily implemented. Each
line includes a USE bit. When a line is referenced, its USE bit is set to 1 and the
USE bit of the other line in that set is set to 0. When a block is to be read into the
set, the line whose USE bit is 0 is used. Because we are assuming that more recently
used memory locations are more likely to be referenced, LRU should give the best
hit ratio. LRU is also relatively easy to implement for a fully associative cache. The
cache mechanism maintains a separate list of indexes to all the lines in the cache.
When a line is referenced, it moves to the front of the list. For replacement, the line
at the back of the list is used. Because of its simplicity of implementation, LRU is the
most popular replacement algorithm.

Another possibility is first-in-first-out (FIFO): Replace that block in the set that
has been in the cache longest. FIFO is easily implemented as a round-robin or circu-
lar buffer technique. Still another possibility is least frequently used (LFU): Replace
that block in the set that has experienced the fewest references. LFU could be imple-
mented by associating a counter with each line. A technique not based on usage (i.e.,
not LRU, LFU, FIFO, or some variant) is to pick a line at random from among the
candidate lines. Simulation studies have shown that random replacement provides
only slightly inferior performance to an algorithm based on usage [SMITS82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to
consider. If the old block in the cache has not been altered, then it may be over-
written with a new block without first writing out the old block. If at least one write
operation has been performed on a word in that line of the cache, then main mem-
ory must be updated by writing the line of cache out to the block of memory before
bringing in the new block. A variety of write policies, with performance and eco-
nomic trade-offs, is possible. There are two problems to contend with. First, more
than one device may have access to main memory. For example, an I/O module
may be able to read-write directly to memory. If a word has been altered only in
the cache, then the corresponding memory word is invalid. Further, if the I/O device
has altered main memory, then the cache word is invalid. A more complex problem
occurs when multiple processors are attached to the same bus and each processor
has its own local cache. Then, if a word is altered in one cache, it could conceivably
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write
operations are made to main memory as well as to the cache, ensuring that main
memory is always valid. Any other processor—cache module can monitor traffic to
main memory to maintain consistency within its own cache. The main disadvantage

146 CHAPTER 4 / CACHE MEMORY

of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes.
With write back, updates are made only in the cache. When an update occurs, a
dirty bit, or use bit, associated with the line is set. Then, when a block is replaced, it
is written back to main memory if and only if the dirty bit is set. The problem with
write back is that portions of main memory are invalid, and hence accesses by I/O
modules can be allowed only through the cache. This makes for complex circuitry
and a potential bottleneck. Experience has shown that the percentage of memory
references that are writes is on the order of 15% [SMITS82]. However, for HPC
applications, this number may approach 33% (vector-vector multiplication) and can
go as high as 50% (matrix transposition).

Consider a cache with a line size of 32 bytes and a main memory that
requires 30 ns to transfer a 4-byte word. For any line that is written at least once before
being swapped out of the cache, what is the average number of times that the line must be
written before being swapped out for a write-back cache to be more efficient that a write-
through cache?

For the write-back case, each dirty line is written back once, at swap-out time, taking
8 X 30 = 240 ns. For the write-through case, each update of the line requires that one
word be written out to main memory, taking 30 ns. Therefore, if the average line that gets
written at least once gets written more than 8 times before swap out, then write back is
more efficient.

In a bus organization in which more than one device (typically a processor)
has a cache and main memory is shared, a new problem is introduced. If data in one
cache are altered, this invalidates not only the corresponding word in main memory,
but also that same word in other caches (if any other cache happens to have that
same word). Even if a write-through policy is used, the other caches may contain
invalid data. A system that prevents this problem is said to maintain cache coher-
ency. Possible approaches to cache coherency include the following:

= Bus watching with write through: Each cache controller monitors the address
lines to detect write operations to memory by other bus masters. If another
master writes to a location in shared memory that also resides in the cache
memory, the cache controller invalidates that cache entry. This strategy
depends on the use of a write-through policy by all cache controllers.

= Hardware transparency: Additional hardware is used to ensure that all
updates to main memory via cache are reflected in all caches. Thus, if one pro-
cessor modifies a word in its cache, this update is written to main memory. In
addition, any matching words in other caches are similarly updated.

= Noncacheable memory: Only a portion of main memory is shared by more
than one processor, and this is designated as noncacheable. In such a system,
all accesses to shared memory are cache misses, because the shared memory
is never copied into the cache. The noncacheable memory can be identified
using chip-select logic or high-address bits.

4.3 / ELEMENTS OF CACHE DESIGN 147

Cache coherency is an active field of research. This topic is explored further
in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed
in the cache, not only the desired word but also some number of adjacent words are
retrieved. As the block size increases from very small to larger sizes, the hit ratio
will at first increase because of the principle of locality, which states that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the
block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of
using the newly fetched information becomes less than the probability of reusing the
information that has to be replaced. Two specific effects come into play:

m Larger blocks reduce the number of blocks that fit into a cache. Because each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

m As a block becomes larger, each additional word is farther from the requested
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on
the locality characteristics of a particular program, and no definitive optimum value
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum
[SMIT87, PRZYS88, PRZY90, HANDY8]. For HPC systems, 64- and 128-byte cache
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More
recently, the use of multiple caches has become the norm. Two aspects of this design
issue concern the number of levels of caches and the use of unified versus split caches.

MULTILEVEL CACHES As logic density has increased, it has become possible to
have a cache on the same chip as the processor: the on-chip cache. Compared with
a cache reachable via an external bus, the on-chip cache reduces the processor’s
external bus activity and therefore speeds up execution times and increases overall
system performance. When the requested instruction or data is found in the on-
chip cache, the bus access is eliminated. Because of the short data paths internal
to the processor, compared with bus lengths, on-chip cache accesses will complete
appreciably faster than would even zero-wait state bus cycles. Furthermore, during
this period the bus is free to support other transfers.

The inclusion of an on-chip cache leaves open the question of whether an
off-chip, or external, cache is still desirable. Typically, the answer is yes, and most
contemporary designs include both on-chip and external caches. The simplest such
organization is known as a two-level cache, with the internal level 1 (L1) and the
external cache designated as level 2 (L2). The reason for including an L2 cache is
the following: If there is no L2 cache and the processor makes an access request for
a memory location not in the L1 cache, then the processor must access DRAM or

148 CHAPTER 4 / CACHE MEMORY

ROM memory across the bus. Due to the typically slow bus speed and slow memory
access time, this results in poor performance. On the other hand, if an L2 SRAM
(static RAM) cache is used, then frequently the missing information can be quickly
retrieved. If the SRAM is fast enough to match the bus speed, then the data can be
accessed using a zero-wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are note-
worthy. First, for an off-chip L2 cache, many designs do not use the system bus as
the path for transfer between the L2 cache and the processor, but use a separate
data path, so as to reduce the burden on the system bus. Second, with the continued
shrinkage of processor components, a number of processors now incorporate the L2
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates
in both the L1 and L2 caches. Several studies have shown that, in general, the use
of a second-level cache does improve performance (e.g., see [AZIM92], [NOVI93],
[HAND?9S]). However, the use of multilevel caches does complicate all of the design
issues related to caches, including size, replacement algorithm, and write policy; see
[HAND?9S] and [PEIR99] for discussions.

Figure 4.17 shows the results of one simulation study of two-level cache perfor-
mance as a function of cache size [GENUO04]. The figure assumes that both caches have
the same line size and shows the total hit ratio. That is, a hit is counted if the desired data
appears in either the L1 or the L2 cache. The figure shows the impact of L2 on total hits
with respect to L1 size. L2 has little effect on the total number of cache hits until it is at
least double the L1 cache size. Note that the steepest part of the slope for an L1 cache
of 8 kB is for an L2 cache of 16 kB. Again for an L1 cache of 16 kB, the steepest part
of the curve is for an L2 cache size of 32 kB. Prior to that point, the L2 cache has little,
if any, impact on total cache performance. The need for the L2 cache to be larger than

0.98
0.96
0.94
0.92
0.90

0.88

Hit ratio

0.86

0.84

0.82

0.80

0-78 T T T T T T T T T T 1
1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M

L2 cache size (bvtes)

Figure 4.17 Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1

4.4 / PENTIUM 4 CACHE ORGANIZATION 149

the L1 cache to affect performance makes sense. If the L2 cache has the same line size
and capacity as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of on-chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and
added an L3 cache. Originally, the L3 cache was accessible over the external bus.
More recently, most microprocessors have incorporated an on-chip L3 cache. In
either case, there appears to be a performance advantage to adding the third level
(e.g., see [GHAI9S8]). Further, large systems, such as the IBM mainframe zEnter-
prise systems, now incorporate 3 on-chip cache levels and a fourth level of cache
shared across multiple chips [CURR11].

UNIFIED VERSUS SPLIT CACHES When the on-chip cache first made an appearance,
many of the designs consisted of a single cache used to store references to both data
and instructions. More recently, it has become common to split the cache into two:
one dedicated to instructions and one dedicated to data. These two caches both exist
at the same level, typically as two L1 caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction L1 cache, and when the
processor attempts to fetch data from main memory, it first consults the data L1 cache.
There are two potential advantages of a unified cache:

m For a given cache size, a unified cache has a higher hit rate than split caches
because it balances the load between instruction and data fetches automatically.
That is, if an execution pattern involves many more instruction fetches than data
fetches, then the cache will tend to fill up with instructions, and if an execution
pattern involves relatively more data fetches, the opposite will occur.

= Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels,
particularly for superscalar machines, which emphasize parallel instruction execu-
tion and the prefetching of predicted future instructions. The key advantage of the
split cache design is that it eliminates contention for the cache between the instruction
fetch/decode unit and the execution unit. This is important in any design that relies on
the pipelining of instructions. Typically, the processor will fetch instructions ahead of
time and fill a buffer, or pipeline, with instructions to be executed. Suppose now that
we have a unified instruction/data cache. When the execution unit performs a memory
access to load and store data, the request is submitted to the unified cache. If, at the
same time, the instruction prefetcher issues a read request to the cache for an instruc-
tion, that request will be temporarily blocked so that the cache can service the execu-
tion unit first, enabling it to complete the currently executing instruction. This cache
contention can degrade performance by interfering with efficient use of the instruction
pipeline. The split cache structure overcomes this difficulty.

4.4 PENTIUM 4 CACHE ORGANIZATION

The evolution of cache organization is seen clearly in the evolution of Intel micro-
processors (Table 4.4). The 80386 does not include an on-chip cache. The 80486
includes a single on-chip cache of 8 kB, using a line size of 16 bytes and a four-way

150 CHAPTER 4 / CACHE MEMORY

Table 4.4 Intel Cache Evolution

Processor on Which

Instruction Prefetcher and the Execution

tion caches.

Problem Solution Feature First Appears
External memory slower than the system Add external cache using faster 386

bus. memory technology.

Increased processor speed results in Move external cache on-chip, 486

external bus becoming a bottleneck for operating at the same speed as the

cache access. processor.

Internal cache is rather small, due to Add external L2 cache using faster 486

limited space on chip. technology than main memory.

Contention occurs when both the Create separate data and instruc- Pentium

Unit simultaneously require access to
the cache. In that case, the Prefetcher is
stalled while the Execution Unit’s data
access takes place.

Create separate back-side bus that Pentium Pro
runs at higher speed than the main
(front-side) external bus. The BSB

is dedicated to the L2 cache.

Increased processor speed results in
external bus becoming a bottleneck for
L2 cache access.

Move L2 cache on to the Pentium II
processor chip.
Some applications deal with massive Add external L3 cache. Pentium III
databases and must have rapid access Move L3 cache on-chip. Pentium 4

to large amounts of data. The on-chip
caches are too small.

set-associative organization. All of the Pentium processors include two on-chip
L1 caches, one for data and one for instructions. For the Pentium 4, the L1 data
cache is 16 kB, using a line size of 64 bytes and a four-way set-associative organi-
zation. The Pentium 4 instruction cache is described subsequently. The Pentium II
also includes an L2 cache that feeds both of the L1 caches. The L2 cache is eight-
way set associative with a size of 512 kB and a line size of 128 bytes. An L3 cache
was added for the Pentium III and became on-chip with high-end versions of the
Pentium 4.

Figure 4.18 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major
components:

= Fetch/decode unit: Fetches program instructions in order from the L2 cache,
decodes these into a series of micro-operations, and stores the results in the L1
instruction cache.

= Qut-of-order execution logic: Schedules execution of the micro-operations
subject to data dependencies and resource availability; thus, micro-operations
may be scheduled for execution in a different order than they were fetched
from the instruction stream. As time permits, this unit schedules speculative
execution of micro-operations that may be required in the future.

Out-of-order
execution

logic

System bus

Integer register file

y

Load
address
unit

Store
address
unit

Simple
integer
ALU

Simple
integer
ALU

Complex
integer
ALU

Figure 4.18 Pentium 4 Block Diagram

1ST

Instruction
fetch/decode
unit
FP register file
FP/ FP
MMX move
unit unit

64

bits

bits

152 CHAPTER 4 / CACHE MEMORY

Table 4.5 Pentium 4 Cache Operating Modes

Control Bits Operating Mode
CD NW Cache Fills Write Throughs Invalidates
0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

= Execution units: These units execute micro-operations, fetching the required
data from the L1 data cache and temporarily storing results in registers.

= Memory subsystem: This unit includes the L2 and L3 caches and the system
bus, which is used to access main memory when the L1 and L2 caches have a
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most
other processors, the Pentium 4 instruction cache sits between the instruction
decode logic and the execution core. The reasoning behind this design decision is
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or
translates, Pentium machine instructions into simple RISC-like instructions called
micro-operations. The use of simple, fixed-length micro-operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance.
However, the Pentium machine instructions are cumbersome to decode; they have
a variable number of bytes and many different options. It turns out that perform-
ance is enhanced if this decoding is done independently of the scheduling and pipe-
lining logic. We return to this topic in Chapter 16.

The data cache employs a write-back policy: Data are written to main memory
only when they are removed from the cache and there has been an update. The Pen-
tium 4 processor can be dynamically configured to support write-through caching.

The L1 data cache is controlled by two bits in one of the control registers, labe-
led the CD (cache disable) and NW (not write-through) bits (Table 4.5). There are
also two Pentium 4 instructions that can be used to control the data cache: INVD
invalidates (flushes) the internal cache memory and signals the external cache (if
any) to invalidate. WBINVD writes back and invalidates internal cache and then
writes back and invalidates external cache.

Both the L2 and L3 caches are eight-way set-associative with a line size of 128

bytes.
Key Terms
access time cache line cache set
associative mapping cache memory data cache

cache hit cache miss direct access

direct mapping logical cache spatial locality

high-performance computing memory hierarchy split cache
(HPC) miss tag

hit multilevel cache temporal locality

hit ratio physical address unified cache

instruction cache physical cache virtual address

L1 cache random access virtual cache

L2 cache replacement algorithm write back

L3 cache secondary memory write through

line sequential access

locality set-associative mapping

4.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 153

Review Questions

4.1
4.2
4.3
4.4

4.5
4.6
4.7

4.8
4.9

Probl
4.1

4.2

4.3

44

What are the differences among sequential access, direct access, and random access?
What is the general relationship among access time, memory cost, and capacity?
How does the principle of locality relate to the use of multiple memory levels?

What are the differences among direct mapping, associative mapping, and set-
associative mapping?

For a direct-mapped cache, a main memory address is viewed as consisting of three
fields. List and define the three fields.

For an associative cache, a main memory address is viewed as consisting of two fields.
List and define the two fields.

For a set-associative cache, a main memory address is viewed as consisting of three
fields. List and define the three fields.

What is the distinction between spatial locality and temporal locality?
In general, what are the strategies for exploiting spatial locality and temporal locality?

ems

A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main
memory contains 4K blocks of 128 words each. Show the format of main memory
addresses.

A two-way set-associative cache has lines of 16 bytes and a total size of 8 kB. The
64-MB main memory is byte addressable. Show the format of main memory addresses.

For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the

following information, in hexadecimal format:

a. Tag, Line, and Word values for a direct-mapped cache, using the format of
Figure 4.10

b. Tag and Word values for an associative cache, using the format of Figure 4.12

c. Tag, Set,and Word values for a two-way set-associative cache, using the format of
Figure 4.15

List the following values:

a. For the direct cache example of Figure 4.10: address length, number of addressable
units, block size, number of blocks in main memory, number of lines in cache, size
of tag

b. For the associative cache example of Figure 4.12: address length, number of
addressable units, block size, number of blocks in main memory, number of lines
in cache, size of tag

154 CHAPTER 4 / CACHE MEMORY

4.5

4.6

4.7

4.8

4.9

4.10

4.11

c. For the two-way set-associative cache example of Figure 4.15: address length, num-
ber of addressable units, block size, number of blocks in main memory, number of
lines in set, number of sets, number of lines in cache, size of tag

Consider a 32-bit microprocessor that has an on-chip 16-kB four-way set-associative

cache. Assume that the cache has a line size of four 32-bit words. Draw a block dia-

gram of this cache showing its organization and how the different address fields are
used to determine a cache hit/miss. Where in the cache is the word from memory
location ABCDESF8 mapped?

Given the following specifications for an external cache memory: four-way set asso-

ciative; line size of two 16-bit words; able to accommodate a total of 4K 32-bit words

from main memory; used with a 16-bit processor that issues 24-bit addresses. Design
the cache structure with all pertinent information and show how it interprets the pro-
cessor’s addresses.

The Intel 80486 has an on-chip, unified cache. It contains 8 kB and has a four-way

set-associative organization and a block length of four 32-bit words. The cache is orga-

nized into 128 sets. There is a single “line valid bit” and three bits, BO, B1, and B2 (the

“LRU” bits), per line. On a cache miss, the 80486 reads a 16-byte line from main mem-

ory in a bus memory read burst. Draw a simplified diagram of the cache and show how

the different fields of the address are interpreted.

Consider a machine with a byte addressable main memory of 2!'° bytes and block size

of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with this

machine.

a. How is a 16-bit memory address divided into tag, line number, and byte number?

b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What
are the addresses of the other bytes stored along with it?

d. How many total bytes of memory can be stored in the cache?

e. Why is the tag also stored in the cache?

For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as

pseudo least recently used. Associated with each of the 128 sets of four lines (labeled

L0, L1, L2, L3) are three bits B0, B1, and B2. The replacement algorithm works as

follows: When a line must be replaced, the cache will first determine whether the most

recent use was from LO and L1 or L2 and L3. Then the cache will determine which

of the pair of blocks was least recently used and mark it for replacement. Figure 4.19

illustrates the logic.

a. Specify how the bits B0, B1, and B2 are set and then describe in words how they
are used in the replacement algorithm depicted in Figure 4.19.

b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: Con-
sider the case in which the most recent order of usage is L0, L2, L3, L1.

c. Demonstrate that a true LRU algorithm would require 6 bits per set.

A set-associative cache has a block size of four 16-bit words and a set size of 2. The

cache can accommodate a total of 4096 words. The main memory size that is cacheable

is 64K X 32 bits. Design the cache structure and show how the processor’s addresses

are interpreted.

Consider a memory system that uses a 32-bit address to address at the byte level, plus

a cache that uses a 64-byte line size.

a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the
address format and determine the following parameters: number of addressable
units, number of blocks in main memory, number of lines in cache, size of tag.

412

413

4.14

4.15

4.16
4.17

4.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 155

All four lines in No Replace
the set valid? nonvalid line
Yes 1
B0 = 0?

Yes, LO or L1
least recently used

No, L2 or L3
least recently used

B1=0? B2 =0?

Replace Replace Replace Replace
Lo L1 L2 L3

Figure 4.19 Intel 80486 On-Chip Cache Replacement Strategy

b. Assume an associative cache. Show the address format and determine the follow-
ing parameters: number of addressable units, number of blocks in main memory,
number of lines in cache, size of tag.

c. Assume a four-way set-associative cache with a tag field in the address of 9 bits.
Show the address format and determine the following parameters: number of
addressable units, number of blocks in main memory, number of lines in set, num-
ber of sets in cache, number of lines in cache, size of tag.

Consider a computer with the following characteristics: total of 1 MB of main mem-

ory; word size of 1 byte; block size of 16 bytes; and cache size of 64 kB.

a. For the main memory addresses of FO010, 01234, and CABBE, give the corre-
sponding tag, cache line address, and word offsets for a direct-mapped cache.

b. Give any two main memory addresses with different tags that map to the same
cache slot for a direct-mapped cache.

c. For the main memory addresses of FO010 and CABBE, give the corresponding tag
and offset values for a fully-associative cache.

d. For the main memory addresses of FO010 and CABBE, give the corresponding
tag, cache set, and offset values for a two-way set-associative cache.

Describe a simple technique for implementing an LRU replacement algorithm in a
four-way set-associative cache.

Consider again Example 4.3. How does the answer change if the main memory uses a
block transfer capability that has a first-word access time of 30 ns and an access time
of 5 ns for each word thereafter?

Consider the following code:
for i = 0;i < 20;i++)
for G = 0;j < 10;j++)

ali] = alil'
a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.
Generalize Equations (4.2) and (4.3),in Appendix 4A, to N-level memory hierarchies.

A computer system contains a main memory of 32K 16-bit words. It also has a 4K
word cache divided into four-line sets with 64 words per line. Assume that the cache
is initially empty. The processor fetches words from locations 0, 1, 2, . .., 4351 in that

156 CHAPTER 4 / CACHE MEMORY

4.18

4.19

4.20

4.21

4.22

4.23

4.24

order. It then repeats this fetch sequence nine more times. The cache is 10 times faster
than main memory. Estimate the improvement resulting from the use of the cache.
Assume an LRU policy for block replacement.

Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of
16 bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now
consider a program that accesses memory in the following sequence of addresses:
Once: 63 through 70.

Loop ten times: 15 through 32; 80 through 95.

a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, and so on
are assigned to line 1; blocks 1, 5, and so on to line 2; and so on. Compute the hit
ratio.

b. Suppose the cache is organized as two-way set associative, with two sets of two
lines each. Even-numbered blocks are assigned to set 0 and odd-numbered blocks
are assigned to set 1. Compute the hit ratio for the two-way set-associative cache
using the least recently used replacement scheme.

Consider a memory system with the following parameters:
T, = 100 ns C. = 107* $/bit
T, =1200ns C,, = 107 $/bit

What is the cost of 1 MB of main memory?

What is the cost of 1 MB of main memory using cache memory technology?

c. If the effective access time is 10% greater than the cache access time, what is the
hit ratio H?

a. Consider an L1 cache with an access time of 1 ns and a hit ratio of H = 0.95. Sup-
pose that we can change the cache design (size of cache, cache organization) such
that we increase H to 0.97, but increase access time to 1.5 ns. What conditions must
be met for this change to result in improved performance?

d. Explain why this result makes intuitive sense.

Consider a single-level cache with an access time of 2.5 ns, a line size of 64 bytes, and

a hit ratio of H = 0.95. Main memory uses a block transfer capability that has a first-

word (4 bytes) access time of 50 ns and an access time of 5 ns for each word thereafter.

a. What is the access time when there is a cache miss? Assume that the cache waits
until the line has been fetched from main memory and then re-executes for a hit.

b. Suppose that increasing the line size to 128 bytes increases the H to 0.97 Does this
reduce the average memory access time?

A computer has a cache, main memory, and a disk used for virtual memory. If a ref-
erenced word is in the cache, 20 ns are required to access it. If it is in main memory
but not in the cache, 60 ns are needed to load it into the cache, and then the refer-
ence is started again. If the word is not in main memory, 12 ms are required to fetch
the word from disk, followed by 60 ns to copy it to the cache, and then the reference
is started again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6. What
is the average time in nanoseconds required to access a referenced word on this
system?

Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines

in the cache are dirty. A word consists of 8 bytes.

a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main
memory traffic, in terms of bytes per instruction for both write-through and write-
back policies. Memory is read into cache one line at a time. However, for write
back, a single word can be written from cache to main memory.

b. Repeat part a for a 5% rate.

c. Repeat part a for a 7% rate.

d. What conclusion can you draw from these results?

On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data
access from main memory over the bus to the processor takes three clock cycles in the

g

APPENDIX 4A 157

case of no wait state insertion; the data are delivered to the processor in parallel with

delivery to the cache.

a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a
clocking rate of 16.67 MHz.

b. Repeat the calculations assuming insertion of two wait states of one cycle each per
memory cycle. What conclusion can you draw from the results?

4.25 Assume a processor having a memory cycle time of 300 ns and an instruction process-
ing rate of 1 MIPS. On average, each instruction requires one bus memory cycle for
instruction fetch and one for the operand it involves.

a. Calculate the utilization of the bus by the processor.
b. Suppose the processor is equipped with an instruction cache and the associated hit
ratio is 0.5. Determine the impact on bus utilization.

4.26 The performance of a single-level cache system for a read operation can be character-
ized by the following equation:

T,=T.+ (1 —)T,

where T, is the average access time, 7, is the cache access time, 7, is the memory

access time (memory to processor register), and H is the hit ratio. For simplicity, we

assume that the word in question is loaded into the cache in parallel with the load to

processor register. This is the same form as Equation (4.2).

a. Define T, = time to transfer a line between cache and main memory, and
W = fraction of write references. Revise the preceding equation to account for
writes as well as reads, using a write-through policy.

b. Define W, as the probability that a line in the cache has been altered. Provide an
equation for T, for the write-back policy.

4.27 For a system with two levels of cache, define T, = first — level cache access time;
T,, = second — levelcacheaccesstime;T,, = memoryaccesstime; H; = first — level
cache hit ratio; H, = combined first/second level cache hit ratio. Provide an equation
for T, for a read operation.

4.28 Assume the following performance characteristics on a cache read miss: one clock
cycle to send an address to main memory and four clock cycles to access a 32-bit word
from main memory and transfer it to the processor and cache.

a. If the cache line size is one word, what is the miss penalty (i.e., additional time
required for a read in the event of a read miss)?

b. What is the miss penalty if the cache line size is four words and a multiple, non-
burst transfer is executed?

c. What is the miss penalty if the cache line size is four words and a transfer is exe-
cuted, with one clock cycle per word transfer?

4.29 For the cache design of the preceding problem, suppose that increasing the line size
from one word to four words results in a decrease of the read miss rate from 3.2% to
1.1%. For both the nonburst transfer and the burst transfer case, what is the average
miss penalty, averaged over all reads, for the two different line sizes?

APPENDIX 4A PERFORMANCE CHARACTERISTICS

OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main mem-
ory and processor, creating a two-level internal memory. This two-level architecture
exploits a property known as locality to provide improved performance over a com-
parable one-level memory.

158 CHAPTER 4 / CACHE MEMORY

The main memory cache mechanism is part of the computer architecture,
implemented in hardware and typically invisible to the operating system. There are
two other instances of a two-level memory approach that also exploit locality and
that are, at least partially,implemented in the operating system: virtual memory and
the disk cache (Table 4.6). Virtual memory is explored in Chapter 8; disk cache is
beyond the scope of this book but is examined in [STAL15]. In this appendix, we
look at some of the performance characteristics of two-level memories that are com-
mon to all three approaches.

Locality

The basis for the performance advantage of a two-level memory is a principle known
as locality of reference [DENNG6S]. This principle states that memory references
tend to cluster. Over a long period of time, the clusters in use change, but over a
short period of time, the processor is primarily working with fixed clusters of mem-
ory references.

Intuitively, the principle of locality makes sense. Consider the following line of
reasoning:

1. Except for branch and call instructions, which constitute only a small fraction of
all program instructions, program execution is sequential. Hence, in most cases,
the next instruction to be fetched immediately follows the last instruction fetched.

2. Tt is rare to have a long uninterrupted sequence of procedure calls followed
by the corresponding sequence of returns. Rather, a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus, over
a short period of time references to instructions tend to be localized to a few
procedures.

3. Most iterative constructs consist of a relatively small number of instructions

repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

Table 4.6 Characteristics of Two-Level Memories

Main Memory Virtual Memory
Cache (paging) Disk Cache

Typical access time 5:1 (main memory vs. 10%1 (main memory vs. 10%1 (main memory vs.
ratios cache) disk) disk)
Memory management Implemented by Combination of hardware System software
system special hardware and system software
Typical block or page 4 to 128 bytes 64 to 4096 bytes (virtual 64 to 4096 bytes (disk
size (cache block) memory page) block or pages)
Access of processor to Direct access Indirect access Indirect access
second level

APPENDIX 4A 159

Table 4.7 Relative Dynamic Frequency of High-Level Language Operations

Study [HUCKS3] [KNUT71] [PATTS82a] [TANE78]
Language Pascal FORTRAN Pascal C SAL
Workload Scientific Student System System System
Assign 74 67 45 38 4
Loop 4 3 5 3 4

Call 1 3 15 12 12

105 20 11 29 43 36
GOTO 2 9 — 3 —
Other — 7 6 1 6

This line of reasoning has been confirmed in many studies. With reference to
point 1, a variety of studies have analyzed the behavior of high-level language pro-
grams. Table 4.7 includes key results, measuring the appearance of various statement
types during execution, from the following studies. The earliest study of program-
ming language behavior, performed by Knuth [KNUT?71], examined a collection of
FORTRAN programs used as student exercises. Tanenbaum [TANE78] published
measurements collected from over 300 procedures used in operating-system pro-
grams and written in a language that supports structured programming (SAL). Pat-
terson and Sequein [PATT82a] analyzed a set of measurements taken from compilers
and programs for typesetting, computer-aided design (CAD), sorting, and file com-
parison. The programming languages C and Pascal were studied. Huck [HUCKS83]
analyzed four programs intended to represent a mix of general-purpose scientific
computing, including fast Fourier transform and the integration of systems of differ-
ential equations. There is good agreement in the results of this mixture of languages
and applications that branching and call instructions represent only a fraction of
statements executed during the lifetime of a program. Thus, these studies confirm
assertion 1.

With respect to assertion 2, studies reported in [PATT85a] provide confirma-
tion. This is illustrated in Figure 4.20, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain
within a stationary window for long periods of time. A study by the same analysts of
C and Pascal programs showed that a window of depth 8 will need to shift only on
less than 1% of the calls or returns [TAMI83].

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

160 CHAPTER 4 / CACHE MEMORY

Return

Call

Time
(in units of calls/returns)

t=33

Nesting
depth

Figure 420 Example Call-Return Behavior of a Program

Traditionally, temporal locality is exploited by keeping recently used
instruction and data values in cache memory and by exploiting a cache hierarchy.
Spatial locality is generally exploited by using larger cache blocks and by incor-
porating prefetching mechanisms (fetching items of anticipated use) into the
cache control logic. Recently, there has been considerable research on refining
these techniques to achieve greater performance, but the basic strategies remain
the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory, but also the probability that a given reference
can be found in M1. We have

4.2)
T, + (1 — H X T,

where

T, = average (system) access time

T, = access time of M1 (e.g., cache, disk cache)

T, = access time of M2 (e.g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

APPENDIX 4A 161

Figure 4.2 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level mem-
ory mechanism. First consider cost. We have

G5+ GS,

4.3
s S+ S, @3)

C, = average cost per bit for the combined two-level memory
C, = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

S = size of M1

S, = size of M2

We would like C; = C,. Given that C; => C,, this requires S; < S,. Figure 4.21
shows the relationship.

1000 —
8 -
7_
6_
5_
4_
37 (C,/C5) = 1000
2 /
S
= 100
) 8
2 77
S 5]
g 47
£ 34
=
£ 24 (C4/C,) = 100
5]
f L
E 10 —
2
6_
5_
4_
N (C4/Cy) = 10
24 /
1 T T T T I T T T T T T T T I T T T T T T T T I
5678910 2 3 4 56789100 2 3 4 567891000

Relative size of two levels (S,/S;)

Figure 4.21 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

162 CHAPTER 4 / CACHE MEMORY

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have T, approximately equal to T1(7; = T)).
Given that T} is much less than T,(7T; << T,), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

= What value of hit ratio is needed so that 7, = T,?
m What size of M1 will assure the needed hit ratio?

m Does this size satisfy the cost requirement?

To get at this, consider the quantity 7)/Ty, which is referred to as the access effi-

ciency. It is a measure of how close average access time (7;) is to M1 access time
(T7). From Equation (4.2),

T 1

e (4.4)

Loyva-mb
T,

Figure 4.22 plots T,/T, as a function of the hit ratio H, with the quantity 7,/7T; as
a parameter. Typically, on-chip cache access time is about 25 to 50 times faster
than main memory access time (i.e., 7,/T is 25 to 50), off-chip cache access time

Access efficiency = T'/T

0.01 —

0.001

I I I I |
0.0 0.2 0.4 0.6 0.8 1.0

Hit ratio = H
Figure 422 Access Efficiency as a Function of Hit Ratio (r = T,/T})

APPENDIX 4A 163

is about 5 to 15 times faster than main memory access time (i.e., T5/T} is 5 to 15),
and main memory access time is about 1000 times faster than disk access time
(T,/T; = 1000). Thus, a hit ratio in the range of near 0.9 would seem to be needed
to satisfy the performance requirement.

We can now phrase the question about relative memory size more exactly. Is a
hit ratio of, say, 0.8 or better reasonable for §; << S,? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 4.23 suggests the effect that locality has on the hit ratio. Clearly, if
M1 is the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are
always also stored in M 1. Now suppose that there is no locality; that is, references are
completely random. In that case the hit ratio should be a strictly linear function of
the relative memory size. For example, if M1 is half the size of M2, then at any time
half of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice,
however, there is some degree of locality in the references. The effects of moderate
and strong locality are indicated in the figure. Note that Figure 4.23 is not derived
from any specific data or model; the figure suggests the type of performance that is
seen with various degrees of locality.

So if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e.g.,|AGARS89], [PRZYS88], [STRES3], and [SMITS82]).
A cache in the range of 1K to 128K words is generally adequate, whereas main

1.0
0.8 Strong
locality

0.6 Moderate
£ locality
g

0.4

No locality
0.2
0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Relative memory size (S1/S3)

Figure 4.23 Hit Ratio as a Function of Relative Memory Size

164 CHAPTER 4 / CACHE MEMORY

memory is now typically in the gigabyte range. When we consider virtual memory
and disk cache, we will cite other studies that confirm the same phenomenon, namely
that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper
lower-level memory.

Please note that with L2 cache, or even L2 and L3 caches, involved, analysis is
much more complex. See [PEIR99] and [HAND?98] for discussions.

INTERNAL MEMORY

5.1

5.2
5.3

54

565

5.6

Semiconductor Main Memory
Organization
DRAM and SRAM
Types of ROM
Chip Logic
Chip Packaging
Module Organization
Interleaved Memory

Error Correction

DDR DRAM
Synchronous DRAM
DDR SDRAM

Flash Memory
Operation
NOR and NAND Flash Memory

Newer Nonvolatile Solid-State Memory Technologies
STT-RAM
PCRAM
ReRAM

Key Terms, Review Questions, and Problems

165

166 CHAPTER 5 / INTERNAL MEMORY

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Present an overview of the principle types of semiconductor main memory.

@ Understand the operation of a basic code that can detect and correct
single-bit errors in 8-bit words.

@ Summarize the properties of contemporary DDR DRAM organizations.
@ Understand the difference between NOR and NAND flash memory.
@ Present an overview of the newer nonvolatile solid-state memory technologies.

We begin this chapter with a survey of semiconductor main memory subsystems,
including ROM, DRAM, and SRAM memories. Then we look at error control tech-
niques used to enhance memory reliability. Following this, we look at more advanced
DRAM architectures.

5.1 SEMICONDUCTOR MAIN MEMORY

In earlier computers, the most common form of random-access storage for computer
main memory employed an array of doughnut-shaped ferromagnetic loops referred
to as cores. Hence, main memory was often referred to as core, a term that persists to
this day. The advent of, and advantages of, microelectronics has long since vanquished
the magnetic core memory. Today, the use of semiconductor chips for main memory is
almost universal. Key aspects of this technology are explored in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a vari-
ety of electronic technologies are used, all semiconductor memory cells share certain
properties:

m They exhibit two stable (or semistable) states, which can be used to represent
binary 1 and 0.

m They are capable of being written into (at least once), to set the state.
m They are capable of being read to sense the state.

Figure 5.1 depicts the operation of a memory cell. Most commonly, the cell
has three functional terminals capable of carrying an electrical signal. The select ter-
minal, as the name suggests, selects a memory cell for a read or write operation. The
control terminal indicates read or write. For writing, the other terminal provides an
electrical signal that sets the state of the cell to 1 or 0. For reading, that terminal is
used for output of the cell’s state. The details of the internal organization, function-
ing, and timing of the memory cell depend on the specific integrated circuit tech-
nology used and are beyond the scope of this book, except for a brief summary. For
our purposes, we will take it as given that individual cells can be selected for reading
and writing operations.

5.1 / SEMICONDUCTOR MAIN MEMORY 167

Control Control
Select Data in Select Sense
—> Cell —> Cell
(a) Write (b) Read

Figure 5.1 Memory Cell Operation

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That
is, individual words of memory are directly accessed through wired-in addressing
logic.

Table 5.1 lists the major types of semiconductor memory. The most common is
referred to as random-access memory (RAM). This is, in fact, a misuse of the term,
because all of the types listed in the table are random access. One distinguishing
characteristic of memory that is designated as RAM is that it is possible both to read
data from the memory and to write new data into the memory easily and rapidly.
Both the reading and writing are accomplished through the use of electrical signals.

The other distinguishing characteristic of traditional RAM is that it is volatile.
A RAM must be provided with a constant power supply. If the power is interrupted,
then the data are lost. Thus, RAM can be used only as temporary storage. The two
traditional forms of RAM used in computers are DRAM and SRAM. Newer forms
of RAM, discussed in Section 5.5, are nonvolatile.

DYNAMIC RAM RAM technology is divided into two technologies: dynamic and
static. A dynamic RAM (DRAM) is made with cells that store data as charge on
capacitors. The presence or absence of charge in a capacitor is interpreted as a
binary 1 or 0. Because capacitors have a natural tendency to discharge, dynamic
RAMSs require periodic charge refreshing to maintain data storage. The term

Table 5.1 Semiconductor Memory Types

Write
Memory Type Category Erasure Mechanism | Volatility
Random-access memory (RAM) i el Electrically Volatile
memory byte-level
Read-only memory (ROM) Read-only . Masks
Not possible
Programmable ROM (PROM) memory
Erasable PROM (EPROM) UV light,
chip-level .
. Nonvolatile
Electrically Erasable PROM Read-mostly | Electrically, Electrically
(EEPROM) memory byte-level
Electrically,
Flash memory block-level

168 CHAPTER 5 / INTERNAL MEMORY

dynamic refers to this tendency of the stored charge to leak away, even with power
continuously applied.

Figure 5.2a is a typical DRAM structure for an individual cell that stores one
bit. The address line is activated when the bit value from this cell is to be read or
written. The transistor acts as a switch that is closed (allowing current to flow) if a
voltage is applied to the address line and open (no current flows) if no voltage is
present on the address line.

For the write operation, a voltage signal is applied to the bit line; a high volt-
age represents 1, and a low voltage represents 0. A signal is then applied to the
address line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns
on and the charge stored on the capacitor is fed out onto a bit line and to a sense
amplifier. The sense amplifier compares the capacitor voltage to a reference value
and determines if the cell contains a logic 1 or a logic 0. The readout from the cell
discharges the capacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially
an analog device. The capacitor can store any charge value within a range; a thresh-
old value determines whether the charge is interpreted as 1 or 0.

STATIC RAM In contrast, a static RAM (SRAM) is a digital device that uses the
same logic elements used in the processor. In a SRAM, binary values are stored
using traditional flip-flop logic-gate configurations (see Chapter 11 for a description
of flip-flops). A static RAM will hold its data as long as power is supplied to it.
Figure 5.2b is a typical SRAM structure for an individual cell. Four transistors
(Ty, T,, T3, T4) are cross connected in an arrangement that produces a stable logic

dc voltage

Addre:ss line T\Z| T,

[1

Bit line
B

Transistor 0__5, |_6,_0

Storage —1
capacitor — |

Ground T
Ground

T
Address
line

Bit line
B

Bit line
B

(a) Dynamic RAM (DRAM) cell (b) Static RAM (SRAM) cell

Figure 5.2 Typical Memory Cell Structures

5.1 / SEMICONDUCTOR MAIN MEMORY 169

state. In logic state 1, point C; is high and point C, is low; in this state, T; and T, are
off and T, and T are on.! In logic state 0, point C; is low and point C, is high; in this
state, Ty and T, are on and T, and Tj; are off. Both states are stable as long as the direct
current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain data.

As in the DRAM, the SRAM address line is used to open or close a switch.
The address line controls two transistors (Ts and T¢). When a signal is applied to
this line, the two transistors are switched on, allowing a read or write operation. For
a write operation, the desired bit value is applied to line B, while its complement
is applied to line B. This forces the four transistors (T, T,, T3, T,) into the proper
state. For a read operation, the bit value is read from line B.

SRAM VERSUS DRAM Both static and dynamic RAMs are volatile; that is, power
must be continuously supplied to the memory to preserve the bit values. A dynamic
memory cell is simpler and smaller than a static memory cell. Thus, a DRAM
is more dense (smaller cells = more cells per unit area) and less expensive than
a corresponding SRAM. On the other hand, a DRAM requires the supporting
refresh circuitry. For larger memories, the fixed cost of the refresh circuitry is more
than compensated for by the smaller variable cost of DRAM cells. Thus, DRAMs
tend to be favored for large memory requirements. A final point is that SRAMs are
somewhat faster than DRAMSs. Because of these relative characteristics, SRAM is
used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern
of data that cannot be changed. A ROM is nonvolatile; that is, no power source is
required to maintain the bit values in memory. While it is possible to read a ROM, it
is not possible to write new data into it. An important application of ROMs is micro-
programming, discussed in Part Four. Other potential applications include

m Library subroutines for frequently wanted functions

= System programs

= Function tables
For a modest-sized requirement, the advantage of ROM is that the data or program
is permanently in main memory and need never be loaded from a secondary storage
device.

A ROM is created like any other integrated circuit chip, with the data actually
wired into the chip as part of the fabrication process. This presents two problems:

m The data insertion step includes a relatively large fixed cost, whether one or
thousands of copies of a particular ROM are fabricated.

m There is no room for error. If one bit is wrong, the whole batch of ROMs must
be thrown out.

When only a small number of ROMs with a particular memory content is
needed, a less expensive alternative is the programmable ROM (PROM). Like the

I'The circles associated with Ty and T, in Figure 5.2b indicate signal negation.

170 CHAPTER 5 / INTERNAL MEMORY

ROM, the PROM is nonvolatile and may be written into only once. For the PROM,
the writing process is performed electrically and may be performed by a supplier
or customer at a time later than the original chip fabrication. Special equipment is
required for the writing or “programming” process. PROMs provide flexibility and
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is
useful for applications in which read operations are far more frequent than write
operations but for which nonvolatile storage is required. There are three common
forms of read-mostly memory: EPROM, EEPROM, and flash memory.

The optically erasable programmable read-only memory (EPROM) is read and
written electrically, as with PROM. However, before a write operation, all the stor-
age cells must be erased to the same initial state by exposure of the packaged chip
to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet light
through a window that is designed into the memory chip. This erasure process can be
performed repeatedly; each erasure can take as much as 20 minutes to perform. Thus,
the EPROM can be altered multiple times and, like the ROM and PROM, holds its
data virtually indefinitely. For comparable amounts of storage, the EPROM is more
expensive than PROM, but it has the advantage of the multiple update capability.

A more attractive form of read-mostly memory is electrically erasable
programmable read-only memory (EEPROM). This is a read-mostly memory that
can be written into at any time without erasing prior contents; only the byte or bytes
addressed are updated. The write operation takes considerably longer than the read
operation, on the order of several hundred microseconds per byte. The EEPROM
combines the advantage of nonvolatility with the flexibility of being updatable in
place, using ordinary bus control, address, and data lines. EEPROM is more expen-
sive than EPROM and also is less dense, supporting fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because of
the speed with which it can be reprogrammed). First introduced in the mid-1980s, flash
memory is intermediate between EPROM and EEPROM in both cost and functional-
ity. Like EEPROM, flash memory uses an electrical erasing technology. An entire flash
memory can be erased in one or a few seconds, which is much faster than EPROM. In
addition, it is possible to erase just blocks of memory rather than an entire chip. Flash
memory gets its name because the microchip is organized so that a section of memory
cells are erased in a single action or “flash.” However, flash memory does not provide
byte-level erasure. Like EPROM, flash memory uses only one transistor per bit, and so
achieves the high density (compared with EEPROM) of EPROM.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in pack-
aged chips (Figure 1.11). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among
speed, density, and cost. These trade-offs also exist when we consider the organiza-
tion of memory cells and functional logic on a chip. For semiconductor memories,
one of the key design issues is the number of bits of data that may be read/written
at a time. At one extreme is an organization in which the physical arrangement of
cells in the array is the same as the logical arrangement (as perceived by the pro-
cessor) of words in memory. The array is organized into W words of B bits each.

AQ —]
Al —

A10 —

5.1 / SEMICONDUCTOR MAIN MEMORY 171

For example, a 16-Mbit chip could be organized as 1M 16-bit words. At the other
extreme is the so-called 1-bit-per-chip organization, in which data are read/written
one bit at a time. We will illustrate memory chip organization with a DRAM; ROM
organization is similar, though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits
are read or written at a time. Logically, the memory array is organized as four square
arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any
case, the elements of the array are connected by both horizontal (row) and vertical
(column) lines. Each horizontal line connects to the Select terminal of each cell in its
row; each vertical line connects to the Data-In/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected. A total of log, W
lines are needed. In our example, 11 address lines are needed to select one of 2048
rows. These 11 lines are fed into a row decoder, which has 11 lines of input and 2048
lines for output. The logic of the decoder activates a single one of the 2048 outputs
depending on the bit pattern on the 11 input lines (2!! = 2048).

An additional 11 address lines select one of 2048 columns of 4 bits per column.
Four data lines are used for the input and output of 4 bits to and from a data buffer.
On input (write), the bit driver of each bit line is activated for a 1 or 0 according to
the value of the corresponding data line. On output (read), the value of each bit line
is passed through a sense amplifier and presented to the data lines. The row line
selects which row of cells is used for reading or writing.

| Timing and control |

Refresh
counter ™ bl

o

Row lfi:w ° Memory array
> address > > ° (2048 < 2048 X 4)
buffer coder|
[) [) []
Data input
Column <~ buffer B%
— . ddress Refresh circuitry Dat tout D3
buffer e b4
buffer
P (Column decoder

Figure 5.3 Typical 16-Mbit DRAM (4M X 4)

172 CHAPTER 5 / INTERNAL MEMORY

Because only 4 bits are read/written to this DRAM, there must be multiple
DRAMs connected to the memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0-A10), half the number you
would expect for a 2048 X 2048 array. This is done to save on the number of pins.
The 22 required address lines are passed through select logic external to the chip
and multiplexed onto the 11 address lines. First, 11 address signals are passed to the
chip to define the row address of the array, and then the other 11 address signals are
presented for the column address. These signals are accompanied by row address
select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a
write or read operation is performed. Two other pins, not shown in Figure 5.3, are
ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a
quadrupling of memory size with each new generation of memory chips. One more
pin devoted to addressing doubles the number of rows and columns, and so the size
of the chip memory grows by a factor of 4.

Figure 5.3 also indicates the inclusion of refresh circuitry. All DRAMs require
a refresh operation. A simple technique for refreshing is, in effect, to disable the
DRAM chip while all data cells are refreshed. The refresh counter steps through all
of the row values. For each row, the output lines from the refresh counter are sup-
plied to the row decoder and the RAS line is activated. The data are read out and
written back into the same location. This causes each cell in the row to be refreshed.

Chip Packaging

As was mentioned in Chapter 2, an integrated circuit is mounted on a package that
contains pins for connection to the outside world.

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip
organized as 1M X 8. In this case, the organization is treated as a one-word-per-
chip package. The package includes 32 pins, which is one of the standard chip pack-
age sizes. The pins support the following signal lines:

= The address of the word being accessed. For IM words, a total of 20 (22 = 1M)
pins are needed (A0O-A19).

m The data to be read out, consisting of 8§ lines (D0-D7).

m The power supply to the chip (V).

m A ground pin (V).

m A chip enable (CE) pin. Because there may be more than one memory chip,
each of which is connected to the same address bus, the CE pin is used to indi-
cate whether or not the address is valid for this chip. The CE pin is activated

by logic connected to the higher-order bits of the address bus (i.e., address bits
above A19). The use of this signal is illustrated presently.

= A program voltage (V) thatis supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 5.4b, for a 16-Mbit chip
organized as 4M X 4. There are several differences from a ROM chip. Because
a RAM can be updated, the data pins are input/output. The write enable (WE)
and output enable (OE) pins indicate whether this is a write or read operation.

5.1 / SEMICONDUCTOR MAIN MEMORY 173

A19 —>| 1 32 [—— Vce Vee —] 1 24 [—— Vss
IM X 8 4M X 4

Ale —>{| 2 31 [l«— AI8 D0 <—>-[] 2 23 [}« D3
Al5 —>{| 3 30 [le— Al17 Dl <[] 3 22 [}« D2
Al12 —>{|4 29 [le— Al4 WE —>{| 4 21 [J«— CAS
A7 —>]5 28 [l«— Al3 RAS —>{| 5 20 [J«<— OE
A6 —>| 6 27 [l«— A8 NC —>{] 6 24-PinDip j9j«— A9
A5 —>{|7 26 [l«— A9 Al0 —>{]7 06" 18[l<— A8
A4 —>] 8 25 [le— All A0 —>[] 8 17 [l«— A7
A3 —>{|9 32-Pin Dip 24 [=— Vpp Al —>{]9 16 [l<— A6
A2 —>{] 10 0w 23 [J<— A10 A2 —>{] 10 15[<— A5
Al —>{] 11 22[l«— CE A3 —>{] 11 14[l«— A4
A0 —>{| 12 21 —> D7 Vee —] 12 Top View 13 —— Vss
DO <—] 13 20 [—> D6

D1 <—] 14 19 [—> D5

D2 <—] 15 18 [—> D4

Vss —{] 16 Top View 17[F—> D3

(a) 8-Mbit EPROM (b) 16-Mbit DRAM

Figure 5.4 Typical Memory Package Pins and Signals

Because the DRAM is accessed by row and column, and the address is multi-
plexed, only 11 address pins are needed to specify the 4M row/column combinations
(2! x 2! = 222 = 4M). The functions of the row address select (RAS) and col-
umn address select (CAS) pins were discussed previously. Finally, the no connect
(NC) pin is provided so that there are an even number of pins.

Module Organization

If a RAM chip contains only one bit per word, then clearly we will need at least a
number of chips equal to the number of bits per word. As an example, Figure 5.5 shows
how a memory module consisting of 256K 8-bit words could be organized. For 256K
words, an 18-bit address is needed and is supplied to the module from some external
source (e.g., the address lines of a bus to which the module is attached). The address is
presented to 8 256K X 1-bit chips, each of which provides the input/output of one bit.

This organization works as long as the size of memory equals the number of
bits per chip. In the case in which larger memory is required, an array of chips is
needed. Figure 5.6 shows the possible organization of a memory consisting of 1M
word by 8 bits per word. In this case, we have four columns of chips, each column
containing 256K words arranged as in Figure 5.5. For 1M word, 20 address lines are
needed. The 18 least significant bits are routed to all 32 modules. The high-order
2 bits are input to a group select logic module that sends a chip enable signal to one
of the four columns of modules.

Interleaved Memory

Main memory is composed of a collection of DRAM memory chips. A number of chips
can be grouped together to form a memory bank. It is possible to organize the memory

174 CHAPTER 5 / INTERNAL MEMORY

5 512 words by
Memory address = 512 bits
register (MAR) X 2o Chip #1
———— . g
?] Decode 1 of
. 512 bit-sense Memory buffer
. register (MBR)
' 1]
2
’ 3]
[l
. |5
| 6 |
| 7 |
5]
5 512 words by
- 512 bits
§ ﬁ Chip #8
>
a
Decode 1 of
512 bit-sense

Figure 5.5 256-KByte Memory Organization

banks in a way known as interleaved memory. Each bank is independently able to ser-
vice a memory read or write request, so that a system with K banks can service K
requests simultaneously, increasing memory read or write rates by a factor of K. If con-
secutive words of memory are stored in different banks, then the transfer of a block of
memory is speeded up. Appendix G explores the topic of interleaved memory.

ractive o
e &,
Ve

S
£
&

Interleaved Memory Simulator

5.2 ERROR CORRECTION

A semiconductor memory system is subject to errors. These can be categorized as
hard failures and soft errors. A hard failure is a permanent physical defect so that the
memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or

5.2 / ERROR CORRECTION 175

Memory
address
register (N N "
= | B
0l Al | Bl > C1 > D1
- - Memory
1512 1512 buffer
~ ~ register
E E E { E 1§ (MBR)

Bit 1
\< ui/—l I,_\Ei\J All chips 512 words by

512 bits. 2-terminal cells

AT]
N

Group E . \ AN A
Chip $—4 —~ N~ R
group $— ¢ S
enablee— D — ©| A8 BS Cs DS
Select 1 U bl
of 4 1/512 1/512 >
groups E E E |§ E |§

Bit 8

Figure 5.6 1-MB Memory Organization

switch erratically between 0 and 1. Hard errors can be caused by harsh environmen-
tal abuse, manufacturing defects, and wear. A soft error is a random, nondestructive
event that alters the contents of one or more memory cells without damaging the
memory. Soft errors can be caused by power supply problems or alpha particles.
These particles result from radioactive decay and are distressingly common because
radioactive nuclei are found in small quantities in nearly all materials. Both hard and
soft errors are clearly undesirable, and most modern main memory systems include
logic for both detecting and correcting errors.

Figure 5.7 illustrates in general terms how the process is carried out. When
data are to be written into memory, a calculation, depicted as a function f, is per-
formed on the data to produce a code. Both the code and the data are stored. Thus,
if an M-bit word of data is to be stored and the code is of length K bits, then the
actual size of the stored word is M + K bits.

When the previously stored word is read out, the code is used to detect and
possibly correct errors. A new set of K code bits is generated from the M data bits
and compared with the fetched code bits. The comparison yields one of three results:

m No errors are detected. The fetched data bits are sent out.

® An error is detected, and it is possible to correct the error. The data bits plus
error correction bits are fed into a corrector, which produces a corrected set of
M bits to be sent out.

®m An error is detected, but it is not possible to correct it. This condition is
reported.

Codes that operate in this fashion are referred to as error-correcting codes. A
code is characterized by the number of bit errors in a word that it can correct and
detect.

176 CHAPTER 5 / INTERNAL MEMORY

Error signal

Data out M
Corrector
Data in M M K
‘ f
K Memory K Compare
f

Figure 5.7 Error-Correcting Code Function

The simplest of the error-correcting codes is the Hamming code devised by
Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illus-
trate the use of this code on 4-bit words (M = 4). With three intersecting circles,
there are seven compartments. We assign the 4 data bits to the inner compartments
(Figure 5.8a). The remaining compartments are filled with what are called parity
bits. Each parity bit is chosen so that the total number of 1s in its circle is even
(Figure 5.8b). Thus, because circle A includes three data 1s, the parity bit in that
circle is set to 1. Now, if an error changes one of the data bits (Figure 5.8¢), it is eas-
ily found. By checking the parity bits, discrepancies are found in circle A and circle
C but not in circle B. Only one of the seven compartments is in A and C but not B
(Figure 5.8d). The error can therefore be corrected by changing that bit.

To clarify the concepts involved, we will develop a code that can detect and
correct single-bit errors in 8-bit words.

To start, let us determine how long the code must be. Referring to Figure 5.7,
the comparison logic receives as input two K-bit values. A bit-by-bit comparison
is done by taking the exclusive-OR of the two inputs. The result is called the syn-
drome word. Thus, each bit of the syndrome is 0 or 1 according to if there is or is not
a match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and
2K—1. The value 0 indicates that no error was detected, leaving 2X—1 values to indi-
cate, if there is an error, which bit was in error. Now, because an error could occur
on any of the M data bits or K check bits, we must have

2K 1 =M+K

This inequality gives the number of bits needed to correct a single bit error in
a word containing M data bits. For example, for a word of 8 data bits (M = 8), we
have

" K=32-1<8+3
" K=42-1>8+4

5.2 / ERROR CORRECTION 177

(a) A B (b)

\/ \/

)/

Figure 5.8 Hamming Error-Correcting Code

Thus, eight data bits require four check bits. The first three columns of Table 5.2
lists the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data
word with the following characteristics:

m If the syndrome contains all Os, no error has been detected.

m If the syndrome contains one and only one bit set to 1, then an error has
occurred in one of the 4 check bits. No correction is needed.

m If the syndrome contains more than one bit set to 1, then the numerical value
of the syndrome indicates the position of the data bit in error. This data bit is
inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a
12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12.
Those bit positions whose position numbers are powers of 2 are designated as check

178 CHAPTER 5 / INTERNAL MEMORY

Table 5.2 Increase in Word Length with Error Correction

Single-Error Correction/
Single-Error Correction Double-Error Detection
Data Bits Check Bits % Increase Check Bits % Increase
8 4 50.0 5 62.5
16 5 31.25 6 37.5
32 6 18.75 7 21.875
64 7 10.94 8 12.5
128 8 6.25 9 7.03
256 g 3.52 10 3.91

bits. The check bits are calculated as follows, where the symbol @ designates the
exclusive-OR operation:

Cl=D1®D2® D4 ® D5 D D7
C2=D1® D3® D4 D D6 @ D7
C4 = D2®D3® D4 ® D8
C8 = @ D5@®@D6@® D7 ® D8

Each check bit operates on every data bit whose position number contains a 1
in the same bit position as the position number of that check bit. Thus, data bit pos-
itions 3,5,7,9,and 11 (D1, D2, D4, D5, D7) all contain a 1 in the least significant bit
of their position number as does C1; bit positions 3, 6, 7, 10, and 11 all contain a 1 in
the second bit position, as does C2; and so on. Looked at another way, bit position n
is checked by those bits C; such that E ; = n. For example, position 7 is checked by
bits in position 4,2, and 1;and 7 = 4 + 2 + 1.

Let us verify that this scheme works with an example. Assume that the 8-bit
input word is 00111001, with data bit D1 in the rightmost position. The calculations
are as follows:

Cl=100dD1P1D0O=1
C=100H1P1dD0O0=1

C4=000D10O=1
CB=11DH0DH0O0=0

Bit

position 12 11 10 9 8 7 6 5 4 3 2 1
A 1100 | 1011 | 1010 | 1001 | 1000 | O111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001
number

Data bit D8 D7 D6 D5 D4 D3 D2 D1

Check bit C8 C4 C2 Cl

Figure 5.9 Layout of Data Bits and Check Bits

5.2 / ERROR CORRECTION 179

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the
check bits are recalculated, we have

Cl=100p13®1H0=1
CC=111®13H0=0
C4=001P1P0O0=0
C8=101Hp0P0=0

When the new check bits are compared with the old check bits, the syndrome word

is formed:

C8 C4 C2 C1
0 1 1 1
® 0 0 0 1

0 1 1 0

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.

Figure 5.10 illustrates the preceding calculation. The data and check bits are
positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded
in the table), and their bit position values are XORed to produce the Hamming
code 0111, which forms the four check digits. The entire block that is stored is
001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is
changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of
0001. An XOR of the Hamming code and all of the bit position values for nonzero
data bits results in 0110. The nonzero result detects an error and indicates that the
error is in bit position 6.

The code just described is known as a single-error-correcting (SEC) code.
More commonly, semiconductor memory is equipped with a single-error-correcting,
double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require
one additional bit compared with SEC codes.

Figure 5.11 illustrates how such a code works, again with a 4-bit data word.
The sequence shows that if two errors occur (Figure 5.11c¢), the checking procedure
goes astray (d) and worsens the problem by creating a third error (e). To overcome

Bit 12 11 10 9 8 7 6 5 4 3 2 1
position

Position 1100 | 1011 | 1010 | 1001 | 1000 | O111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001
number

Data bit DS | D7 | D6 | D5 D4 | D3 | D2 DI

Check bit c8 c4 2 Cl
Word 0 0 1 1 0 1 0 0 1 1 1 1
stored as

Word

fetehed as | © 0 1 1 0 1 1 0 1 1 1 1
Position 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001
number

Check bit 0 0 0 1

Figure 5.10 Check Bit Calculation

180 CHAPTER 5 / INTERNAL MEMORY

(a) (b)

D

(d (e)

Figure 5.11 Hamming SEC-DEC Code

(2

-
-

the problem, an eighth bit is added that is set so that the total number of 1s in the
diagram is even. The extra parity bit catches the error (f).

An error-correcting code enhances the reliability of the memory at the cost
of added complexity. With a 1-bit-per-chip organization, an SEC-DED code is gen-
erally considered adequate. For example, the IBM 30xx implementations used an
8-bit SEC-DED code for each 64 bits of data in main memory. Thus, the size of
main memory is actually about 12% larger than is apparent to the user. The VAX
computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead.
Contemporary DRAM systems may have anywhere from 7% to 20% overhead
[SHARO3].

5.3 DDR DRAM

As discussed in Chapter 1, one of the most critical system bottlenecks when using
high-performance processors is the interface to internal main memory. This inter-
face is the most important pathway in the entire computer system. The basic building
block of main memory remains the DRAM chip, as it has for decades; until recently,
there had been no significant changes in DRAM architecture since the early 1970s.
The traditional DRAM chip is constrained both by its internal architecture and by
its interface to the processor’s memory bus.

We have seen that one attack on the performance problem of DRAM main
memory has been to insert one or more levels of high-speed SRAM cache between
the DRAM main memory and the processor. But SRAM is much costlier than
DRAM, and expanding cache size beyond a certain point yields diminishing returns.

In recent years, a number of enhancements to the basic DRAM architecture
have been explored. The schemes that currently dominate the market are SDRAM
and DDR-DRAM. We examine each of these in turn.

5.3 / DDR DRAM 181

Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM (SDRAM).
Unlike the traditional DRAM, which is asynchronous, the SDRAM exchanges data
with the processor synchronized to an external clock signal and running at the full
speed of the processor/memory bus without imposing wait states.

In a typical DRAM, the processor presents addresses and control levels to
the memory, indicating that a set of data at a particular location in memory should
be either read from or written into the DRAM. After a delay, the access time, the
DRAM either writes or reads the data. During the access-time delay, the DRAM
performs various internal functions, such as activating the high capacitance of the row
and column lines, sensing the data, and routing the data out through the output buff-
ers. The processor must simply wait through this delay, slowing system performance.

With synchronous access, the DRAM moves data in and out under control of
the system clock. The processor or other master issues the instruction and address
information, which is latched by the DRAM. The DRAM then responds after a set
number of clock cycles. Meanwhile, the master can safely do other tasks while the
SDRAM is processing the request.

Figure 5.12 shows the internal logic of a typical 256-Mb SDRAM typical
of SDRAM organization, and Table 5.3 defines the various pin assignments. The

CLK—> v DQML
CKE=> Command Data in DQMH
CS—
> decoder &
RAS= (lock —+ 16 plfer | e
CAS—>| Refresh
pg t Mod
el generator ode controller ~<—DQ0-15
register
r * 13 Self- Data out
AL0- refresh 16 | buffer |16
Al2 —— controller
All —>~
i: - Refresh
—>
‘ e
e counter ,_r_':
A6—> _ = 8192 Memory cell
g %) | 8192 |
A5 —> E R = 8192 array
Ad—> 5 3 S |[rr81925-| (4 Mb x 16)
A3— = > 3
Row = Row > B DRAM
:i_’ | address > § »-| address & BANKO | H]=€
> L &
A0 13 latch |_ 13|_buffer T Sense amps |1
BAO—>- A
BA1—>- 512
> Column Bank control (x16)
address latch logic Y
-
Column
Column > decoder
address buffer 9

Figure 5.12 256-Mb Synchronous Dynamic RAM (SDRAM)

182 CHAPTER 5 / INTERNAL MEMORY

Table 5.3 SDRAM Pin Assignments

A0 to A13 Address inputs

BAO, BA1 Bank address lines
CLK Clock input

CKE Clock enable

CS Chip select

RAS Row address strobe
CAS Column address strobe
WE ‘Write enable

DQO to DQ7 Data input/output
DOM Data mask

SDRAM employs a burst mode to eliminate the address setup time and row and
column line precharge time after the first access. In burst mode, a series of data bits
can be clocked out rapidly after the first bit has been accessed. This mode is useful
when all the bits to be accessed are in sequence and in the same row of the array as
the initial access. In addition, the SDRAM has a multiple-bank internal architecture
that improves opportunities for on-chip parallelism.

The mode register and associated control logic is another key feature differen-
tiating SDRAMs from conventional DRAMs. It provides a mechanism to custom-
ize the SDRAM to suit specific system needs. The mode register specifies the burst
length, which is the number of separate units of data synchronously fed onto the
bus. The register also allows the programmer to adjust the latency between receipt
of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data sequen-
tially, such as for applications like word processing, spreadsheets, and multimedia.

Figure 5.13 shows an example of SDRAM operation. In this case, the burst
length is 4 and the latency is 2. The burst read command is initiated by having CS
and CAS low while holding RAS and WE high at the rising edge of the clock. The
address inputs determine the starting column address for the burst, and the mode
register sets the type of burst (sequential or interleave) and the burst length (1, 2,
4, 8, full page). The delay from the start of the command to when the data from the
first cell appears on the outputs is equal to the value of the CAS latency that is set
in the mode register.

T0 T1 ™ e T4 TS T6 'V T8
SR o s e B s B
! ! ! ! ! ! ! ! !

COMMAND {READ A}~ NOP }— NoP }— Nop — Nop }— Nop }— Nop — Nop }— Nop }—
| | | | | | |

| | | | | |
| |

—

|
! (DOUT AOXDOUT AIXDOUT AZXDOUT A3)
| T T T T

DQs

Figure 5.13 SDRAM Read Timing (burstlength = 4, CASlatency = 2)

5.3 / DDR DRAM 183

DDR SDRAM

Although SDRAM is a significant improvement on asynchronous RAM, it still has
shortcomings that unnecessarily limit that I/O data rate that can be achieved. To
address these shortcomings a newer version of SDRAM, referred to as double-
data-rate DRAM (DDR DRAM) provides several features that dramatically
increase the data rate. DDR DRAM was developed by the JEDEC Solid State Tech-
nology Association, the Electronic Industries Alliance’s semiconductor-engineering-
standardization body. Numerous companies make DDR chips, which are widely used
in desktop computers and servers.

DDR achieves higher data rates in three ways. First, the data transfer is syn-
chronized to both the rising and falling edge of the clock, rather than just the rising
edge. This doubles the data rate; hence the term double data rate. Second, DDR
uses higher clock rate on the bus to increase the transfer rate. Third, a buffering
scheme is used, as explained subsequently.

JEDEC has thus far defined four generations of the DDR technology (Table 5.4).
The initial DDR version makes use of a 2-bit prefetch buffer. The prefetch buffer is
a memory cache located on the SDRAM chip. It enables the SDRAM chip to pre-
position bits to be placed on the data bus as rapidly as possible. The DDR I/O bus
uses the same clock rate as the memory chip, but because it can handle two bits per
cycle, it achieves a data rate that is double the clock rate. The 2-bit prefetch buffer
enables the SDRAM chip to keep up with the I/O bus.

To understand the operation of the prefetch buffer, we need to look at it from
the point of view of a word transfer. The prefetch buffer size determines how many
words of data are fetched (across multiple SDRAM chips) every time a column com-
mand is performed with DDR memories. Because the core of the DRAM is much
slower than the interface, the difference is bridged by accessing information in par-
allel and then serializing it out the interface through a multiplexor (MUX). Thus,
DDR prefetches two words, which means that every time a read or a write operation
is performed, it is performed on two words of data, and bursts out of, or into, the
SDRAM over one clock cycle on both clock edges for a total of two consecutive
operations. As a result, the DDR I/O interface is twice as fast as the SDRAM core.

Although each new generation of SDRAM results is much greater capacity,
the core speed of the SDRAM has not changed significantly from generation to
generation. To achieve greater data rates than those afforded by the rather modest
increases in SDRAM clock rate, JEDEC increased the buffer size. For DDR2, a
4-bit buffer is used, allowing for words to be transferred in parallel, increasing the
effective data rate by a factor of 4. For DDR3, an 8-bit buffer is used and a factor of
8 speedup is achieved (Figure 5.14).

Table 5.4 DDR Characteristics

DDRI1 DDR2 DDR3 DDR4
Prefetch buffer (bits) 2 4 8 8
Voltage level (V) 2.5 1.8 1.5 1.2
Front side bus data rates (Mbps) 200—400 400—1066 800—2133 2133—4266

184 CHAPTER 5 / INTERNAL MEMORY

-
Z
‘oY
=
[}
5]
g
]
&0
=
&8
]
a
(3
?
==
wm
(—)
=
=
S
J

VO (100-150 MHz)] SDRAM '
100150 Mbps ‘

, (Memory array (100-200 MHz)]<—> '
12N MUX 4—»(/O (100-200 MHz) J DDR
. { Memory array (100-200 MHz) J<—> '
b m o ieemmmemeceeeceanno.o200-400Mbps L .
. (Memory array (100-266 MHz) }<—> '
' Memory array (100-266 MHz) (<—>| !
1 4N MUX /O (200-533 MHz)] DDR2
1 Memory array (100-266 MHz) (<—> '
. 400-1066 Mbps .
1 Memory array (100-266 MHz) }4—» '

Memory array (100-266 MHz)]f—»

Memory array (100-266 MHz) |[<—> '
8N MUX 1/0 (400-1066 MHz)] DDR3
~€—>| 1

Memory array (100-266 MHz)
800-2133 Mbps
Memory array (100-266 MHz)]f—»

Memory array (100-266 MHz)]f—» S~
Memory array (100-266 MHz) |<—>|

8N MUX
Memory array (100-266 MHz) |<—>

Memory array (100-266 MHz) 1<—>

DDR4

Memory array (100-266 MHz)]f—»\
Memory array (100-266 MHz) |[<—>|

8N MUX
Memory array (100-266 MHz) |<—>

Memory array (100-266 MHz) 1<—> L L

1333-3200 Mbps

MUX 4—{ 1/O (6671600 MHz) J :

Figure 5.14 DDR Generations

The downside to the prefetch is that it effectively determines the minimum
burst length for the SDRAMs. For example, it is very difficult to have an efficient
burst length of four words with DDR3’s prefetch of eight. Accordingly, the JEDEC
designers chose not to increase the buffer size to 16 bits for DDR4, but rather to
introduce the concept of a bank group [ALLA13]. Bank groups are separate enti-
ties such that they allow a column cycle to complete within a bank group, but that
column cycle does not impact what is happening in another bank group. Thus,
two prefetches of eight can be operating in parallel in the two bank groups. This
arrangement keeps the prefetch buffer size the same as for DDR3, while increasing
performance as if the prefetch is larger.

Figure 5.14 shows a configuration with two bank groups. With DDR4, up to 4
bank groups can be used.

5.4 / FLASH MEMORY 185

5.4 FLASH MEMORY

Another form of semiconductor memory is flash memory. Flash memory is used
both for internal memory and external memory applications. Here, we provide a
technical overview and look at its use for internal memory.

First introduced in the mid-1980s, flash memory is intermediate between
EPROM and EEPROM in both cost and functionality. Like EEPROM, flash mem-
ory uses an electrical erasing technology. An entire flash memory can be erased in
one or a few seconds, which is much faster than EPROM. In addition, it is possible
to erase just blocks of memory rather than an entire chip. Flash memory gets its
name because the microchip is organized so that a section of memory cells are
erased in a single action or “flash.” However, flash memory does not provide byte-
level erasure. Like EPROM, flash memory uses only one transistor per bit, and so
achieves the high density (compared with EEPROM) of EPROM.

Operation

Figure 5.15 illustrates the basic operation of a flash memory. For comparison, Fig-
ure 5.15a depicts the operation of a transistor. Transistors exploit the properties of
semiconductors so that a small voltage applied to the gate can be used to control the
flow of a large current between the source and the drain.

In a flash memory cell, a second gate—called a floating gate, because it is insu-
lated by a thin oxide layer—is added to the transistor. Initially, the floating gate does
not interfere with the operation of the transistor (Figure 5.15b). In this state, the cell is
deemed to represent binary 1. Applying a large voltage across the oxide layer causes
electrons to tunnel through it and become trapped on the floating gate, where they
remain even if the power is disconnected (Figure 5.15¢). In this state, the cell is deemed
to represent binary 0. The state of the cell can be read by using external circuitry to
test whether the transistor is working or not. Applying a large voltage in the opposite
direction removes the electrons from the floating gate, returning to a state of binary 1.

Control gate

N+
Source

P-substrate

(a) Transistor structure

+ + + + + 4+

000000

Floating gate

N+
Source
P-substrate P-substrate

N+ N+

Source

(b) Flash memory cell in one state (c) Flash memory cell in zero state

Figure 5.15 Flash Memory Operation

186 CHAPTER 5 / INTERNAL MEMORY

An important characteristic of flash memory is that it is persistent memory,
which means that it retains data when there is no power applied to the memory.
Thus, it is useful for secondary (external) storage, and as an alternative to random
access memory in computers.

NOR and NAND Flash Memory

There are two distinctive types of flash memory, designated as NOR and NAND
(Figure 5.16). In NOR flash memory, the basic unit of access is a bit, referred to as a
memory cell. Cells in NOR flash are connected in parallel to the bit lines so that each
cell can be read/write/erased individually. If any memory cell of the device is turned
on by the corresponding word line, the bit line goes low. This is similar in function to
a NOR logic gate.?

NAND flash memory is organized in transistor arrays with 16 or 32 transistors
in series. The bit line goes low only if all the transistors in the corresponding word
lines are turned on. This is similar in function to a NAND logic gate.

Although the specific quantitative values of various characteristics of NOR
and NAND are changing year by year, the relative differences between the two
types has remained stable. These differences are usefully illustrated by the Kiviat
graphs® shown in Figure 5.17.

Bit line

Word Word Word Word Word Word

line 0 line 1 line 2 line 3 line 4 line 5

| _M_ X
p— emory p— p—
- cell - -
(a) NOR flash structure

Bit line

Ground Bit-line
select Word Word Word Word Word Word Word Word select
transistor line0 line 1 line2 line3 line4 line5 line6 line7 transistor

(b) NAND flash structure

Figure 5.16 Flash Memory Structures

’The circles associated with and in Figure 5.2b indicate signal negation.

3A Kiviat graph provides a pictorial means of comparing systems along multiple variables [MORR74].
The variables are laid out at as lines of equal angular intervals within a circle, each line going from the
center of the circle to the circumference. A given system is defined by one point on each line; the closer
to the circumference, the better the value. The points are connected to yield a shape that is characteristic
of that system. The more area enclosed in the shape, the “better” is the system.

5.5 / NEWER NONVOLATILE SOLID-STATE MEMORY TECHNOLOGIES 187

Cost per bit Cost per bit
Léw

File storage
use

File storage

se Standby; ..,

Low N . asy Low, Easy
|

gh Hard |
Active) Code Activ Code
power 7 execution| power execution

High igh
High

. High .
Read speed Capacity Read speed Capacity

High | High
Write speed Write speed
(a) NOR (b) NAND

Figure 5.17 Kiviat Graphs for Flash Memory

NOR flash memory provides high-speed random access. It can read and write
data to specific locations, and can reference and retrieve a single byte. NAND reads
and writes in small blocks. NAND provides higher bit density than NOR and greater
write speed. NAND flash does not provide a random-access external address bus so
the data must be read on a blockwise basis (also known as page access), where each
block holds hundreds to thousands of bits.

For internal memory in embedded systems, NOR flash memory has tradition-
ally been preferred. NAND memory has made some inroads, but NOR remains the
dominant technology for internal memory. It is ideally suited for microcontrollers
where the amount of program code is relatively small and a certain amount of appli-
cation data does not vary. For example, the flash memory in Figure 1.16 is NOR
memory.

NAND memory is better suited for external memory, such as USB flash
drives, memory cards (in digital cameras, MP3 players, etc.), and in what are known
as solid-state disks (SSDs). We discuss SSDs in Chapter 6.

NEWER NONVOLATILE SOLID-STATE MEMORY

TECHNOLOGIES

The traditional memory hierarchy has consisted of three levels (Figure 5.18):

m Static RAM (SRAM): SRAM provides rapid access time, but is the most expen-
sive and the least dense (bit density). SRAM is suitable for cache memory.

= Dynamic RAM (DRAM): Cheaper, denser, and slower than SRAM, DRAM
has traditionally been the choice off-chip main memory.

= Hard disk: A magnetic disk provides very high bit density and very low cost
per bit, with relatively slow access times. It is the traditional choice for exter-
nal storage as part of the memory hierarchy.

188 CHAPTER 5 / INTERNAL MEMORY

Increasing performance
and endurance

A

} STT-RAM
:

.....................

.....................................

..

! ReRAM

Decreasing cost
per bit,
increasing capacity

or density

Figure 5.18 Nonvolatile RAM within the Memory Hierarchy

Into this mix, as we have seen, as been added flash memory. Flash memory has the
advantage over traditional memory that it is nonvolatile. NOR flash is best suited
to storing programs and static application data in embedded systems, while NAND
flash has characteristics intermediate between DRAM and hard disks.

Over time, each of these technologies has seen improvements in scaling: higher
bit density, higher speed, lower power consumption, and lower cost. However, for
semiconductor memory, it is becoming increasingly difficult to continue the pace of
improvement [ITRS14].

Recently, there have been breakthroughs in developing new forms of non-
volatile semiconductor memory that continue scaling beyond flash memory. The
most promising technologies are spin-transfer torque RAM (STT-RAM), phase-
change RAM (PCRAM), and resistive RAM (ReRAM) ([ITRS14], [GOER12]).
All of these are in volume production. However, because NAND Flash and to some
extent NOR Flash are still dominating the applications, these emerging memories
have been used in specialty applications and have not yet fulfilled their original
promise to become dominating mainstream high-density nonvolatile memory. This
is likely to change in the next few years.

Figure 5.18 shows how these three technologies are likely to fit into the mem-
ory hierarchy.

5.5 / NEWER NONVOLATILE SOLID-STATE MEMORY TECHNOLOGIES 189

STT-RAM

STT-RAM is a new type of magnetic RAM (MRAM), which features non-volatility,
fast writing/reading speed (< 10 ns), and high programming endurance (> 10" cycles)
and zero standby power [KULT13]. The storage capability or programmability of
MRAM arises from magnetic tunneling junction (MTJ), in which a thin tunneling
dielectric is sandwiched between two ferromagnetic layers. One ferromagnetic layer
(pinned or reference layer) is designed to have its magnetization pinned, while the
magnetization of the other layer (free layer) can be flipped by a write event. An MTJ
has a low (high) resistance if the magnetizations of the free layer and the pinned layer
are parallel (anti-parallel). In first-generation MRAM design, the magnetization of the
free layer is changed by the current-induced magnetic field. In STT-RAM, a new write
mechanism, called polarization-current-induced magnetization switching, is intro-
duced. For STT-RAM, the magnetization of the free layer is flipped by the electrical
current directly. Because the current required to switch an MTJ resistance state is pro-
portional to the MTJ cell area, STT-RAM is believed to have a better scaling property
than the first-generation MRAM. Figure 5.19a illustrates the general configuration.
STT-RAM is a good candidate for either cache or main memory.

PCRAM

Phase-change RAM (PCRAM) is the most mature or the new technologies, with an
extensive technical literature (([RAOU09], [ZHOUO09], [LEE10]).

PCRAM technology is based on a chalcogenide alloy material, which is similar
to those commonly used in optical storage media (compact discs and digital versa-
tile discs). The data storage capability is achieved from the resistance differences
between an amorphous (high-resistance) and a crystalline (low-resistance) phase
of the chalcogenide-based material. In SET operation, the phase change material is
crystallized by applying an electrical pulse that heats a significant portion of the cell
above its crystallization temperature. In RESET operation, a larger electrical current
is applied and then abruptly cut off in order to melt and then quench the material,
leaving it in the amorphous state. Figure 5.19b illustrates the general configuration.

PCRAM is a good candidate to replace or supplement DRAM for main
memory.

ReRAM

ReRAM (also known as RRAM) works by creating resistance rather than directly
storing charge. An electric current is applied to a material, changing the resistance
of that material. The resistance state can then be measured and a 1 or 0 is read as
the result. Much of the work done on ReRAM to date has focused on finding appro-
priate materials and measuring the resistance state of the cells. ReRAM designs
are low voltage, endurance is far superior to flash memory, and the cells are much
smaller —at least in theory. Figure 5.19c shows one ReRam configuration.

ReRAM is a good candidate to replace or supplement both secondary storage
and main memory.

190 CHAPTER 5 / INTERNAL MEMORY

Bit line Bit line
Perpendicular Perpendicular
F . F A .
1 ree magnetic layer binary 0 ree magnetic layer binary 1
ayer . layer .
""""" InterfaFe layer Direction of Tt Interfa.ce layer Direction of
__________ Insulating layer . L. ~_________ |Insulating layer ..
Interface layer ’magnetlzatlon Interface layer }nagnetlzatlon
Reference P dicul 4 Reference P dicul 4
laver erpendicular A laver erpendicular X
v magnetic layer Electric v magnetic layer Electric
current current
Base electrode Base electrode
(a) STT-RAM
Top electrode Top electrode
0N RNZEZN 7, 49,&’ T Polycrystaline
//\\ > \\// A | Polycrystaline Amorphous /\>// ez //\ ¢ chalcogenide
» chalcogenide chalcogenide —7\;\1\—‘) \\ |
Heater Heater
— —
|| —+=Insulator || = Insulator
Bottom electrode Bottom electrode
(b) PCRAM
Top electrode Top electrode
Reduction: Oxidation:
Insulator </\] low resistance Insulator —=] high resistance

Filament

Metal oxide

Bottom electrode

(c) ReRAM

Figure 5.19 Nonvolatile RAM Technologies

5.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Filament

Metal oxide

Bottom electrode

Key Terms
bank group electrically erasable error correcting code (ECC)
double data rate DRAM programmable ROM error correction
(DDR DRAM) (EEPROM) flash memory
dynamic RAM erasable programmable Hamming code

(DRAM)

ROM (EPROM)

hard failure

5.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 191

magnetic RAM (MRAM) read-mostly memory soft error
NAND flash memory read-only memory spin-transfer torque RAM
nonvolatile memory (ROM) (STT-RAM)
NOR flash memory resistive RAM (ReRAM) static RAM (SRAM)
phase-change RAM semiconductor memory synchronous DRAM
(PCRAM) single-error-correcting (SDRAM)
programmable ROM (SEC) code syndrome
(PROM) single-error-correcting, volatile memory
random access memory double-error-detecting
(RAM) (SEC-DED) code

Review Questions

5.1 What are the key properties of semiconductor memory?

5.2 What are two interpretations of the term random-access memory?

5.3 What is the difference between DRAM and SRAM in terms of application?

5.4 What is the difference between DRAM and SRAM in terms of characteristics such as
speed, size, and cost?

5.5 Explain why one type of RAM is considered to be analog and the other digital.

5.6 What are some applications for ROM?

5.7 What are the differences among EPROM, EEPROM, and flash memory?

5.8 Explain the function of each pin in Figure 5.4b.

5.9 What is a parity bit?

5.10 How is the syndrome for the Hamming code interpreted?

5.11 How does SDRAM differ from ordinary DRAM?

512 Whatis DDR RAM?

5.13 What is the difference between NAND and NOR flash memory?

5.14 List and briefly define three newer nonvolatile solid-state memory technologies.
Problems

5.1 Suggest reasons why RAMs traditionally have been organized as only one bit per chip
whereas ROMs are usually organized with multiple bits per chip.

5.2 Consider a dynamic RAM that must be given a refresh cycle 64 times per ms. Each
refresh operation requires 150 ns; a memory cycle requires 250 ns. What percentage of
the memory’s total operating time must be given to refreshes?

5.3 Figure 5.20 shows a simplified timing diagram for a DRAM read operation over a bus.
The access time is considered to last from ¢, to t,. Then there is a recharge time, lasting
from ¢, to £3, during which the DRAM chips will have to recharge before the processor
can access them again.

a. Assume that the access time is 60 ns and the recharge time is 40 ns. What is the
memory cycle time? What is the maximum data rate this DRAM can sustain,
assuming a 1-bit output?

b. Constructing a 32-bit wide memory system using these chips yields what data
transfer rate?

5.4 Figure 5.6 indicates how to construct a module of chips that can store 1 MB based on

a group of four 256-Kbyte chips. Let’s say this module of chips is packaged as a single
1-MB chip, where the word size is 1 byte. Give a high-level chip diagram of how to
construct an 8-MB computer memory using eight 1-MB chips. Be sure to show the
address lines in your diagram and what the address lines are used for.

192 CHAPTER 5 / INTERNAL MEMORY

Address
lines

Row address Column address

CAS

R/W

Data

lines

s

Data out valid

4

~
< _\""7""_\"_">""\

Figure 5.20 Simplified DRAM Read Timing

5.5

5.6

5.7

5.8

5.9

On a typical Intel 8086-based system, connected via system bus to DRAM memory,
for a read operation, RAS is activated by the trailing edge of the Address Enable
signal (Figure C.1 in Appendix C). However, due to propagation and other delays,
RAS does not go active until 50 ns after Address Enable returns to a low. Assume the
latter occurs in the middle of the second half of state T; (somewhat earlier than in
Figure C.1). Data are read by the processor at the end of T. For timely presentation to
the processor, however, data must be provided 60 ns earlier by memory. This interval
accounts for propagation delays along the data paths (from memory to processor) and
processor data hold time requirements. Assume a clocking rate of 10 MHz.

a. How fast (access time) should the DRAMs be if no wait states are to be inserted?
b. How many wait states do we have to insert per memory read operation if the

access time of the DRAMs is 150 ns?

The memory of a particular microcomputer is built from 64K X 1 DRAMs. Accord-
ing to the data sheet, the cell array of the DRAM is organized into 256 rows. Each
row must be refreshed at least once every 4 ms. Suppose we refresh the memory on a
strictly periodic basis.

a. What is the time period between successive refresh requests?

b. How long a refresh address counter do we need?

Figure 5.21 shows one of the early SRAMs, the 16 X 4 Signetics 7489 chip, which
stores 16 4-bit words. -

a. Listthe mode of operation of the chip for each CS input pulse shown in Figure 5.21c.
b. List the memory contents of word locations 0 through 6 after pulse n.

c. What is the state of the output data leads for the input pulses h through m?

Design a 16-bit memory of total capacity 8192 bits using SRAM chips of size 64 X 1
bit. Give the array configuration of the chips on the memory board showing all
required input and output signals for assigning this memory to the lowest address
space. The design should allow for both byte and 16-bit word accesses.

A common unit of measure for failure rates of electronic components is the Failure
unlT (FIT), expressed as a rate of failures per billion device hours. Another well
known but less used measure is mean time between failures (MTBF), which is the
average time of operation of a particular component until it fails. Consider a 1 MB
memory of a 16-bit microprocessor with 256K X 1 DRAMSs. Calculate its MTBF
assuming 2000 FITS for each DRAM.

5.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 193

A3 —>|1 16 [—— Vee Operating Inputs Outputs
s —>]2 15 J<—— A2 Mode CS R/W Dn On
R'W —>{|3 Signetics 14 [J<~— Al Write L L L L
D3 4 7489 13]] A0 L L H H
03 4_[5 12]4_ DO Read L H X Data
D2—>|6 1gxg4 U[J—>00 Inhibit H L L H
02<—{]7 SRAM 9« D1 writing H L H L
GND —{| 8 9[—— 01 Store - disable H H X H
outputs
(a) Pin layout H = high voltage level
L = low voltage level
X = don’t care
(b) Truth table
| | | | | | | | | | | | | |
A0 l | |
[I— ! I I l
] | | | |
Al : : : I —
sl [L
|]
| |

| | | | | | | | |
Chim TR GLGRlelfle] bl e
cr ™ | R | B | | |
— t t t t t t t | | |
R/W | | | | | | | | I | | |
| | | | | | | | T T T 1
D3| | ! L | L
I [[[| |
| I I I I |
D2 | | | | |
| | | |
I | | | | | |
D1, | | | I I I _1_,_:_i
I L | L | L | L | | L | L |
po' o [1 o[1]o |1]o]1]o 1t o1 o] 1|
I I I I I I I I I I I I I I
(c) Pulse train
Figure 5.21 The Signetics 7489 SRAM

5.10

511

5.12

513

5.14

For the Hamming code shown in Figure 5.10, show what happens when a check bit
rather than a data bit is in error?

Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming algo-
rithm, determine what check bits would be stored in memory with the data word.
Show how you got your answer.

For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose
when the word is read from memory, the check bits are calculated to be 1101. What is
the data word that was read from memory?

How many check bits are needed if the Hamming error correction code is used to
detect single bit errors in a 1024-bit data word?

Develop an SEC code for a 16-bit data word. Generate the code for the data word
0101000000111001. Show that the code will correctly identify an error in data bit 5.

CHAPTER

EXTERNAL MEMORY

6.1

6.2

6.3

6.4

6.5
6.6

194

Magnetic Disk
Magnetic Read and Write Mechanisms
Data Organization and Formatting
Physical Characteristics
Disk Performance Parameters

RAID
RAID Level 0
RAID Level 1
RAID Level 2
RAID Level 3
RAID Level 4
RAID Level 5
RAID Level 6

Solid State Drives
SSD Compared to HDD
SSD Organization
Practical Issues

Optical Memory
Compact Disk
Digital Versatile Disk
High-Definition Optical Disks

Magnetic Tape

Key Terms, Review Questions, and Problems

6.1 / MAGNETIC DISK 195

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Understand the key properties of magnetic disks.

@ Understand the performance issues involved in magnetic disk access.

@ Explain the concept of RAID and describe the various levels.

@ Compare and contrast hard disk drives and solid disk drives.

@ Describe in general terms the operation of flash memory.

@ Understand the differences among the different optical disk storage media.

@ Present an overview of magnetic tape storage technology.

This chapter examines a range of external memory devices and systems. We begin
with the most important device, the magnetic disk. Magnetic disks are the founda-
tion of external memory on virtually all computer systems. The next section exam-
ines the use of disk arrays to achieve greater performance, looking specifically at
the family of systems known as RAID (Redundant Array of Independent Disks).
An increasingly important component of many computer systems is the solid state
disk, which is discussed next. Then, external optical memory is examined. Finally,
magnetic tape is described.

6.1 MAGNETIC DISK

A disk is a circular platter constructed of nonmagnetic material, called the substrate,
coated with a magnetizable material. Traditionally, the substrate has been an alumi-
num or aluminum alloy material. More recently, glass substrates have been intro-
duced. The glass substrate has a number of benefits, including the following:

= [mprovement in the uniformity of the magnetic film surface to increase disk
reliability.

A significant reduction in overall surface defects to help reduce read-write
errors.

Ability to support lower fly heights (described subsequently).

Better stiffness to reduce disk dynamics.

Greater ability to withstand shock and damage.

Magnetic Read and Write Mechanisms

Data are recorded on and later retrieved from the disk via a conducting coil named
the head; in many systems, there are two heads, a read head and a write head. During
a read or write operation, the head is stationary while the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil
produces a magnetic field. Electric pulses are sent to the write head, and the result-
ing magnetic patterns are recorded on the surface below, with different patterns for
positive and negative currents. The write head itself is made of easily magnetizable

196 CHAPTER 6 / EXTERNAL MEMORY

Read
current

R)

sensor Write current T

Magnetization

Recording
medium

Figure 6.1 Inductive Write/Magnetoresistive Read Head

material and is in the shape of a rectangular doughnut with a gap along one side and
a few turns of conducting wire along the opposite side (Figure 6.1). An electric cur-
rent in the wire induces a magnetic field across the gap, which in turn magnetizes a
small area of the recording medium. Reversing the direction of the current reverses
the direction of the magnetization on the recording medium.

The traditional read mechanism exploits the fact that a magnetic field moving
relative to a coil produces an electrical current in the coil. When the surface of the
disk rotates under the head, it generates a current of the same polarity as the one
already recorded. The structure of the head for reading is in this case essentially the
same as for writing and therefore the same head can be used for both. Such single
heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read mechanism, requiring
a separate read head, positioned for convenience close to the write head. The read
head consists of a partially shielded magnetoresistive (MR) sensor. The MR mate-
rial has an electrical resistance that depends on the direction of the magnetization of
the medium moving under it. By passing a current through the MR sensor, resistance
changes are detected as voltage signals. The MR design allows higher-frequency
operation, which equates to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion
of the platter rotating beneath it. This gives rise to the organization of data on the
platter in a concentric set of rings, called tracks. Each track is the same width as the
head. There are thousands of tracks per surface.

6.1 / MAGNETIC DISK 197

Figure 6.2 depicts this data layout. Adjacent tracks are separated by intertrack
gaps. This prevents, or at least minimizes, errors due to misalignment of the head
or simply interference of magnetic fields. Data are transferred to and from the disk
in sectors. There are typically hundreds of sectors per track, and these may be of
either fixed or variable length. In most contemporary systems, fixed-length sectors
are used, with 512 bytes being the nearly universal sector size. To avoid imposing
unreasonable precision requirements on the system, adjacent sectors are separated
by intersector gaps.

A bit near the center of a rotating disk travels past a fixed point (such as a read-
write head) slower than a bit on the outside. Therefore, some way must be found to com-
pensate for the variation in speed so that the head can read all the bits at the same rate.
This can be done by defining a variable spacing between bits of information recorded in

Rotation
Inter-track gap «— ——_ Track

Inter-sector gap

Track sector

Sector -
l '
E E Read-write head
! ! / (1 per surface)
]
Platter — >]
[|

f [] R
Direction of

Cylinder Spindle arm motion Boom

Figure 6.2 Disk Data Layout

198 CHAPTER 6 / EXTERNAL MEMORY

locations on the disk, in a way that the outermost tracks has sectors with bigger spacing.
The information can then be scanned at the same rate by rotating the disk at a fixed
speed, known as the constant angular velocity (CAYV). Figure 6.3a shows the layout of
a disk using CAV. The disk is divided into a number of pie-shaped sectors and into a
series of concentric tracks. The advantage of using CAV is that individual blocks of data
can be directly addressed by track and sector. To move the head from its current loca-
tion to a specific address, it only takes a short movement of the head to a specific track
and a short wait for the proper sector to spin under the head. The disadvantage of CAV
is that the amount of data that can be stored on the long outer tracks is the only same as
what can be stored on the short inner tracks.

Because the density, in bits per linear inch, increases in moving from the outer-
most track to the innermost track, disk storage capacity in a straightforward CAV
system is limited by the maximum recording density that can be achieved on the
innermost track. To maximize storage capacity, it would be preferable to have the
same linear bit density on each track. This would require unacceptably complex cir-
cuitry. Modern hard disk systems use simpler technique, which approximates equal
bit density per track, known as multiple zone recording (MZR), in which the surface
is divided into a number of concentric zones (16 is typical). Each zone contains a
number of contiguous tracks, typically in the thousands. Within a zone, the number
of bits per track is constant. Zones farther from the center contain more bits (more
sectors) than zones closer to the center. Zones are defined in such a way that the lin-
ear bit density is approximately the same on all tracks of the disk. MZR allows for
greater overall storage capacity at the expense of somewhat more complex circuitry.
As the disk head moves from one zone to another, the length (along the track) of
individual bits changes, causing a change in the timing for reads and writes.

Figure 6.3b is a simplified MZR layout, with 15 tracks organized into 5 zones.
The innermost two zones have two tracks each, with each track having nine sectors;
the next zone has 3 tracks, each with 12 sectors; and the outermost 2 zones have 4
tracks each, with each track having 16 sectors.

(a) Constant angular velocity (b) Multiple zone recording

Figure 6.3 Comparison of Disk Layout Methods

6.1 / MAGNETIC DISK 199

Some means is needed to locate sector positions within a track. Clearly, there
must be some starting point on the track and a way of identifying the start and end
of each sector. These requirements are handled by means of control data recorded
on the disk. Thus, the disk is formatted with some extra data used only by the disk
drive and not accessible to the user.

An example of disk formatting is shown in Figure 6.4. In this case, each track
contains 30 fixed-length sectors of 600 bytes each. Each sector holds 512 bytes of
data plus control information useful to the disk controller. The ID field is a unique
identifier or address used to locate a particular sector. The SYNCH byte is a spe-
cial bit pattern that delimits the beginning of the field. The track number identi-
fies a track on a surface. The head number identifies a head, because this disk has
multiple surfaces (explained presently). The ID and data fields each contain an
error-detecting code.

Physical Characteristics

Table 6.1 lists the major characteristics that differentiate among the various types
of magnetic disks. First, the head may either be fixed or movable with respect to the
radial direction of the platter. In a fixed-head disk, there is one read-write head per
track. All of the heads are mounted on a rigid arm that extends across all tracks;
such systems are rare today. In a movable-head disk, there is only one read-write
head. Again, the head is mounted on an arm. Because the head must be able to be
positioned above any track, the arm can be extended or retracted for this purpose.

The disk itself is mounted in a disk drive, which consists of the arm, a spindle
that rotates the disk, and the electronics needed for input and output of binary data.
A nonremovable disk is permanently mounted in the disk drive; the hard disk in
a personal computer is a nonremovable disk. A removable disk can be removed
and replaced with another disk. The advantage of the latter type is that unlimited
amounts of data are available with a limited number of disk systems. Furthermore,
such a disk may be moved from one computer system to another. Floppy disks and
ZIP cartridge disks are examples of removable disks.

Index J_l £ |_|
Sector J_l Physical sector 0 |_| Physical sector 1 | I I | Physical sector 29 |_|

ID Data ID Data ID Data
G G G: G G G G: G G
| fiea | 7P | fiewd | 3P [U7P | fiela | 3P | fiewa | T3P P | fieta | 3P | fiela | T3P
0 0 1 1 29 29
Bytes 17 7 41 515 20 17 7 41 515 .20 17 7 41 515 20
\ |
! 600 bytes/sector !
Synch | Track | Head |Sector Synch
byte | # # # CRC byte Data | CRC
Bytes 1 2 1 1 2 1 512 2

Figure 6.4 Winchester Disk Format (Seagate ST506)

200 CHAPTER 6 / EXTERNAL MEMORY

Table 6.1 Physical Characteristics of Disk Systems

Head Motion Platters
Fixed head (one per track) Single platter
Movable head (one per surface) Multiple platter
Disk Portability Head Mechanism
Nonremovable disk Contact (floppy)
Removable disk Fixed gap
Sides Aerodynamic gap (Winchester)
Single sided
Double sided

For most disks, the magnetizable coating is applied to both sides of the plat-
ter, which is then referred to as double sided. Some less expensive disk systems use
single-sided disks.

Some disk drives accommodate multiple platters stacked vertically a fraction
of an inch apart. Multiple arms are provided (Figure 6.2). Multiple—platter disks
employ a movable head, with one read-write head per platter surface. All of the
heads are mechanically fixed so that all are at the same distance from the center of
the disk and move together. Thus, at any time, all of the heads are positioned over
tracks that are of equal distance from the center of the disk. The set of all the tracks
in the same relative position on the platter is referred to as a cylinder. This is illus-
trated in Figure 6.2.

Finally, the head mechanism provides a classification of disks into three types.
Traditionally, the read-write head has been positioned a fixed distance above the
platter, allowing an air gap. At the other extreme is a head mechanism that actually
comes into physical contact with the medium during a read or write operation. This
mechanism is used with the floppy disk, which is a small, flexible platter and the
least expensive type of disk.

To understand the third type of disk, we need to comment on the relation-
ship between data density and the size of the air gap. The head must generate or
sense an electromagnetic field of sufficient magnitude to write and read properly.
The narrower the head is, the closer it must be to the platter surface to function. A
narrower head means narrower tracks and therefore greater data density, which is
desirable. However, the closer the head is to the disk, the greater the risk of error
from impurities or imperfections. To push the technology further, the Winchester
disk was developed. Winchester heads are used in sealed drive assemblies that are
almost free of contaminants. They are designed to operate closer to the disk’s sur-
face than conventional rigid disk heads, thus allowing greater data density. The
head is actually an aerodynamic foil that rests lightly on the platter’s surface when
the disk is motionless. The air pressure generated by a spinning disk is enough
to make the foil rise above the surface. The resulting noncontact system can be
engineered to use narrower heads that operate closer to the platter’s surface than
conventional rigid disk heads.

Table 6.2 gives disk parameters for typical contemporary high-performance
disks.

6.1 / MAGNETIC DISK 201

Table 6.2 Typical Hard Disk Drive Parameters

Seagate Seagate Seagate Cheetah Seagate Laptop
Characteristics Enterprise Barracuda XT NS HDD
Application Enterprise Desktop Network-attached Laptop
storage, application
servers
Capacity 6TB 3TB 600 GB 2TB
Average seek time 4.16 ms N/A 3.9 ms read 13 ms
4.2 ms write
Spindle speed 7200 rpm 7200 rpm 10,075 rpm 5400 rpm
Average latency 4.16 ms 4.16 ms 2.98 5.6 ms
Maximum sustained 216 MB/sec 149 MB/sec 97 MB/sec 300 MB/sec
transfer rate
Bytes per sector 512/4096 512 512 4096
Tracks per cylinder 8 10 8 4
(number of platter
surfaces)
Cache 128 MB 64 MB 16 MB 8 MB

Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the oper-
ating system, and the nature of the I/O channel and disk controller hardware. A
general timing diagram of disk I/O transfer is shown in Figure 6.5.

When the disk drive is operating, the disk is rotating at constant speed. To
read or write, the head must be positioned at the desired track and at the beginning
of the desired sector on that track. Track selection involves moving the head in a
movable-head system or electronically selecting one head on a fixed-head system.
On a movable-head system, the time it takes to position the head at the track is
known as seek time. In either case, once the track is selected, the disk controller
waits until the appropriate sector rotates to line up with the head. The time it takes
for the beginning of the sector to reach the head is known as rotational delay, or
rotational latency. The sum of the seek time, if any, and the rotational delay equals
the access time, which is the time it takes to get into position to read or write. Once
the head is in position, the read or write operation is then performed as the sector
moves under the head; this is the data transfer portion of the operation; the time
required for the transfer is the transfer time.

In addition to the access time and transfer time, there are several queuing
delays normally associated with a disk I/O operation. When a process issues an I/O

Wait for Wait for Seek Rotational Data
device channel delay transfer

AR I]

Device busy

Figure 6.5 Timing of a Disk I/O Transfer

202 CHAPTER 6 / EXTERNAL MEMORY

request, it must first wait in a queue for the device to be available. At that time, the
device is assigned to the process. If the device shares a single I/O channel or a set
of I/O channels with other disk drives, then there may be an additional wait for the
channel to be available. At that point, the seek is performed to begin disk access.

In some high-end systems for servers, a technique known as rotational pos-
itional sensing (RPS) is used. This works as follows: When the seek command has
been issued, the channel is released to handle other I/O operations. When the seek
is completed, the device determines when the data will rotate under the head. As
that sector approaches the head, the device tries to reestablish the communication
path back to the host. If either the control unit or the channel is busy with another
I/O, then the reconnection attempt fails and the device must rotate one whole
revolution before it can attempt to reconnect, which is called an RPS miss. This is
an extra delay element that must be added to the timeline of Figure 6.5.

SEEK TIME Seek time is the time required to move the disk arm to the required track.
It turns out that this is a difficult quantity to pin down. The seek time consists of two
key components: the initial startup time, and the time taken to traverse the tracks that
have to be crossed once the access arm is up to speed. Unfortunately, the traversal
time is not a linear function of the number of tracks, but includes a settling time (time
after positioning the head over the target track until track identification is confirmed).
Much improvement comes from smaller and lighter disk components. Some
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most com-
mon size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to
travel. A typical average seek time on contemporary hard disks is under 10 ms.

ROTATIONAL DELAY Disks, other than floppy disks, rotate at speeds ranging from
3600 rpm (for handheld devices such as digital cameras) up to, as of this writing,
20,000 rpm; at this latter speed, there is one revolution per 3 ms. Thus, on the
average, the rotational delay will be 1.5 ms.

TRANSFER TIME The transfer time to or from the disk depends on the rotation
speed of the disk in the following fashion:

where

T = transfer time

b = number of bytes to be transferred

N = number of bytes on a track

r = rotation speed, in revolutions per second

Thus the total average read or write time 7}, can be expressed as

1 b
T = Ty + — + — 1
total K 2 N (6)

where T is the average seek time. Note that on a zoned drive, the number of bytes
per track is variable, complicating the calculation.'

!Compare the two preceding equations to Equation (4.1).

6.1 / MAGNETIC DISK 203

A TIMING COMPARISON With the foregoing parameters defined, let us look at
two different I/O operations that illustrate the danger of relying on average values.
Consider a disk with an advertised average seek time of 4 ms, rotation speed of
15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish
to read a file consisting of 2500 sectors for a total of 1.28 Mbytes. We would like to
estimate the total time for the transfer.

First, let us assume that the file is stored as compactly as possible on
the disk. That is, the file occupies all of the sectors on 5 adjacent tracks
(5 tracks X 500 sectors/track = 2500 sectors). This is known as sequential organ-
ization. Now, the time to read the first track is as follows:

Average seek 4 ms
Average rotational delay 2 ms
Read 500 sectors 4 ms

10 ms

Suppose that the remaining tracks can now be read with essentially no seek
time. That is, the I/O operation can keep up with the flow from the disk. Then, at
most, we need to deal with rotational delay for the four remaining tracks. Thus each
successive track isread in 2 + 4 = 6 ms. To read the entire file,

Total time = 10 + (4 X 6) = 34 ms = 0.034 seconds

Now let us calculate the time required to read the same data using random
access rather than sequential access; that is, accesses to the sectors are distributed
randomly over the disk. For each sector, we have

Average seek 4 ms
Rotational delay 2 ms

Read 1 sectors 0.008 ms
6.008 ms

Total time = 2500 X 6.008 = 15,020 ms = 15.02 seconds

It is clear that the order in which sectors are read from the disk has a tre-
mendous effect on I/O performance. In the case of file access in which multiple
sectors are read or written, we have some control over the way in which sectors
of data are deployed. However, even in the case of a file access, in a multipro-
gramming environment, there will be I/O requests competing for the same disk.
Thus, it is worthwhile to examine ways in which the performance of disk I/O
can be improved over that achieved with purely random access to the disk. This
leads to a consideration of disk scheduling algorithms, which is the province of
the operating system and beyond the scope of this book (see [STAL15] for a
discussion).

tive o,
\Q\eiaﬂ 6:%
N °
[~

RAID Simulator

204 CHAPTER 6 / EXTERNAL MEMORY

6.2 RAID

As discussed earlier, the rate in improvement in secondary storage performance has
been considerably less than the rate for processors and main memory. This mismatch
has made the disk storage system perhaps the main focus of concern in improving
overall computer system performance.

As in other areas of computer performance, disk storage designers recognize
that if one component can only be pushed so far, additional gains in performance
are to be had by using multiple parallel components. In the case of disk storage, this
leads to the development of arrays of disks that operate independently and in par-
allel. With multiple disks, separate I/O requests can be handled in parallel, as long
as the data required reside on separate disks. Further, a single I/O request can be
executed in parallel if the block of data to be accessed is distributed across multiple
disks.

With the use of multiple disks, there is a wide variety of ways in which the data
can be organized and in which redundancy can be added to improve reliability. This
could make it difficult to develop database schemes that are usable on a number of
platforms and operating systems. Fortunately, industry has agreed on a standard-
ized scheme for multiple-disk database design, known as RAID (Redundant Array
of Independent Disks). The RAID scheme consists of seven levels,” zero through
six. These levels do not imply a hierarchical relationship but designate different
design architectures that share three common characteristics:

1. RAID is a set of physical disk drives viewed by the operating system as a
single logical drive.

2. Data are distributed across the physical drives of an array in a scheme known
as striping, described subsequently.

3. Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID
levels. RAID 0 and RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers
at the University of California at Berkeley [PATTSS].> The paper outlined vari-
ous RAID configurations and applications and introduced the definitions of the
RAID levels that are still used. The RAID strategy employs multiple disk drives
and distributes data in such a way as to enable simultaneous access to data from
multiple drives, thereby improving I/O performance and allowing easier incremen-
tal increases in capacity.

Additional levels have been defined by some researchers and some companies, but the seven levels
described in this section are the ones universally agreed on.

3In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpen-
sive was used to contrast the small relatively inexpensive disks in the RAID array to the alternative, a
single large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk technol-
ogy being used for both RAID and non-RAID configurations. Accordingly, the industry has adopted the
term independent to emphasize that the RAID array creates significant performance and reliability gains.

6.2 / RAID 205

The unique contribution of the RAID proposal is to address effectively the
need for redundancy. Although allowing multiple heads and actuators to operate
simultaneously achieves higher I/O and transfer rates, the use of multiple devices
increases the probability of failure. To compensate for this decreased reliability,
RAID makes use of stored parity information that enables the recovery of data lost
due to a disk failure.

We now examine each of the RAID levels. Table 6.3 provides a rough guide
to the seven levels. In the table, I/O performance is shown both in terms of data
transfer capacity, or ability to move data, and I/O request rate, or ability to satisfy
I/0O requests, since these RAID levels inherently perform differently relative to
these two metrics. Each RAID level’s strong point is highlighted by darker shad-
ing. Figure 6.6 illustrates the use of the seven RAID schemes to support a data
capacity requiring four disks with no redundancy. The figures highlight the layout
of user data and redundant data and indicates the relative storage requirements of
the various levels. We refer to these figures throughout the following discussion.
Of the seven RAID levels described, only four are commonly used: RAID levels
0,1,5, and 6.

RAID Level 0

RAID level 0 is not a true member of the RAID family because it does not include
redundancy to improve performance. However, there are a few applications, such as
some on supercomputers in which performance and capacity are primary concerns
and low cost is more important than improved reliability.

For RAID 0, the user and system data are distributed across all of the disks in
the array. This has a notable advantage over the use of a single large disk: If two-
different I/O requests are pending for two different blocks of data, then there is a
good chance that the requested blocks are on different disks. Thus, the two requests
can be issued in parallel, reducing the I/O queuing time.

But RAID 0, as with all of the RAID levels, goes further than simply distribut-
ing the data across a disk array: The data are striped across the available disks. This
is best understood by considering Figure 6.7. All of the user and system data are
viewed as being stored on a logical disk. The logical disk is divided into strips; these
strips may be physical blocks, sectors, or some other unit. The strips are mapped
round robin to consecutive physical disks in the RAID array. A set of logically con-
secutive strips that maps exactly one strip to each array member is referred to as a
stripe. In an n-disk array, the first n logical strips are physically stored as the first
strip on each of the n disks, forming the first stripe; the second # strips are distributed
as the second strips on each disk; and so on. The advantage of this layout is that if a
single I/O request consists of multiple logically contiguous strips, then up to » strips
for that request can be handled in parallel, greatly reducing the I/O transfer time.

Figure 6.7 indicates the use of array management software to map between
logical and physical disk space. This software may execute either in the disk subsys-
tem or in a host computer.

RAID (0 FOR HIGH DATA TRANSFER CAPACITY The performance of any of the
RAID levels depends critically on the request patterns of the host system and on the
layout of the data. These issues can be most clearly addressed in RAID 0, where the

90¢

Table 6.3 RAID Levels

Disks Large 1/0 Data Small I/0
Category Level Description Required Data Availability Transfer Capacity Request Rate
Striping 0 Nonredundant N Lower than single disk Very high vszrtZ high for both read and
Higher than RAID 2, Higher than single disk Up to twice that of a single
Mirroring 1 Mirrored 2N 3,4, or 5; lower than for read; similar to single disk for read; similar to
RAID 6 disk for write single disk for write
Redundant via Much h¥gher than Highest of all listed Approximately twice that
2 Hamming code N m single disk; comparable alternatives of a single disk
Parallel & to RAID 3,4, or 5 &
access i
Bit-interleaved Much h¥gher than Highest of all listed Approximately twice that
3 it N+1 single disk; comparable lternati £ a sinele disk
parity to RAID 2. 4, or 5 alternatives of a single dis
. Much higher than Similar to RAID 0 for Similar to RAID 0 for read;
Block-interleaved . . s .
4 arit N+1 single disk; comparable | read; significantly lower significantly lower than
panty to RAID 2,3, 0or 5 than single disk for write single disk for write
. Much higher than Similar to RAID 0 for Similar to RAID 0 for read;
Independent Block-interleaved . o) . .
access 5 e e N+1 single disk; comparable | read; lower than single generally lower than single
to RAID 2,3, or 4 disk for write disk for write
Block-interleaved Hichest of all listed Similar to RAID 0 for Similar to RAID 0 for read;
6 dual distributed N +2 altgrnatives read; lower than RAID 5 | significantly lower than
parity for write RAID 5 for write

Note: N = number of data disks; m proportional to log N

6.2 / RAID 207

(a) RAID 0 (Nonredundant)

(b) RAID 1 (Mirrored)

|
| | | |
N) <) <) S !

—_———— —_——_ - -

(c) RAID 2 (Redundancy through Hamming code)
Figure 6.6 RAID Levels (Continued)

impact of redundancy does not interfere with the analysis. First, let us consider the
use of RAID 0 to achieve a high data transfer rate. For applications to experience
a high transfer rate, two requirements must be met. First, a high transfer capacity
must exist along the entire path between host memory and the individual disk
drives. This includes internal controller buses, host system I/O buses, I/O adapters,
and host memory buses.

The second requirement is that the application must make I/O requests that
drive the disk array efficiently. This requirement is met if the typical request is for
large amounts of logically contiguous data, compared to the size of a strip. In this
case, a single I/O request involves the parallel transfer of data from multiple disks,
increasing the effective transfer rate compared to a single-disk transfer.

RAID (0 FOR HIGH I/0 REQUEST RATE In a transaction-oriented environment,
the user is typically more concerned with response time than with transfer rate. For
an individual I/O request for a small amount of data, the I/O time is dominated by
the motion of the disk heads (seek time) and the movement of the disk (rotational
latency).

In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the 1/O load
across multiple disks. Effective load balancing is achieved only if there are typically

208 CHAPTER 6 / EXTERNAL MEMORY

(e) RAID 4 (Block-level parity)

ATy Ty

Ty Ty
N) N . —
block 0 block 1 block 2 block 3 P(0-3)
block 4 block 5 block 6 P4-7) block 7
block 8 block 9 P(8-11) block 10 block 11
block 12 P(12-15) block 13 block 14 block 15
P(16-19) block 16 block 17 block 18 block 19

(g) RAID 6 (Dual redundancy)
Figure 6.6 RAID Levels (Continued)

multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single transaction-oriented application that is capable of
multiple asynchronous I/O requests. The performance will also be influenced by the
strip size. If the strip size is relatively large, so that a single I/O request only involves
a single disk access, then multiple waiting I/O requests can be handled in parallel,
reducing the queuing time for each request.

6.2 / RAID 209

Logical Disk
—_— - - - -
Me~__ _ .
e o |
N 1 | :
N M I X 0 X | I A H I A
o 1 1 1 1
strip 4 . ! o I | . I . i
&/ Physical ' Physical | Physical Physical
strip 6 disk 0 : disk 1 : disk 2 : disk 3
M :
strip 7 ' 1 :
' |
' |
Array ! 1
Management !
Software

strip 12
strip 13
strip 14
strip 15

Figure 6.7 Data Mapping for a RAID Level 0 Array

RAID Level 1

RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is
achieved. In these other RAID schemes, some form of parity calculation is used to
introduce redundancy, whereas in RAID 1, redundancy is achieved by the simple
expedient of duplicating all the data. As Figure 6.6b shows, data striping is used, as in
RAID 0. But in this case, each logical strip is mapped to two separate physical disks
so that every disk in the array has a mirror disk that contains the same data. RAID 1
can also be implemented without data striping, though this is less common.

1.

There are a number of positive aspects to the RAID 1 organization:

A read request can be serviced by either of the two disks that contains the
requested data, whichever one involves the minimum seek time plus rota-
tional latency.

A write request requires that both corresponding strips be updated, but this
can be done in parallel. Thus, the write performance is dictated by the slower
of the two writes (i.e., the one that involves the larger seek time plus rotational
latency). However, there is no “write penalty” with RAID 1. RAID levels
2 through 6 involve the use of parity bits. Therefore, when a single strip is
updated, the array management software must first compute and update the
parity bits as well as updating the actual strip in question.

Recovery from a failure is simple. When a drive fails, the data may still be
accessed from the second drive.

210 CHAPTER 6 / EXTERNAL MEMORY

The principal disadvantage of RAID 1 is the cost; it requires twice the disk
space of the logical disk that it supports. Because of that, a RAID 1 configuration
is likely to be limited to drives that store system software and data and other
highly critical files. In these cases, RAID 1 provides real-time copy of all data
so that in the event of a disk failure, all of the critical data are still immediately
available.

In a transaction-oriented environment, RAID 1 can achieve high I/O request
rates if the bulk of the requests are reads. In this situation, the performance of
RAID 1 can approach double of that of RAID 0. However, if a substantial fraction
of the I/O requests are write requests, then there may be no significant performance
gain over RAID 0. RAID 1 may also provide improved performance over RAID
0 for data transfer intensive applications with a high percentage of reads. Improve-
ment occurs if the application can split each read request so that both disk members
participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access
array, all member disks participate in the execution of every I/O request. Typically,
the spindles of the individual drives are synchronized so that each disk head is in the
same position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2
and 3, the strips are very small, often as small as a single byte or word. With RAID 2,
an error-correcting code is calculated across corresponding bits on each data disk,
and the bits of the code are stored in the corresponding bit positions on multiple par-
ity disks. Typically, a Hamming code is used, which is able to correct single-bit errors
and detect double-bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly.
The number of redundant disks is proportional to the log of the number of data
disks. On a single read, all disks are simultaneously accessed. The requested data
and the associated error-correcting code are delivered to the array controller. If
there is a single-bit error, the controller can recognize and correct the error instantly,
so that the read access time is not slowed. On a single write, all data disks and parity
disks must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many
disk errors occur. Given the high reliability of individual disks and disk drives,
RAID 2 is overkill and is not implemented.

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID
3 requires only a single redundant disk, no matter how large the disk array. RAID
3 employs parallel access, with data distributed in small strips. Instead of an error-
correcting code, a simple parity bit is computed for the set of individual bits in the
same position on all of the data disks.

REDUNDANCY In the event of a drive failure, the parity drive is accessed
and data is reconstructed from the remaining devices. Once the failed drive
is replaced, the missing data can be restored on the new drive and operation
resumed.

6.2/ RAID 211

Data reconstruction is simple. Consider an array of five drives in which X0 through
X3 contain data and X4 is the parity disk. The parity for the ith bit is calculated as follows:

X4(i) = X3(i) @ X2(i) @ X1(i) @ X0(i)

where @ is exclusive-OR function.
Suppose that drive X1 has failed. If we add X4(i) @ X1(i) to both sides of the
preceding equation, we get

X1(i) = X4(i) @ X3(i) @ X2(i) @ X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents
of the corresponding strips on the remaining disks in the array. This principle is true
for RAID levels 3 through 6.

In the event of a disk failure, all of the data are still available in what is referred
to as reduced mode. In this mode, for reads, the missing data are regenerated on the
fly using the exclusive-OR calculation. When data are written to a reduced RAID 3
array, consistency of the parity must be maintained for later regeneration. Return to
full operation requires that the failed disk be replaced and the entire contents of the
failed disk be regenerated on the new disk.

PERFORMANCE Because data are striped in very small strips, RAID 3 can achieve
very high data transfer rates. Any I/O request will involve the parallel transfer of
data from all of the data disks. For large transfers, the performance improvement is
especially noticeable. On the other hand, only one I/O request can be executed at a
time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate
1/O requests can be satisfied in parallel. Because of this, independent access arrays
are more suitable for applications that require high I/O request rates and are rela-
tively less suited for applications that require high data transfer rates.

As in the other RAID schemes, data striping is used. In the case of RAID
4 through 6, the strips are relatively large. With RAID 4, a bit-by-bit parity strip
is calculated across corresponding strips on each data disk, and the parity bits are
stored in the corresponding strip on the parity disk.

RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update
not only the user data but also the corresponding parity bits. Consider an array of
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose
that a write is performed that only involves a strip on disk X1. Initially, for each bit i,
we have the following relationship:

X4(i) = X3(i) @ X2(i)) @ X1(i) @ X0(i) (6.2)
After the update, with potentially altered bits indicated by a prime symbol:
X4'(i) = X3() @ X2(i) @ X1'(1)X0(i)
= X3(i) @ X2(i) @ X1'(i) @ X0(1) @ X1(i) ® X1(i)

= X3(3) @ X2() @ X1() @ X0() @ X1() ® X1'(i)
= X4() @ X1() @ X1'()

212 CHAPTER 6 / EXTERNAL MEMORY

The preceding set of equations is derived as follows. The first line shows that a
change in X1 will also affect the parity disk X4. In the second line, we add the terms
@ X1(i) @ X1(i)]. Because the exclusive-OR of any quantity with itself is 0, this
does not affect the equation. However, it is a convenience that is used to create
the third line, by reordering. Finally, Equation (6.2) is used to replace the first four
terms by X4(i).

To calculate the new parity, the array management software must read the old user
strip and the old parity strip. Then it can update these two strips with the new data and
the newly calculated parity. Thus, each strip write involves two reads and two writes.

In the case of a larger size I/O write that involves strips on all disk drives, parity
is easily computed by calculation using only the new data bits. Thus, the parity drive
can be updated in parallel with the data drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which there-
fore can become a bottleneck.

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID
5 distributes the parity strips across all disks. A typical allocation is a round-robin
scheme, as illustrated in Figure 6.6f. For an n-disk array, the parity strip is on a differ-
ent disk for the first # stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O
bottle-neck found in RAID 4.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers
[KATZ89]. In the RAID 6 scheme, two different parity calculations are carried out
and stored in separate blocks on different disks. Thus, a RAID 6 array whose user
data require N disks consists of N + 2 disks.

Figure 6.6g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the exclusive-OR calculation used in RAID 4 and 5. But
the other is an independent data check algorithm. This makes it possible to regener-
ate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability.
Three disks would have to fail within the MTTR (mean time to repair) interval to
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty,
because each write affects two parity blocks. Performance benchmarks [EISC07]
show a RAID 6 controller can suffer more than a 30% drop in overall write per-
formance compared with a RAID 5 implementation. RAID 5 and RAID 6 read
performance is comparable.

Table 6.4 is a comparative summary of the seven levels.

6.3 SOLID STATE DRIVES

One of the most significant developments in computer architecture in recent years is
the increasing use of solid state drives (SSDs) to complement or even replace hard
disk drives (HDDs), both as internal and external secondary memory. The term solid

Table 6.4 RAID Comparison

6.3 / SOLID STATE DRIVES 213

Level Advantages Disadvantages Applications
I/O performance is greatly improved The failure of just one Video production and
by spreading the I/O load across many drive will result in all data | editing
channels and drives in an array being lost Image Editing
0 No parity calculation overhead is involved Pre-press applications
Very simple design Any application requiring
Easy to implement high bandwidth
100% redundancy of data means no Highest disk overhead Accounting
rebu.ild is necessary in case of a disk .fail- of all RAI.D typt.as Payroll
ure, just a copy to the replacement disk (100%) —inefficient . .
Financial
1 Under certain circumstances, RAID 1 A licati .
can sustain multiple simultaneous drive 1y app 1cat19n requirng
failires very high availability
Simplest RAID storage subsystem design
Extremely high data transfer rates possible | Very high ratio of ECC No commercial imple-
The higher the data transfer rate disks to data disks mentations exist/not
required, the better the ratio of data with smaller word commercially viable
2 disks to ECC disks sizes —inefficient
Relatively simple controller design com- Entf? level COSt' very high—
pared to RAID levels 3,4, & 5 IrEqpuliEs el g i reiten
rate requirement to justify
Very high read data transfer rate Transaction rate equal to Video production and live
Very high write data transfer rate that of a single disk drive streaming
. . L . at best (if spindles are T et
Disk failure has an insignificant impact synchronized) ' g - g
3 on throughput L Video editing
. X X Controller design is fairly L
Low ratio of ECC (parity) disks to data complex Prepress applications
disks means high efficiency Any application requiring
high throughput
Very high Read data transaction rate Quite complex controller No commercial imple-
Low ratio of ECC (parity) disks to data | design mentations exist/not
disks means high efficiency Worst write transaction commercially viable
4 rate and Write aggregate
transfer rate
Difficult and inefficient
data rebuild in the event
of disk failure
Highest Read data transaction rate Most complex controller File and application servers
Low ratio of ECC (parity) disks to data | design Database servers
s disks means high efficiency Difficult to Febuil.d in the Web, e-mail, and news
Good aggregate transfer rate event of a disk failure servers
(as compared to RAID .
level 1) ntranet servers
Most versatile RAID level
Provides for an extremely high data More complex controller Perfect solution for mis-
fault tolerance and can sustain multiple design sion critical applications
6 simultaneous drive failures Clomimsiller evainead (©
compute parity addresses
is extremely high

214 CHAPTER 6 / EXTERNAL MEMORY

state refers to electronic circuitry built with semiconductors. An SSD is a memory
device made with solid state components that can be used as a replacement to a
hard disk drive. The SSDs now on the market and coming on line use NAND flash
memory, which is described in Chapter 5.

SSD Compared to HDD

As the cost of flash-based SSDs has dropped and the performance and bit density
increased, SSDs have become increasingly competitive with HDDs. Table 6.5 shows
typical measures of comparison at the time of this writing.

SSDs have the following advantages over HDDs:

= High-performance input/output operations per second (IOPS): Significantly
increases performance 1/0 subsystems.

= Durability: Less susceptible to physical shock and vibration.
= Longer lifespan: SSDs are not susceptible to mechanical wear.

= Lower power consumption: SSDs use considerably less power than
comparable-size HDDs.

m Quieter and cooler running capabilities: Less space required, lower energy
costs, and a greener enterprise.

= Lower access times and latency rates: Over 10 times faster than the spinning
disks in an HDD.

Currently, HDDs enjoy a cost per bit advantage and a capacity advantage, but
these differences are shrinking.

SSD Organization

Figure 6.8 illustrates a general view of the common architectural system component
associated with any SSD system. On the host system, the operating system invokes
file system software to access data on the disk. The file system, in turn, invokes I/O
driver software. The I/O driver software provides host access to the particular SSD
product. The interface component in Figure 6.8 refers to the physical and electrical
interface between the host processor and the SSD peripheral device. If the device is
an internal hard drive, a common interface is PCle. For external devices, one com-
mon interface is USB.

Table 6.5 Comparison of Solid State Drives and Disk Drives

NAND Flash Drives

Seagate Laptop Internal HDD

File copy/write speed

200-550 Mbps

50-120 Mbps

Power draw/battery life

Less power draw, averages 2-3 watts,
resulting in 30+ minute battery boost

More power draw, averages 6—7 watts
and therefore uses more battery

Storage capacity

Typically not larger than 512 GB for
notebook size drives; 1 TB max for
desktops

Typically around 500 GB and 2 TB
max for notebook size drives; 4 TB
max for desktops

Cost

Approx. $0.50 per GB for a 1-TB drive

Approx. $0.15 per GB for a 4-TB
drive

6.3 / SOLID STATE DRIVES 215

- - ——

Host system

Operating system
software

File system software

1/0O driver software
|

Interface

TN ummEmm——

Interface SSD

Controller

I
Addressing
I I
Data buffer/ | | Error

cache correction
|

Flash
memory
components

Flash
memory
components

Flash
memory
components

Flash
memory
components

R N RN m———

Figure 6.8 Solid State Drive Architecture

In addition to the interface to the host system, the SSD contains the following
components:
= Controller: Provides SSD device level interfacing and firmware execution.

m Addressing: Logic that performs the selection function across the flash
memory components.

= Data buffer/cache: High speed RAM memory components used for speed
matching and to increased data throughput.

216 CHAPTER 6 / EXTERNAL MEMORY

= Error correction: Logic for error detection and correction.
= Flash memory components: Individual NAND flash chips.

Practical Issues

There are two practical issues peculiar to SSDs that are not faced by HDDs. First,
SSD performance has a tendency to slow down as the device is used. To under-
stand the reason for this, you need to know that files are stored on disk as a set of
pages, typically 4 KB in length. These pages are not necessarily, and indeed not typ-
ically, stored as a contiguous set of pages on the disk. The reason for this arrange-
ment is explained in our discussion of virtual memory in Chapter 8. However, flash
memory is accessed in blocks, with a typical block size of 512 KB, so that there are
typically 128 pages per block. Now consider what must be done to write a page
onto a flash memory.

1. The entire block must be read from the flash memory and placed in a RAM
buffer. Then the appropriate page in the RAM buffer is updated.

2. Before the block can be written back to flash memory, the entire block of flash
memory must be erased —it is not possible to erase just one page of the flash
memory.

3. The entire block from the buffer is now written back to the flash memory.

Now, when a flash drive is relatively empty and a new file is created, the pages
of that file are written on to the drive contiguously, so that one or only a few blocks
are affected. However, over time, because of the way virtual memory works, files
become fragmented, with pages scattered over multiple blocks. As the drive become
more occupied, there is more fragmentation, so the writing of a new file can affect
multiple blocks. Thus, the writing of multiple pages from one block becomes slower,
the more fully occupied the disk is. Manufacturers have developed a variety of
techniques to compensate for this property of flash memory, such as setting aside
a substantial portion of the SSD as extra space for write operations (called over-
provisioning), then to erase inactive pages during idle time used to defragment the
disk. Another technique is the TRIM command, which allows an operating system
to inform an SSD which blocks of data are no longer considered in use and can be
wiped internally.*

A second practical issue with flash memory drives is that a flash memory
becomes unusable after a certain number of writes. As flash cells are stressed,
they lose their ability to record and retain values. A typical limit is 100,000 writes
[GSOEO08]. Techniques for prolonging the life of an SSD drive include front-ending
the flash with a cache to delay and group write operations, using wear-leveling
algorithms that evenly distribute writes across block of cells, and sophisticated bad-
block management techniques. In addition, vendors are deploying SSDs in RAID
configurations to further reduce the probability of data loss. Most flash devices are
also capable of estimating their own remaining lifetimes so systems can anticipate
failure and take preemptive action.

“While TRIM is frequently spelled in capital letters, it is not an acronym; it is merely a command name.

6.4 / OPTICAL MEMORY 217

6.4 OPTICAL MEMORY

In 1983, one of the most successful consumer products of all time was introduced:
the compact disk (CD) digital audio system. The CD is a nonerasable disk that can
store more than 60 minutes of audio information on one side. The huge commercial
success of the CD enabled the development of low-cost optical-disk storage technol-
ogy that has revolutionized computer data storage. A variety of optical-disk systems
have been introduced (Table 6.6). We briefly review each of these.

Compact Disk

CD-ROM Both the audio CD and the CD-ROM (compact disk read-only memory)
share a similar technology. The main difference is that CD-ROM players are more
rugged and have error correction devices to ensure that data are properly transferred
from disk to computer. Both types of disk are made the same way. The disk is formed
from a resin, such as polycarbonate. Digitally recorded information (either music
or computer data) is imprinted as a series of microscopic pits on the surface of the
polycarbonate. This is done, first of all, with a finely focused, high-intensity laser to
create a master disk. The master is used, in turn, to make a die to stamp out copies
onto polycarbonate. The pitted surface is then coated with a highly reflective surface,
usually aluminum or gold. This shiny surface is protected against dust and scratches by
a top coat of clear acrylic. Finally, a label can be silkscreened onto the acrylic.

Table 6.6 Optical Disk Products

CD
Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses
12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM
Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The standard
system uses 12-cm disks and can hold more than 650 Mbytes.
CD-R
CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.
CD-RW
CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD
Digital Versatile Disk. A technology for producing digitized, compressed representation of video
information, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used, with a
double-sided capacity of up to 17 Gbytes. The basic DVD is read-only (DVD-ROM).

DVD-R
DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided
disks can be used.

DVD-RW
DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times.
Only one-sided disks can be used.

Blu-ray DVD
High-definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm
(blue-violet) laser. A single layer on a single side can store 25 Gbytes.

218 CHAPTER 6 / EXTERNAL MEMORY

Information is retrieved from a CD or CD-ROM by a low-powered laser
housed in an optical-disk player, or drive unit. The laser shines through the clear
polycarbonate while a motor spins the disk past it (Figure 6.9). The intensity of the
reflected light of the laser changes as it encounters a pit. Specifically, if the laser
beam falls on a pit, which has a somewhat rough surface, the light scatters and a low
intensity is reflected back to the source. The areas between pits are called lands. A
land is a smooth surface, which reflects back at higher intensity. The change between
pits and lands is detected by a photosensor and converted into a digital signal. The
sensor tests the surface at regular intervals. The beginning or end of a pit represents
a 1; when no change in elevation occurs between intervals, a 0 is recorded.

Recall that on a magnetic disk, information is recorded in concentric tracks.
With the simplest constant angular velocity (CAV) system, the number of bits per
track is constant. An increase in density is achieved with multiple zone recording,
in which the surface is divided into a number of zones, with zones farther from the
center containing more bits than zones closer to the center. Although this technique
increases capacity, it is still not optimal.

To achieve greater capacity, CDs and CD-ROMSs do not organize information
on concentric tracks. Instead, the disk contains a single spiral track, beginning near
the center and spiraling out to the outer edge of the disk. Sectors near the outside
of the disk are the same length as those near the inside. Thus, information is packed
evenly across the disk in segments of the same size and these are scanned at the
same rate by rotating the disk at a variable speed. The pits are then read by the laser
at a constant linear velocity (CLV). The disk rotates more slowly for accesses near
the outer edge than for those near the center. Thus, the capacity of a track and the
rotational delay both increase for positions nearer the outer edge of the disk. The
data capacity for a CD-ROM is about 680 MB.

Data on the CD-ROM are organized as a sequence of blocks. A typical block
format is shown in Figure 6.10. It consists of the following fields:

= Sync: The sync field identifies the beginning of a block. It consists of a byte of
all 0s, 10 bytes of all 1s, and a byte of all Os.

m Header: The header contains the block address and the mode byte. Mode 0
specifies a blank data field; mode 1 specifies the use of an error-correcting

Protective
acrylic Label

Polycarbonate Aluminum

plastic

e S
-

Laser transmit/
receive

Figure 6.9 CD Operation

6.4 / OPTICAL MEMORY 219

2 S - Layered
00 | FF..FF | 00 E 2 E § Data ECC
12 bytes 4 bytes 2048 bytes 288 bytes
SYNC ID Data L-ECC

2352 bytes

Figure 6.10 CD-ROM Block Format

code and 2048 bytes of data; mode 2 specifies 2336 bytes of user data with
no error-correcting code.

= Data: User data.

m Auxiliary: Additional user data in mode 2. In mode 1, this is a 288-byte error-
correcting code.

With the use of CLV, random access becomes more difficult. Locating a spe-
cific address involves moving the head to the general area, adjusting the rotation
speed and reading the address, and then making minor adjustments to find and
access the specific sector.

CD-ROM is appropriate for the distribution of large amounts of data to a
large number of users. Because of the expense of the initial writing process, it is not
appropriate for individualized applications. Compared with traditional magnetic
disks, the CD-ROM has two advantages:

m The optical disk together with the information stored on it can be mass repli-
cated inexpensively —unlike a magnetic disk. The database on a magnetic disk
has to be reproduced by copying one disk at a time using two disk drives.

m The optical disk is removable, allowing the disk itself to be used for archi-
val storage. Most magnetic disks are nonremovable. The information on non-
removable magnetic disks must first be copied to another storage medium
before the disk drive/disk can be used to store new information.

The disadvantages of CD-ROM are as follows:
m]t is read-only and cannot be updated.

m [t has an access time much longer than that of a magnetic disk drive, as much
as half a second.

CD RECORDABLE To accommodate applications in which only one or a small
number of copies of a set of data is needed, the write-once read-many CD, known
as the CD recordable (CD-R), has been developed. For CD-R, a disk is prepared
in such a way that it can be subsequently written once with a laser beam of
modest-intensity. Thus, with a somewhat more expensive disk controller than for
CD-ROM, the customer can write once as well as read the disk.

The CD-R medium is similar to but not identical to that of a CD or CD-
ROM. For CDs and CD-ROMs, information is recorded by the pitting of the surface

220 CHAPTER 6 / EXTERNAL MEMORY

of the medium, which changes reflectivity. For a CD-R, the medium includes a dye
layer. The dye is used to change reflectivity and is activated by a high-intensity laser.
The resulting disk can be read on a CD-R drive or a CD-ROM drive.

The CD-R optical disk is attractive for archival storage of documents and files.
It provides a permanent record of large volumes of user data.

CD REWRITABLE The CD-RW optical disk can be repeatedly written and overwritten,
as with a magnetic disk. Although a number of approaches have been tried, the only
pure optical approach that has proved attractive is called phase change. The phase
change disk uses a material that has two significantly different reflectivities in two
different phase states. There is an amorphous state, in which the molecules exhibit
a random orientation that reflects light poorly; and a crystalline state, which has a
smooth surface that reflects light well. A beam of laser light can change the material
from one phase to the other. The primary disadvantage of phase change optical disks
is that the material eventually and permanently loses its desirable properties. Current
materials can be used for between 500,000 and 1,000,000 erase cycles.

The CD-RW has the obvious advantage over CD-ROM and CD-R that it can
be rewritten and thus used as a true secondary storage. As such, it competes with
magnetic disk. A key advantage of the optical disk is that the engineering tolerances
for optical disks are much less severe than for high-capacity magnetic disks. Thus,
they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last
found an acceptable replacement for the analog VHS video tape. The DVD has
replaced the videotape used in video cassette recorders (VCRs) and, more import-
ant for this discussion, replaced the CD-ROM in personal computers and servers.
The DVD takes video into the digital age. It delivers movies with impressive picture
quality, and it can be randomly accessed like audio CDs, which DVD machines can
also play. Vast volumes of data can be crammed onto the disk, currently seven times
as much as a CD-ROM. With DVD’s huge storage capacity and vivid quality, PC
games have become more realistic and educational software incorporates more video.
Following in the wake of these developments has been a new crest of traffic over the
Internet and corporate intranets, as this material is incorporated into Web sites.

The DVD'’s greater capacity is due to three differences from CDs (Figure 6.11):

1. Bits are packed more closely on a DVD. The spacing between loops of a spiral
on a CD is 1.6 um and the minimum distance between pits along the spiral is
0.834 um.

The DVD uses a laser with shorter wavelength and achieves a loop spacing
of 0.74 pm and a minimum distance between pits of 0.4 um. The result of these
two improvements is about a seven-fold increase in capacity, to about 4.7 GB.

2. The DVD employs a second layer of pits and lands on top of the first layer. A
dual-layer DVD has a semireflective layer on top of the reflective layer, and
by adjusting focus, the lasers in DVD drives can read each layer separately.
This technique almost doubles the capacity of the disk, to about 8.5 GB. The
lower reflectivity of the second layer limits its storage capacity so that a full
doubling is not achieved.

6.4 / OPTICAL MEMORY 221

Label

Protective layer\

(acrylic)
y 1.2 mm

Reflective layer thick

(aluminum) /

Polycarbonate substrate Laser focuses on polycarbonate
(plastic) pits in front of reflective layer

(a) CD-ROM—Capacity 682 MB

Polycarbonate substrate, side 2
Semireflective layer, side 2

Polycarbonate layer, side 2

Fully reflective layer, side 2

Fully reflective layer, side 1 1.2 mm

thick
Polycarbonate layer, side 1
Semireflective layer, side 1 Laser focuses on pits in one layer

on one side at a time. Disk must
Polycarbonate substrate, side 1 be flipped to read other side

(b) DVD-ROM, double-sided, dual-layer—Capacity 17 GB
Figure 6.11 CD-ROM and DVD-ROM

3. The DVD-ROM can be two sided, whereas data are recorded on only one side
of a CD. This brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as read-only versions
(Table 6.6).

High-Definition Optical Disks

High-definition optical disks are designed to store high-definition videos and to pro-
vide significantly greater storage capacity compared to DVDs. The higher bit density
is achieved by using a laser with a shorter wavelength, in the blue-violet range. The
data pits, which constitute the digital 1s and Os, are smaller on the high-definition
optical disks compared to DVD because of the shorter laser wavelength.

Two competing disk formats and technologies initially competed for market
acceptance: HD DVD and Blu-ray DVD. The Blu-ray scheme ultimately achieved
market dominance. The HD DVD scheme can store 15 GB on a single layer on a
single side. Blu-ray positions the data layer on the disk closer to the laser (shown on
the right-hand side of each diagram in Figure 6.12). This enables a tighter focus and
less distortion and thus smaller pits and tracks. Blu-ray can store 25 GB on a single
layer. Three versions are available: read only (BD-ROM), recordable once (BD-R),
and rerecordable (BD-RE).

222 CHAPTER 6 / EXTERNAL MEMORY

cD 2.11 um
N - 1 @ | Dpata layer
Beam spot - Land

Pit 1.2 um
r Y 1 M A HSaas

Track
e
_____________________ Laser wavelength
=780 nm
|

DVD |32 pm 0.14m
..... I
..... - (oo om oo 405 nm
‘‘‘‘‘ PO C 0.6 um
e omean aneocmmaen o 650 om

Figure 6.12 Optical Memory Characteristics

6.5 MAGNETIC TAPE

Tape systems use the same reading and recording techniques as disk systems. The
medium is flexible polyester (similar to that used in some clothing) tape coated with
magnetizable material. The coating may consist of particles of pure metal in special
binders or vapor-plated metal films. The tape and the tape drive are analogous to a
home tape recorder system. Tape widths vary from 0.38 cm (0.15 inch) to 1.27 cm
(0.5 inch). Tapes used to be packaged as open reels that have to be threaded through
a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running length-
wise. Earlier tape systems typically used nine tracks. This made it possible to store
data one byte at a time, with an additional parity bit as the ninth track. This was
followed by tape systems using 18 or 36 tracks, corresponding to a digital word or
double word. The recording of data in this form is referred to as parallel recording.
Most modern systems instead use serial recording, in which data are laid out as a
sequence of bits along each track, as is done with magnetic disks. As with the disk,
data are read and written in contiguous blocks, called physical records, on a tape.
Blocks on the tape are separated by gaps referred to as interrecord gaps. As with the
disk, the tape is formatted to assist in locating physical records.

The typical recording technique used in serial tapes is referred to as serpen-
tine recording. In this technique, when data are being recorded, the first set of bits
is recorded along the whole length of the tape. When the end of the tape is reached,

6.5 / MAGNETIC TAPE 223

the heads are repositioned to record a new track, and the tape is again recorded on
its whole length, this time in the opposite direction. That process continues, back
and forth, until the tape is full (Figure 6.13a). To increase speed, the read-write head
is capable of reading and writing a number of adjacent tracks simultaneously (typ-
ically two to eight tracks). Data are still recorded serially along individual tracks,
but blocks in sequence are stored on adjacent tracks, as suggested by Figure 6.13b.

A tape drive is a sequential-access device. If the tape head is positioned at
record 1, then to read record N, it is necessary to read physical records 1 through
N—1, one at a time. If the head is currently positioned beyond the desired record, it
is necessary to rewind the tape a certain distance and begin reading forward. Unlike
the disk, the tape is in motion only during a read or write operation.

In contrast to the tape, the disk drive is referred to as a direct-access device. A
disk drive need not read all the sectors on a disk sequentially to get to the desired
one. It must only wait for the intervening sectors within one track and can make
successive accesses to any track.

Magnetic tape was the first kind of secondary memory. It is still widely used as
the lowest-cost, slowest-speed member of the memory hierarchy.

Track 2
Track 1

Track 0

[N

N

Direction of
Bottom read-write
edge of tape

(a) Serpentine reading and writing

Track3 [4 | [8] [12] [16] [20]
o (3] [0 [[E] [
Trackt [2 | [6 | [0] [a] [18]
Tracko [1 | [5] [o] [13] [17]

Direction of
tape motion

[A

(b) Block layout for system that reads—writes four tracks simultaneously

Figure 6.13 Typical Magnetic Tape Features

224 CHAPTER 6 / EXTERNAL MEMORY

Table 6.7 LTO Tape Drives

LTO-1 | LTO-2 | LTO-3 LTO-4 LTO-5 | LTO-6 | LTO-7 | LTO-8
Release date 2000 2003 2005 2007 2010 2012 TBA TBA
Compressed 200GB | 400GB | 800GB | 1600 GB 32TB 8 TB 16 TB 32TB
capacity
Compressed 40 80 160 240 280 400 788 1.18
transfer rate MB/s MB/s MB/s MB/s MB/s MB/s MB/s GB/s
Linear density 4880 7398 9638 13,250 15,142 15,143
(bits/mm)
Tape tracks 384 512 704 896 1280 2176
Tape length (m) 609 609 680 820 846 846
Tape width 1.27 1.27 1.27 1.27 1.27 1.27
(cm)
Write elements 8 8 16 16 16 16
WORM? No No Yes Yes Yes Yes Yes Yes
Encryption No No No Yes Yes Yes Yes Yes
Capable?
Partitioning? No No No No Yes Yes Yes Yes

The dominant tape technology today is a cartridge system known as linear
tape-open (LTO). LTO was developed in the late 1990s as an open-source alterna-
tive to the various proprietary systems on the market. Table 6.7 shows parameters
for the various LTO generations. See Appendix J for details.

6.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access time

Blu-ray

CD

CD-R

CD-ROM

CD-RW

constant angular velocity
(CAV)

constant linear velocity
(CLV)

cylinder

DVD

DVD-R

DVD-ROM

DVD-RW

fixed-head disk

flash memory

floppy disk

gap

hard disk drive (HDD)
head

land

magnetic disk
magnetic tape
magnetoresistive
movable-head disk
multiple zone recording
nonremovable disk

optical memory

pit

platter

RAID

removable disk
rotational delay
sector

seek time

serpentine recording
solid state drive (SSD)
striped data
substrate

track

transfer time

6.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 225

Review Questions

6.1 What are the advantages of using a glass substrate for a magnetic disk?

6.2 How are data written onto a magnetic disk?

6.3 How are data read from a magnetic disk?

6.4 Explain the difference between a simple CAV system and a multiple zone recording
system.

6.5 Define the terms track, cylinder, and sector.

6.6 What is the typical disk sector size?

6.7 Define the terms seek time, rotational delay, access time, and transfer time.

6.8 What common characteristics are shared by all RAID levels?

6.9 Briefly define the seven RAID levels.

6.10 Explain the term striped data.

6.11 How is redundancy achieved in a RAID system?

6.12 In the context of RAID, what is the distinction between parallel access and indepen-
dent access?

6.13 What is the difference between CAV and CLV?

6.14 What differences between a CD and a DVD account for the larger capacity of the
latter?

6.15 Explain serpentine recording.

Problems

6.1 Justify Equation 6.1. That is, explain how each of the three terms on the right-hand
side of the equation contributes to the value on the left-hand side.

6.2 Consider a disk with N tracks numbered from 0 to (N — 1) and assume that requested
sectors are distributed randomly and evenly over the disk. We want to calculate the
average number of tracks traversed by a seek.

a. First, calculate the probability of a seek of length j when the head is currently
positioned over track t. Hint: This is a matter of determining the total number of
combinations, recognizing that all track positions for the destination of the seek
are equally likely.

b. Next, calculate the probability of a seek of length K. Hint: This involves the sum-
ming over all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek, using the formula for
expected value

N-1
E[x] = i X Pr[x =]
=0
n
Hint: Use the equalities: i = n(n b, E 2 = w
=

d. Show that for large values of NV, the average number of tracks traversed by a seek
approaches N/3.

6.3 Define the following for a disk system:

t, = seek time; average time to position head over track
r = rotationspeed of the disk, in revolutions per second
n = number of bits per sector

N = capacity of a track, in bits

Lecior = time to access a sector

Develop a formula for ., as a function of the other parameters.

226 CHAPTER 6 / EXTERNAL MEMORY

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Consider a magnetic disk drive with 8 surfaces, 512 tracks per surface, and 64 sectors

per track. Sector size is 1 kB. The average seek time is 8 ms, the track-to-track access

time is 1.5 ms, and the drive rotates at 3600 rpm. Successive tracks in a cylinder can be

read without head movement.

a. What is the disk capacity?

b. What is the average access time? Assume this file is stored in successive sectors
and tracks of successive cylinders, starting at sector 0, track 0, of cylinder i.

c. Estimate the time required to transfer a 5-MB file.

d. What is the burst transfer rate?

Consider a single-platter disk with the following parameters: rotation speed: 7200
rpm; number of tracks on one side of platter: 30,000; number of sectors per track: 600;
seek time: one ms for every hundred tracks traversed. Let the disk receive a request to
access a random sector on a random track and assume the disk head starts at track 0.
a. What is the average seek time?

b. What is the average rotational latency?

c. What is the transfer time for a sector?

d. What is the total average time to satisfy a request?

A distinction is made between physical records and logical records. A logical record
is a collection of related data elements treated as a conceptual unit, independent of
how or where the information is stored. A physical record is a contiguous area of
storage space that is defined by the characteristics of the storage device and operating
system. Assume a disk system in which each physical record contains thirty 120-byte
logical records. Calculate how much disk space (in sectors, tracks, and surfaces) will be
required to store 300,000 logical records if the disk is fixed-sector with 512 bytes/sec-
tor, with 96 sectors/track, 110 tracks per surface, and 8 usable surfaces. Ignore any file
header record(s) and track indexes, and assume that records cannot span two sectors.

Consider a disk that rotates at 3600 rpm. The seek time to move the head between
adjacent tracks is 2 ms. There are 32 sectors per track, which are stored in linear order
from sector 0 through sector 31. The head sees the sectors in ascending order. Assume
the read/write head is positioned at the start of sector 1 on track 8. There is a main
memory buffer large enough to hold an entire track. Data is transferred between disk
locations by reading from the source track into the main memory buffer and then
writing the data from the buffer to the target track.

a. How long will it take to transfer sector 1 on track 8 to sector 1 on track 9?

b. How long will it take to transfer all the sectors of track 8 to the corresponding

sectors of track 9?

It should be clear that disk striping can improve data transfer rate when the strip size
is small compared to the I/O request size. It should also be clear that RAID 0 provides
improved performance relative to a single large disk, because multiple I/O requests
can be handled in parallel. However, in this latter case, is disk striping necessary? That
is,does disk striping improve I/O request rate performance compared to a comparable
disk array without striping?

Consider a 4-drive, 200 GB-per-drive RAID array. What is the available data storage
capacity for each of the RAID levels 0, 1, 3,4, 5, and 6?

For a compact disk, audio is converted to digital with 16-bit samples, and is treated a
stream of 8-bit bytes for storage. One simple scheme for storing this data, called direct
recording, would be to represent a 1 by a land and a 0 by a pit. Instead, each byte is
expanded into a 14-bit binary number. It turns out that exactly 256 (2%) of the total of
16,134 (2'*) 14-bit numbers have at least two Os between every pair of 1s, and these are
the numbers selected for the expansion from 8 to 14 bits. The optical system detects
the presence of 1s by detecting a transition for pit to land or land to pit. It detects Os
by measuring the distances between intensity changes. This scheme requires that there
are no 1s in succession; hence the use of the 8-to-14 code.

6.11

6.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 227

The advantage of this scheme is as follows. For a given laser beam diameter,
there is a minimum-pit size, regardless of how the bits are represented. With this
scheme, this minimum-pit size stores 3 bits, because at least two Os follow every 1.
With direct recording, the same pit would be able to store only one bit. Considering
both the number of bits stored per pit and the 8-to-14 bit expansion, which scheme
stores the most bits and by what factor?

Design a backup strategy for a computer system. One option is to use plug-in external

disks, which cost $150 for each 500 GB drive. Another option is to buy a tape drive for

$2500, and 400 GB tapes for $50 apiece. (These were realistic prices in 2008.) A typical

backup strategy is to have two sets of backup media onsite, with backups alternately

written on them so in case the system fails while making a backup, the previous ver-

sion is still intact. There’s also a third set kept offsite, with the offsite set periodically

swapped with an on-site set.

a. Assume you have 1 TB (1000 GB) of data to back up. How much would a disk
backup system cost?

b. How much would a tape backup system cost for 1 TB?

c. How large would each backup have to be in order for a tape strategy to be less
expensive?

d. What kind of backup strategy favors tapes?

CHAPTER

INPUT/OUTPUT

228

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

External Devices

I/0 Modules

Programmed I/0

Interrupt-Driven I/O

Direct Memory Access

Direct Cache Access

I/0 Channels and Processors
External Interconnection Standards

IBM zEnterprise EC12 I/O Structure

7.10 Key Terms, Review Questions, and Problems

INPUT/OUTPUT 229

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

€ Explain the use of I/O modules as part of a computer organization.

@ Understand the difference between programmed I/O and interrupt-driven
I/O and discuss their relative merits.

@ Present an overview of the operation of direct memory access.
@ Present an overview of direct cache access.
@ Explain the function and use of I/O channels.

\Q\eractrve 5,
RS/ s

&
S

1/0 System Design Tool

In addition to the processor and a set of memory modules, the third key element
of a computer system is a set of I/O modules. Each module interfaces to the system
bus or central switch and controls one or more peripheral devices. An I/O module
is not simply a set of mechanical connectors that wire a device into the system bus.
Rather, the I/O module contains logic for performing a communication function
between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the
system bus. The reasons are as follows:

m There are a wide variety of peripherals with various methods of operation. It
would be impractical to incorporate the necessary logic within the processor to
control a range of devices.

m The data transfer rate of peripherals is often much slower than that of the

memory or processor. Thus, it is impractical to use the high-speed system bus
to communicate directly with a peripheral.

®m On the other hand, the data transfer rate of some peripherals is faster than

that of the memory or processor. Again, the mismatch would lead to ineffi-
ciencies if not managed properly.

m Peripherals often use different data formats and word lengths than the com-
puter to which they are attached.

® Thus, an I/O module is required. This module has two major functions (Figure 7.1):

m Interface to the processor and memory via the system bus or central switch.

m Interface to one or more peripheral devices by tailored data links.

We begin this chapter with a brief discussion of external devices, followed
by an overview of the structure and function of an I/O module. Then we look at
the various ways in which the I/O function can be performed in cooperation with
the processor and memory: the internal I/O interface. Next, we examine in some

230 CHAPTER 7 / INPUT/OUTPUT

Address lines

. System
Da|ta ll|nes | | bus
Control lines
I/0 module
Links to
peripheral
devices

Figure 7.1 Generic Model of an I/O Module

detail direct memory access and the more recent innovation of direct cache access.
Finally, we examine the external I/O interface, between the I/O module and the
outside world.

7.1 EXTERNAL DEVICES

I/O operations are accomplished through a wide assortment of external devices
that provide a means of exchanging data between the external environment and the
computer. An external device attaches to the computer by a link to an I/O module
(Figure 71). The link is used to exchange control, status, and data between the I/O
module and the external device. An external device connected to an I/O module is
often referred to as a peripheral device or, simply, a peripheral.

We can broadly classify external devices into three categories:

= Human readable: Suitable for communicating with the computer user;
= Machine readable: Suitable for communicating with equipment;

= Communication: Suitable for communicating with remote devices.

Examples of human-readable devices are video display terminals (VDTs) and
printers. Examples of machine-readable devices are magnetic disk and tape sys-
tems, and sensors and actuators, such as are used in a robotics application. Note
that we are viewing disk and tape systems as I/O devices in this chapter, whereas
in Chapter 6 we viewed them as memory devices. From a functional point of view,
these devices are part of the memory hierarchy, and their use is appropriately dis-
cussed in Chapter 6. From a structural point of view, these devices are controlled by
I/0 modules and are hence to be considered in this chapter.

7.1 / EXTERNAL DEVICES 231

Communication devices allow a computer to exchange data with a remote
device, which may be a human-readable device, such as a terminal, a machine-
readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 7.2.
The interface to the I/O module is in the form of control, data, and status signals. Con-
trol signals determine the function that the device will perform, such as send data to
the I/O module (INPUT or READ), accept data from the I/O module (OUTPUT or
WRITE), report status, or perform some control function particular to the device (e.g.,
position a disk head). Data are in the form of a set of bits to be sent to or received from
the I/O module. Status signals indicate the state of the device. Examples are READY/
NOT-READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device’s operation in
response to direction from the I/O module. The transducer converts data from elec-
trical to other forms of energy during output and from other forms to electrical
during input. Typically, a buffer is associated with the transducer to temporarily
hold data being transferred between the I/O module and the external environment.
A buffer size of 8 to 16 bits is common for serial devices, whereas block-oriented
devices such as disk drive controllers may have much larger buffers.

The interface between the I/O module and the external device will be exam-
ined in Section 7.7. The interface between the external device and the environment
is beyond the scope of this book, but several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor
arrangement. The user provides input through the keyboard, the input is then trans-
mitted to the computer and may also be displayed on the monitor. In addition, the
monitor displays data provided by the computer.

. Control A Status A Data bits

signals from signals to to and from
1/0 module 1/0 module 1/0 module

Y Y

Control - Buffer
logic -
Transducer
A

Data (device-unique)
to and from
Y environment

Figure 7.2 Block Diagram of an External Device

232 CHAPTER 7 / INPUT/OUTPUT

The basic unit of exchange is the character. Associated with each charac-
ter is a code, typically 7 or 8 bits in length. The most commonly used text code
is the International Reference Alphabet (IRA).! Each character in this code is
represented by a unique 7-bit binary code; thus, 128 different characters can be
represented. Characters are of two types: printable and control. Printable char-
acters are the alphabetic, numeric, and special characters that can be printed on
paper or displayed on a screen. Some of the control characters have to do with
controlling the printing or displaying of characters; an example is carriage return.
Other control characters are concerned with communications procedures. See
Appendix H for details.

For keyboard input, when the user depresses a key, this generates an elec-
tronic signal that is interpreted by the transducer in the keyboard and translated
into the bit pattern of the corresponding IRA code. This bit pattern is then trans-
mitted to the I/O module in the computer. At the computer, the text can be stored
in the same IRA code. On output, IRA code characters are transmitted to an exter-
nal device from the I/O module. The transducer at the device interprets this code
and sends the required electronic signals to the output device either to display the
indicated character or perform the requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with
an I/O module plus the electronics for controlling the disk read/write mechanism.
In a fixed-head disk, the transducer is capable of converting between the magnetic
patterns on the moving disk surface and bits in the device’s buffer (Figure 72). A
moving-head disk must also be able to cause the disk arm to move radially in and
out across the disk’s surface.

7.2 I/O MODULES

Module Function

The major functions or requirements for an I/O module fall into the following
categories:

= Control and timing

m Processor communication

®m Device communication

m Data buffering

m Error detection

During any period of time, the processor may communicate with one or more
external devices in unpredictable patterns, depending on the program’s need for

'IRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet
Number 5 (IAS). The U.S. national version of IRA is referred to as the American Standard Code for
Information Interchange (ASCII).

7.2 / 1I/O MODULES 233

I/O. The internal resources, such as main memory and the system bus, must be shared
among a number of activities, including data I/O. Thus, the I/O function includes a
control and timing requirement, to coordinate the flow of traffic between internal
resources and external devices. For example, the control of the transfer of data from
an external device to the processor might involve the following sequence of steps:

1. The processor interrogates the I/O module to check the status of the attached
device.

2. The I/0O module returns the device status.

3. If the device is operational and ready to transmit, the processor requests the
transfer of data, by means of a command to the I/O module.

4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external
device.

5. The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the proces-
sor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must
communicate with the processor and with the external device. Processor communi-
cation involves the following:

= Command decoding: The I/O module accepts commands from the processor,
typically sent as signals on the control bus. For example, an I/O module for a
disk drive might accept the following commands: READ SECTOR, WRITE
SECTOR, SEEK track number, and SCAN record ID. The latter two com-
mands each include a parameter that is sent on the data bus.

= Data: Data are exchanged between the processor and the I/0O module over the
data bus.

m Status reporting: Because peripherals are so slow, it is important to know the
status of the I/0O module. For example, if an I/O module is asked to send data
to the processor (read), it may not be ready to do so because it is still working
on the previous I/O command. This fact can be reported with a status signal.
Common status signals are BUSY and READY. There may also be signals to
report various error conditions.

= Address recognition: Just as each word of memory has an address, so does
each I/O device. Thus, an I/O module must recognize one unique address for
each peripheral it controls.

On the other side, the I/O module must be able to perform device communication.
This communication involves commands, status information, and data (Figure 7.2).

An essential task of an I/O module is data buffering. The need for this func-
tion is apparent from Figure 2.1. Whereas the transfer rate into and out of main
memory or the processor is quite high, the rate is orders of magnitude lower for
many peripheral devices and covers a wide range. Data coming from main memory
are sent to an I/O module in a rapid burst. The data are buffered in the I/O module
and then sent to the peripheral device at its data rate. In the opposite direction, data
are buffered so as not to tie up the memory in a slow transfer operation. Thus, the

234 CHAPTER 7 / INPUT/OUTPUT

I/0O module must be able to operate at both device and memory speeds. Similarly, if
the I/O device operates at a rate higher than the memory access rate, then the I/O
module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subse-
quently reporting errors to the processor. One class of errors includes mechanical
and electrical malfunctions reported by the device (e.g., paper jam, bad disk track).
Another class consists of unintentional changes to the bit pattern as it is transmit-
ted from device to I/O module. Some form of error-detecting code is often used
to detect transmission errors. A simple example is the use of a parity bit on each
character of data. For example, the IRA character code occupies 7 bits of a byte.
The eighth bit is set so that the total number of 1s in the byte is even (even parity)
or odd (odd parity). When a byte is received, the I/O module checks the parity to
determine whether an error has occurred.

I/0 Module Structure

I/O modules vary considerably in complexity and the number of external devices
that they control. We will attempt only a very general description here. (One
specific device, the Intel 8255A, is described in Section 74.) Figure 7.3 provides a
general block diagram of an I/O module. The module connects to the rest of the
computer through a set of signal lines (e.g., system bus lines). Data transferred to
and from the module are buffered in one or more data registers. There may also
be one or more status registers that provide current status information. A status
register may also function as a control register, to accept detailed control informa-
tion from the processor. The logic within the module interacts with the processor
via a set of control lines. The processor uses the control lines to issue commands

Interface to Interface to
system bus external device

~A ~A

Data

interface Status

logic

—>| Data registers |<— —»| External
‘_{ device

Control

—>| Status/Control registers

Y
Address o Dat
lines i External a
/o device
logic [~ 7| interface Status
Control logic
s -
lines [Control

Figure 7.3 Block Diagram of an I/O Module

7.3 / PROGRAMMED I/0 235

to the I/O module. Some of the control lines may be used by the I/O module (e.g.,
for arbitration and status signals). The module must also be able to recognize and
generate addresses associated with the devices it controls. Each I/O module has
a unique address or, if it controls more than one external device, a unique set of
addresses. Finally, the I/O module contains logic specific to the interface with each

device that it controls.

An I/0 module functions to allow the processor to view a wide range of devices
in a simple-minded way. There is a spectrum of capabilities that may be provided.
The I/0O module may hide the details of timing, formats, and the electromechanics
of an external device so that the processor can function in terms of simple read and
write commands, and possibly open and close file commands. In its simplest form,
the I/O module may still leave much of the work of controlling a device (e.g., rewind

a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, present-
ing a high-level interface to the processor, is usually referred to as an I/O channel or
1I/O processor. An 1/0O module that is quite primitive and requires detailed control
is usually referred to as an I/O controller or device controller. 1/O controllers are
commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term I/O module when no confusion
results and will use more specific terms where necessary.

7.3 PROGRAMMED I/O

Three techniques are possible for I/O operations. With programmed I/0O, data are
exchanged between the processor and the I/O module. The processor executes a
program that gives it direct control of the I/O operation, including sensing device
status, sending a read or write command, and transferring the data. When the pro-
cessor issues a command to the I/O module, it must wait until the I/O operation is
complete. If the processor is faster than the I/O module, this is waste of processor
time. With interrupt-driven I/O, the processor issues an I/O command, continues
to execute other instructions, and is interrupted by the I/O module when the latter
has completed its work. With both programmed and interrupt 1/0, the processor is
responsible for extracting data from main memory for output and storing data in
main memory for input. The alternative is known as direct memory access (DMA).
In this mode, the I/O module and main memory exchange data directly, without

processor involvement.

Table 7.1 indicates the relationship among these three techniques. In this sec-
tion, we explore programmed I/O. Interrupt I/O and DMA are explored in the fol-

lowing two sections, respectively.

Table 7.1 1/O Techniques

No Interrupts

Use of Interrupts

I/0-to-memory transfer through processor

Programmed I/O

Interrupt-driven I/O

Direct 1/0-to-memory transfer

Direct memory access (DMA)

236 CHAPTER 7 / INPUT/OUTPUT

Overview of Programmed I/0

When the processor is executing a program and encounters an instruction relating to
I/0O, it executes that instruction by issuing a command to the appropriate I/O module.
With programmed I/O, the I/O module will perform the requested action and then
set the appropriate bits in the I/O status register (Figure 7.3). The I/O module takes
no further action to alert the processor. In particular, it does not interrupt the pro-
cessor. Thus, it is the responsibility of the processor to periodically check the status
of the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of
view of the I/O commands issued by the processor to the I/O module, and then from
the point of view of the I/O instructions executed by the processor.

I/0 Commands

To execute an I/O-related instruction, the processor issues an address, specifying
the particular I/O module and external device, and an I/O command. There are four
types of I/O commands that an /O module may receive when it is addressed by a
processor:

= Control: Used to activate a peripheral and tell it what to do. For example, a
magnetic-tape unit may be instructed to rewind or to move forward one record.
These commands are tailored to the particular type of peripheral device.

m Test: Used to test various status conditions associated with an I/O module and
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most
recent I/O operation is completed and if any errors occurred.

m Read: Causes the I/O module to obtain an item of data from the peripheral
and place it in an internal buffer (depicted as a data register in Figure 7.3). The
processor can then obtain the data item by requesting that the I/O module
place it on the data bus.

m Write: Causes the I/O module to take an item of data (byte or word) from the
data bus and subsequently transmit that data item to the peripheral.

Figure 7.4a gives an example of the use of programmed I/O to read in a block of
data from a peripheral device (e.g., a record from tape) into memory. Data are read
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must
remain in a status-checking cycle until it determines that the word is available in the
I/O module’s data register. This flowchart highlights the main disadvantage of this
technique: it is a time-consuming process that keeps the processor busy needlessly.

I/0 Instructions

With programmed I/O, there is a close correspondence between the I/O-related
instructions that the processor fetches from memory and the I/O commands that the
processor issues to an I/O module to execute the instructions. That is, the instructions
are easily mapped into I/O commands, and there is often a simple one-to-one rela-
tionship. The form of the instruction depends on the way in which external devices
are addressed.

7.3 / PROGRAMMED IO 237

Issue Read Issue Read CPU—1/O Issue Read CPU—~DMA
| command to | CPU—1/O | command to Do something block comman Do something
1/0 module /O module [~ ™ else to /O module £~ ~ > else

Read status Read status Read status
- - - Interrupt - - - Interrupt
of I/O 1/0—~ CPU of I/O L/O— CPU P of DMA P
module module module DMA—CPU
Next instruction

Error Error

condition condition (¢) Direct memory access
Read word Read word
from I/O 1/O— CPU from I/O 1/0— CPU

module Module

Write word
into memory

Write word

q CPU— memory
into memory

CPU— memory

Next instruction Next instruction
(a) Programmed I/O (b) Interrupt-driven I/O

Figure 7.4 Three Techniques for Input of a Block of Data

Typically, there will be many I/O devices connected through I/O modules to
the system. Each device is given a unique identifier or address. When the processor
issues an I/O command, the command contains the address of the desired device.
Thus, each I/O module must interpret the address lines to determine if the com-
mand is for itself.

When the processor, main memory, and I/O share a common bus, two modes
of addressing are possible: memory mapped and isolated. With memory-mapped
I/0, there is a single address space for memory locations and I/O devices. The pro-
cessor treats the status and data registers of I/O modules as memory locations and
uses the same machine instructions to access both memory and I/O devices. So, for
example, with 10 address lines, a combined total of 2!° = 1024 memory locations
and I/O addresses can be supported, in any combination.

With memory-mapped I/O, a single read line and a single write line are needed
on the bus. Alternatively, the bus may be equipped with memory read and write plus
input and output command lines. The command line specifies whether the address
refers to a memory location or an I/O device. The full range of addresses may be
available for both. Again, with 10 address lines, the system may now support both
1024 memory locations and 1024 I/O addresses. Because the address space for I/O is
isolated from that for memory, this is referred to as isolated 1/0.

238 CHAPTER 7 / INPUT/OUTPUT

Figure 7.5 contrasts these two programmed I/O techniques. Figure 7.5a shows
how the interface for a simple input device such as a terminal keyboard might appear
to a programmer using memory-mapped I/O. Assume a 10-bit address, with a 512-bit
memory (locations 0-511) and up to 512 I/O addresses (locations 512-1023). Two
addresses are dedicated to keyboard input from a particular terminal. Address 516
refers to the data register and address 517 refers to the status register, which also func-
tions as a control register for receiving processor commands. The program shown will
read 1 byte of data from the keyboard into an accumulator register in the processor.
Note that the processor loops until the data byte is available.

With isolated I/O (Figure 7.5b), the I/O ports are accessible only by special
I/O commands, which activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instruc-
tions for referencing memory. If isolated I/O is used, there are only a few I/O
instructions. Thus, an advantage of memory-mapped I/O is that this large repertoire
of instructions can be used, allowing more efficient programming. A disadvantage is
that valuable memory address space is used up. Both memory-mapped and isolated
I/O are in common use.

7 6 5 4 3 2 1 0

516 Keyboard input data register

7 6 5 4 3 2 1 0

Keyboard input status
and control register

T_ 1 =ready T_ Set to 1 to

0 = busy start read

517

ADDRESS INSTRUCTION OPERAND COMMENT

200 Load AC “1” Load accumulator
Store AC 517 Initiate keyboard read

202 Load AC 517 Get status byte
Branch if Sign =0 202 Loop until ready
Load AC 516 Load data byte

(a) Memory-mapped 1/O

ADDRESS INSTRUCTION OPERAND COMMENT
200 Load I/O 5 Initiate keyboard read
201 Test /O 5 Check for completion
Branch Not Ready 201 Loop until complete
In 5 Load data byte
(b) Isolated I/O

Figure 7.5 Memory-Mapped and Isolated I/O

7.4 / INTERRUPT-DRIVEN IO 239

7.4 INTERRUPT-DRIVEN I/O

The problem with programmed I/O is that the processor has to wait a long time
for the I/O module of concern to be ready for either reception or transmission of
data. The processor, while waiting, must repeatedly interrogate the status of the I/O
module. As a result, the level of the performance of the entire system is severely
degraded.

An alternative is for the processor to issue an I/O command to a module and
then go on to do some other useful work. The I/O module will then interrupt the
processor to request service when it is ready to exchange data with the processor.
The processor then executes the data transfer, as before, and then resumes its for-
mer processing.

Let us consider how this works, first from the point of view of the I/O module.
For input, the I/O module receives a READ command from the processor. The I/O
module then proceeds to read data in from an associated peripheral. Once the data
are in the module’s data register, the module signals an interrupt to the processor
over a control line. The module then waits until its data are requested by the pro-
cessor. When the request is made, the module places its data on the data bus and is
then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The pro-
cessor issues a READ command. It then goes off and does something else (e.g., the
processor may be working on several different programs at the same time). At the
end of each instruction cycle, the processor checks for interrupts (Figure 3.9). When
the interrupt from the I/O module occurs, the processor saves the context (e.g., pro-
gram counter and processor registers) of the current program and processes the
interrupt. In this case, the processor reads the word of data from the I/O module
and stores it in memory. It then restores the context of the program it was working
on (or some other program) and resumes execution.

Figure 7.4b shows the use of interrupt I/O for reading in a block of data.
Compare this with Figure 7.4a. Interrupt I/O is more efficient than programmed
I/O because it eliminates needless waiting. However, interrupt I/O still consumes
a lot of processor time, because every word of data that goes from memory to I/O
module or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt-driven I/O in more detail. The
occurrence of an interrupt triggers a number of events, both in the processor hard-
ware and in software. Figure 7.6 shows a typical sequence. When an I/O device com-
pletes an I/O operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 3.9.

3. The processor tests for an interrupt, determines that there is one, and sends an
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.

240 CHAPTER 7 / INPUT/OUTPUT

4.

Hardware Software

Device controller or

other system hardware
issues an interrupt -

Save remainder of
process state

information

Processor finishes
execution of current
instruction

Process interrupt

Processor signals
acknowledgment
of interrupt

Restore process state
information

Processor pushes PSW
and PC onto control
stack

Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 7.6 Simple Interrupt Processing

The processor now needs to prepare to transfer control to the interrupt rou-
tine. To begin, it needs to save information needed to resume the current pro-
gram at the point of interrupt. The minimum information required is (a) the
status of the processor, which is contained in a register called the program
status word (PSW); and (b) the location of the next instruction to be executed,
which is contained in the program counter. These can be pushed onto the sys-
tem control stack.?

The processor now loads the program counter with the entry location of the
interrupt-handling program that will respond to this interrupt. Depending on
the computer architecture and operating system design, there may be a single
program; one program for each type of interrupt; or one program for each
device and each type of interrupt. If there is more than one interrupt-handling
routine, the processor must determine which one to invoke. This information
may have been included in the original interrupt signal, or the processor may
have to issue a request to the device that issued the interrupt to get a response
that contains the needed information.

2See Appendix I for a discussion of stack operation.

7.4 / INTERRUPT-DRIVEN I/O 241

Once the program counter has been loaded, the processor proceeds to the
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, the result is that
control is transferred to the interrupt-handler program. The execution of this pro-
gram results in the following operations:

6. At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the system stack. However, there is other infor-
mation that is considered part of the “state” of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So, all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Fig-
ure 7.7a shows a simple example. In this case, a user program is interrupted
after the instruction at location N. The contents of all of the registers plus the
address of the next instruction (N + 1) are pushed onto the stack. The stack
pointer is updated to point to the new top of stack, and the program counter is
updated to point to the beginning of the interrupt service routine.

7. The interrupt handler next processes the interrupt. This includes an exam-
ination of status information relating to the I/O operation or other event that
caused an interrupt. It may also involve sending additional commands or
acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 7.7b).

9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

Note that it is important to save all the state information about the interrupted
program for later resumption. This is because the interrupt is not a routine called
from the program. Rather, the interrupt can occur at any time and therefore at any
point in the execution of a user program. Its occurrence is unpredictable. Indeed, as
we will see in the next chapter, the two programs may not have anything in common
and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O. First, because there will
almost invariably be multiple I/O modules, how does the processor determine which
device issued the interrupt? And second, if multiple interrupts have occurred, how
does the processor decide which one to process?

Let us consider device identification first. Four general categories of tech-
niques are in common use:

= Multiple interrupt lines

m Software poll

m Daisy chain (hardware poll, vectored)
m Bus arbitration (vectored)

242

CHAPTER 7 / INPUT/OUTPUT

T-M T-M
Y N+1
Control Control
stack - | stack
T J T
N+1 Y+L
Program Program
counter counter
Y [Start ; Y [Start
Interrupt| General Interrupt | General
service registers service registers
Y + L |Return routine Y + L |Return| routine
Stack Stack
pointer pointer
Processor Processor
T-M T
N +Nl User’s N +Nl User’s
program program
Main Main
Memory Memory
(a) Interrupt occurs after instruction (b) Return from interrupt

at location N

Figure 7.7 Changes in Memory and Registers for an Interrupt

The most straightforward approach to the problem is to provide multiple inter-
rupt lines between the processor and the I/O modules. However, it is impractical to
dedicate more than a few bus lines or processor pins to interrupt lines. Consequently,
even if multiple lines are used, it is likely that each line will have multiple I/O mod-
ules attached to it. Thus, one of the other three techniques must be used on each line.

One alternative is the software poll. When the processor detects an interrupt,
it branches to an interrupt-service routine that polls each I/O module to determine
which module caused the interrupt. The poll could be in the form of a separate com-
mand line (e.g., TESTI/O). In this case, the processor raises TESTI/O and places the
address of a particular I/O module on the address lines. The I/O module responds
positively if it set the interrupt. Alternatively, each I/O module could contain an
addressable status register. The processor then reads the status register of each I/O
module to identify the interrupting module. Once the correct module is identified,
the processor branches to a device-service routine specific to that device.

7.4 / INTERRUPT-DRIVEN I/O 243

The disadvantage of the software poll is that it is time consuming. A more
efficient technique is to use a daisy chain, which provides, in effect, a hardware poll.
An example of a daisy-chain configuration is shown in Figure 3.26. For interrupts,
all I/O modules share a common interrupt request line. The interrupt acknowledge
line is daisy chained through the modules. When the processor senses an interrupt,
it sends out an interrupt acknowledge. This signal propagates through a series of
I/O modules until it gets to a requesting module. The requesting module typically
responds by placing a word on the data lines. This word is referred to as a vector and
is either the address of the I/O module or some other unique identifier. In either
case, the processor uses the vector as a pointer to the appropriate device-service
routine. This avoids the need to execute a general interrupt-service routine first.
This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is
bus arbitration. With bus arbitration, an I/O module must first gain control of the
bus before it can raise the interrupt request line. Thus, only one module can raise the
line at a time. When the processor detects the interrupt, it responds on the interrupt
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve to identify the requesting I/O module.
They also provide a way of assigning priorities when more than one device is request-
ing interrupt service. With multiple lines, the processor just picks the interrupt line
with the highest priority. With software polling, the order in which modules are
polled determines their priority. Similarly, the order of modules on a daisy chain
determines their priority. Finally, bus arbitration can employ a priority scheme, as
discussed in Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt
Acknowledge (INTA) line. To allow the 80386 to handle a variety of devices and
priority structures, it is usually configured with an external interrupt arbiter, the
82C59A. External devices are connected to the 82C59A, which in turn connects to
the 80386.

Figure 7.8 shows the use of the 82C59A to connect multiple I/O modules for
the 80386. A single 82C59A can handle up to eight modules. If control for more
than eight modules is required, a cascade arrangement can be used to handle up to
64 modules.

The 82C59A’s sole responsibility is the management of interrupts. It accepts
interrupt requests from attached modules, determines which interrupt has the
highest priority, and then signals the processor by raising the INTR line. The pro-
cessor acknowledges via the INTA line. This prompts the 82C59A to place the
appropriate vector information on the data bus. The processor can then proceed
to process the interrupt and to communicate directly with the I/O module to read
or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to be
used by setting a control word in the 82C59A. The following interrupt modes are possible:

m Fully nested: The interrupt requests are ordered in priority from 0 (IR0)
through 7 (IR7).

244 CHAPTER 7 / INPUT/OUTPUT

Slave

82C59A

interrupt

controller
[External device 00 |—>{IR0

[External device 01 |—>|IR1 INT

IR2
. IR3
. IR4
. IR5

IR6

[External device 07 |—>|IR7

Slave Master
82C59A 82C59A
interrupt interrupt 80386
controller controller processor
[External device 08 |—>{IR0 IR0
[External device 09 ——>|IR1 INT IR1 INT INTR
IR2 IR2
° IR3 IR3
. IR4 IR4
i IRS IRS
IR6 IR6
[External device 15 |—>|IR7 IR7
L]
L]
Slave
82C59A
interrupt
controller
[External device 56 |—>{IR0
[External device 57 |—>|IR1 INT

IR2
. IR3
. R4
. IRS

IR6

[External device 63 |—>|IR7

Figure 7.8 Use of the 82C59A Interrupt Controller

= Rotating: In some applications a number of interrupting devices are of equal
priority. In this mode a device, after being serviced, receives the lowest prior-
ity in the group.

m Special mask: This allows the processor to inhibit interrupts from certain
devices.

7.4 / INTERRUPT-DRIVEN I/O 245

The Intel 8255A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt-driven
1/O, we consider the Intel 8255A Programmable Peripheral Interface. The 8255A is
a single-chip, general-purpose I/O module originally designed for use with the Intel
80386 processor. It has since been cloned by other manufacturers and is a widely
used peripheral controller chip. Its uses include as a controller for simple I/O devices
for microprocessors and in embedded systems, including microcontroller systems.

ARCHITECTURE AND OPERATION Figure 7.9 shows a general block diagram plus
the pin assignment for the 40-pin package in which it is housed. As shown on the pin
layout, the 8255A includes the following lines:

DO0-D7: These are the data I/O lines for the device. All information read from
and written to the 8255A occurs via these eight data lines.

CS (Chip Select Input): If this line is a logical 0, the microprocessor can read
and write to the 8255A.

RD (Read Input): If this line is a logical 0 and the CS input is a logical 0, the
8255A data outputs are enabled onto the system data bus.

WR (Write Input): If this input line is a logical 0 and the CS input is a logical
0, data are written to the 8255A from the system data bus.

RESET: The 8255A is placed into its reset state if this input line is a logical 1.
All peripheral ports are set to the input mode.

| ‘ |
Power i +5V G |
li G - =)
supplies ——— GND rzup port A 70
| ™ [~ ®) | PA7-PAO
| control <,
| L |
| ! |
Bi-directionhl Group A
databus| | Data “ port C /o
—~f=p| bus » upper (4){<~—e | PC7-PC4
D7-DO | buffer |
| . |
8-bit Group B
I internal = port C /0
I data bus lower (4) |« | PC3-PCO
| |
RD ——>]
— Read/ [4 |
WR | write Group |
Al =T control B & Group B
A0 —> Jogi h ~@==| portB 1/0
| ogic control @®) | PB7_PBO
Res_et - <9,
CS ——> t |
| |
Il & & L L L L L - |
(a) Block diagram

Figure 7.9 The Intel 8255A Programmable Peripheral Interface

PA3 1 40 [1 PA4
PA2 2 39 [0 PAS
PA1 O3 38 [PA6
PAO [4 371 PA7
RD O5 36 [0 WR
csOe6 35 [Reset
GND 07 341 DO
A108 330 D1
A0Cl9 82554 320 D2
PC7 10 310 D3
PC6 O 11 301 D4
PC5 [12 29[D5
PCc4 13 28 [1 D6
PC3 [14 270 D7
PC2 15 261V
PC1 16 25 [1 PB7
PCo O] 17 24 [1 PB6
PBO [] 18 23 [PB5
PB1 [19 22 [1 PB4
PB2 [20 21 [PB3
(b) Pin layout

246 CHAPTER 7 / INPUT/OUTPUT

= PAO-PA7, PB0-PB7, PCO-PC7: These signal lines are used as 8-bit I/O ports.
They can be connected to peripheral devices.

m A0, Al: The logical combination of these two input lines determine which
internal register of the 8255A data are written to or read from.

The right side of the block diagram of Figure 7.9a is the external interface
of the 8255A. The 24 I/O lines are divided into three 8-bit groups (A, B, C). Each
group can function as an 8-bit I/O port, thus providing connection for three periph-
eral devices. In addition, group C is subdivided into 4-bit groups (C, and Cg), which
may be used in conjunction with the A and B I/O ports. Configured in this manner,
group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the microproces-
sor system bus. It includes an 8-bit bidirectional data bus (DO through D7), used to
transfer data between the microprocessor and the I/O ports and to transfer control
information.

The processor controls the 8255A by means of an 8-bit control register in the
processor. The processor can set the value of the control register to specify a variety
of operating modes and configurations. From the processor point of view, there is
a control port, and the control register bits are set in the processor and then sent to
the control port over lines DO-D7. The two address lines specify one of the three
1/O ports or the control register, as follows:

Al A2 Selects
0 0 Port A
0 1 Port B
1 0 Port C
1 1 Control register

Thus, when the processor sets both A1l and A2 to 1, the 8255A interprets the
8-bit value on the data bus as a control word. When the processor transfers an 8-bit
control word with line D7 set to 1 (Figure 7.10a), the control word is used to config-
ure the operating mode of the 24 1/O lines. The three modes are:

®m Mode 0: This is the basic I/O mode. The three groups of eight external lines
function as three 8-bit I/O ports. Each port can be designated as input or out-
put. Data may only be sent to a port if the port is defined as output, and data
may only be read from a port if the port is set to input.

= Mode 1: In this mode, ports A and B can be configured as either input or
output, and lines from port C serve as control lines for A and B. The control
signals serve two principal purposes: “handshaking” and interrupt request.
Handshaking is a simple timing mechanism. One control line is used by the
sender as a DATA READY line, to indicate when the data are present on the
I/O data lines. Another line is used by the receiver as an ACKNOWLEDGE,
indicating that the data have been read and the data lines may be cleared.
Another line may be designated as an INTERRUPT REQUEST line and tied
back to the system bus.

7.4 / INTERRUPT-DRIVEN 1I/0 247

Group A Group B
——N~ A
[D7 [D6 [D5 [D4 [D3 [D2 [D1 | DO |

Don’t care

[D7 [D6 [D5 [D4 [D3 [D2 [D1 | DO |

——
D3 D2 D1
i’(;rilﬁ)fll:) mer 0 0 0 bit 0 of port C
0 = Output 0 0 1 bit 1 of port C
Port B 0 1 0 bit 2 of port C
1= Input 0 1 1 bit 3 of port C
0 = Output 1 0 0 bit4 of port C
Mode selection 1 0 1 bit5 of port C
0 = Mode 0 1 1 0 Dbit 6 of port C
1 =Mode 1 1 1 1 bit 7 of port C
Port C (upper)
1 = Input Bit set/reset Bit set/reset
0 = Output flag 1 =set
Port A 0 = Active D)= oz
1= Input
0 = Output
Mode selection
Mode set 00 = Mode 0
flag 01 = Mode 1
1 =Active 1X = Mode 2

(a) Mode definition of the 8255 control
register to configure the 8255

Figure 7.10 The Intel 8255A Control Word

(b) Bit definitions of the 8255 control
register to modify single bits of port C

m Mode 2: This is a bidirectional mode. In this mode, port A can be configured
as either the input or output lines for bidirectional traffic on port B, with the
port B lines providing the opposite direction. Again, port C lines are used for
control signaling.

When the processor sets D7 to 0 (Figure 7.10b), the control word is used to
program the bit values of port C individually. This feature is rarely used.

KEYBOARD/DISPLAY EXAMPLE Because the 8255A is programmable via the
control register, it can be used to control a variety of simple peripheral devices.
Figure 7.11 illustrates its use to control a keyboard/display terminal. The keyboard
provides 8 bits of input. Two of these bits, SHIFT and CONTROL, have special
meaning to the keyboard-handling program executing in the processor. However,
this interpretation is transparent to the 8255A, which simply accepts the 8 bits of
data and presents them on the system data bus. Two handshaking control lines are
provided for use with the keyboard.

The display is also linked by an 8-bit data port. Again, two of the bits have
special meanings that are transparent to the 8255A. In addition to two handshaking
lines, two lines provide additional control functions.

248 CHAPTER 7 / INPUT/OUTPUT

<
Interrupt
request
C3 A0 [= RO
Al <€ R1
A2 =€ R2
A3 |-« R3
INPUT 4 < R4 KEYBOARD
PORT 55 |« R5
A6 <€ Shift
A7 <€ Control
C4 |« Data ready
C5 »| Acknowledge
82C55A
BO > SO
B1 > S1
B2 >»{ S2
OUTPUTgi f :i DISPLAY
PORT i
B5 »| S5
B6 »| Backspace
B7 »| Clear
C1 »-| Data ready
C2 |« Acknowledge
Co »-| Blanking
co C7 »-| Clear line
Interrupt
request
B AN

Figure 7.11 Keyboard/Display Interface to 8255A

7.5 DIRECT MEMORY ACCESS

Drawbacks of Programmed and Interrupt-Driven 1/0

Interrupt-driven 1/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of 1/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

7.5 / DIRECT MEMORY ACCESS 249

2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a trade-off between these two drawbacks. Consider the
transfer of a block of data. Using simple programmed I/O, the processor is dedi-
cated to the task of I/O and can move data at a rather high rate, at the cost of doing
nothing else. Interrupt I/O frees up the processor to some extent at the expense of
the I/O transfer rate. Nevertheless, both methods have an adverse impact on both
processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module
(Figure 712) is capable of mimicking the processor and, indeed, of taking over con-
trol of the system from the processor. It needs to do this to transfer data to and from
memory over the system bus. For this purpose, the DMA module must use the bus
only when the processor does not need it, or it must force the processor to suspend
operation temporarily. The latter technique is more common and is referred to as
cycle stealing, because the DM A module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a command
to the DMA module, by sending to the DMA module the following information:

m Whether a read or write is requested, using the read or write control line
between the processor and the DMA module.

m The address of the I/O device involved, communicated on the data lines.

Data lines ‘ Data
‘ register
Address
Address lines register
Request to DMA
Acknowledge from DMA Control
Interrupt logi
ogic
Read >
Write >

Figure 7.12 Typical DMA Block Diagram

250 CHAPTER 7 / INPUT/OUTPUT

m The starting location in memory to read from or write to, communicated on
the data lines and stored by the DM A module in its address register.

m The number of words to be read or written, again communicated via the data
lines and stored in the data count register.

The processor then continues with other work. It has delegated this I/O oper-
ation to the DMA module. The DMA module transfers the entire block of data,
one word at a time, directly to or from memory, without going through the proces-
sor. When the transfer is complete, the DMA module sends an interrupt signal to
the processor. Thus, the processor is involved only at the beginning and end of the
transfer (Figure 7.4c).

Figure 7.13 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor is suspended just before it needs to use the bus.
The DMA module then transfers one word and returns control to the processor.
Note that this is not an interrupt; the processor does not save a context and do
something else. Rather, the processor pauses for one bus cycle. The overall effect
is to cause the processor to execute more slowly. Nevertheless, for a multiple-word
I/O transfer, DMA is far more efficient than interrupt-driven or programmed I/O.

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 7.14. In the first example, all modules share the same system
bus. The DMA module, acting as a surrogate processor, uses programmed /O to
exchange data between memory and an I/O module through the DMA module. This
configuration, while it may be inexpensive, is clearly inefficient. As with processor-
controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the
DMA and I/O functions. As Figure 7.14b indicates, this means that there is a path
between the DMA module and one or more I/O modules that does not include

Time

Instruction cycle

Processor Processor Processor Processor Processor Processor
cycle cycle cycle cycle cycle cycle
Fetch Decode Fetch Execute Store Process

instruction | instruction operand | instruction result interrupt
DMA Interrupt
breakpoints breakpoint

Figure 7.13 DMA and Interrupt Breakpoints during an Instruction Cycle

7.5 / DIRECT MEMORY ACCESS 251

Processor DMA /0 e o o /0 Memoryl

(a) Single-bus, detached DMA

Processor DMA DMA Memory l

/o

/o /o

(b) Single-bus, integrated DMA-1/0

System bus

Processor DMA Memory l
1/0 bus

/0 /0 /0

(c) I/0 bus
Figure 7.14 Alternative DMA Configurations

the system bus. The DMA logic may actually be a part of an I/O module, or it may
be a separate module that controls one or more I/O modules. This concept can
be taken one step further by connecting I/O modules to the DMA module using
an I/O bus (Figure 7.14c). This reduces the number of I/O interfaces in the DMA
module to one and provides for an easily expandable configuration. In both of
these cases (Figures 7.14b and c), the system bus that the DM A module shares with
the processor and memory is used by the DM A module only to exchange data with
memory. The exchange of data between the DMA and I/O modules takes place off
the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 X 86 family of processors and
to DRAM memory to provide a DMA capability. Figure 715 indicates the location
of the DMA module. When the DMA module needs to use the system buses (data,
address, and control) to transfer data, it sends a signal called HOLD to the processor.
The processor responds with the HLDA (hold acknowledge) signal, indicating that

252 CHAPTER 7 / INPUT/OUTPUT

CPU
Data bus
DREQ
HRQ [«
8237 DMA Main Disk
chip memory controller
HLDA > DACK
Address bus

X

Control bus (IOR, IOW, MEMR, MEMW)

DACK = DMA acknowledge
DREQ = DMA request
HLDA = HOLD acknowledge
HRQ = HOLD request

Figure 7.15 8237 DMA Usage of System Bus

the DMA module can use the buses. For example, if the DM A module is to transfer
a block of data from memory to disk, it will do the following:

1.

The peripheral device (such as the disk controller) will request the service of
DMA by pulling DREQ (DMA request) high.

. The DMA will put a high on its HRQ (hold request), signaling the CPU

through its HOLD pin that it needs to use the buses.

. The CPU will finish the present bus cycle (not necessarily the present instruc-

tion) and respond to the DMA request by putting high on its HDLA (hold
acknowledge), thus telling the 8237 DMA that it can go ahead and use the
buses to perform its task. HOLD must remain active high as long as DMA is
performing its task.

. DMA will activate DACK (DMA acknowledge), which tells the peripheral

device that it will start to transfer the data.

. DMA starts to transfer the data from memory to peripheral by putting the

address of the first byte of the block on the address bus and activating MEMR,
thereby reading the byte from memory into the data bus;it then activates IOW
to write it to the peripheral. Then DMA decrements the counter and incre-
ments the address pointer and repeats this process until the count reaches zero
and the task is finished.

. After the DMA has finished its job it will deactivate HRQ, signaling the CPU

that it can regain control over its buses.

7.5 / DIRECT MEMORY ACCESS 253

While the DMA is using the buses to transfer data, the processor is idle. Simi-
larly, when the processor is using the bus, the DMA is idle. The 8237 DMA is known
as a fly-by DMA controller. This means that the data being moved from one location
to another does not pass through the DMA chip and is not stored in the DMA chip.
Therefore, the DMA can only transfer data between an I/O port and a memory address,
and not between two I/O ports or two memory locations. However, as explained subse-
quently, the DMA chip can perform a memory-to-memory transfer via a register.

The 8237 contains four DMA channels that can be programmed inde-
pendently, and any one of the channels may be active at any moment. These chan-
nels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control
DMA operation over one of its channels (Table 7.2):

® Command: The processor loads this register to control the operation of
the DMA. DO enables a memory-to-memory transfer, in which channel 0 is
used to transfer a byte into an 8237 temporary register and channel 1 is used
to transfer the byte from the register to memory. When memory-to-memory
is enabled, D1 can be used to disable increment/decrement on channel 0
so that a fixed value can be written into a block of memory. D2 enables or
disables DMA.

m Status: The processor reads this register to determine DMA status. Bits
DO0-D3 are used to indicate if channels 0-3 have reached their TC (terminal
count). Bits D4-D7 are used by the processor to determine if any channel has
a DMA request pending.

®m Mode: The processor sets this register to determine the mode of operation of
the DMA. Bits D0 and D1 are used to select a channel. The other bits select
various operation modes for the selected channel. Bits D2 and D3 determine
if the transfer is from an I/O device to memory (write) or from memory to
I/O (read), or a verify operation. If D4 is set, then the memory address regis-
ter and the count register are reloaded with their original values at the end of
a DMA data transfer. Bits D6 and D7 determine the way in which the 8237 is
used. In single mode, a single byte of data is transferred. Block and demand
modes are used for a block transfer, with the demand mode allowing for
premature ending of the transfer. Cascade mode allows multiple 8237s to be
cascaded to expand the number of channels to more than 4.

m Single Mask: The processor sets this register. Bits DO and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this reg-
ister that the DREQ input of a specific channel can be masked (disabled) or
unmasked (enabled). While the command register can be used to disable the
whole DMA chip, the single mask register allows the programmer to disable
or enable a specific channel.

= All Mask: This register is similar to the single mask register except that all four
channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register
and one count register for each channel. The processor sets these registers to indi-
cate the location of size of main memory to be affected by the transfers.

254 CHAPTER 7 / INPUT/OUTPUT

Table 7.2 Intel 8237A Registers

Bit Command Status Mode Single Mask All Mask
DO Memory-to- Channel 0 has Clear/set chan-
memory E/D reached TC Select channel | nel 0 mask bit
Channel select .
D1 | Channel 0 Channel 1 has mask bit Clear/set chan-
address hold E/D | reached TC nel 1 mask bit
D2 Controller E/D Channel 2 has Verify/write/read Clear/set Clear/set chan-
reached TC transfer mask bit nel 2 mask bit
D3 Normal/com- Channel 3 has Clear/set chan-
pressed timing reached TC nel 3 mask bit
D4 Fixed/rotating Channel 0 request | Auto-initialization
priority E/D
D5 Late/extended Channel 0 request Address increment/
write selection decrement select Not used
D6 | DREQ sense Channel 0 request Not used
active high/low
D7 DACK sense Channel 0 request | Demand/single/
active high/low block/cascade mode
select

E/D = enable/disable
TC = terminal count

7.6 DIRECT CACHE ACCESS

DMA has proved an effective means of enhancing performance of I/O with periph-
eral devices and network I/O traffic. However, for the dramatic increases in data
rates for network 1I/O, DMA is not able to scale to meet the increased demand.
This demand is coming primarily from the widespread deployment of 10-Gbps and
100-Gbps Ethernet switches to handle massive amounts of data transfer to and from
database servers and other high-performance systems [STALI14a]. A secondary
but increasingly important source of traffic comes from Wi-Fi in the gigabit range.
Network Wi-Fi devices that handle 3.2 Gbps and 6.76 Gbps are becoming widely
available and producing demand on enterprise systems [STAL14b].

In this section, we will show how enabling the I/O function to have direct
access to the cache can enhance performance, a technique known as direct cache
access (DCA). Throughout this section, we are concerned only with the cache that
is closest to main memory, referred to as the last-level cache. In some systems, this
will be an L2 cache, in others an L3 cache.

To begin, we describe the way in which contemporary multicore systems use
on-chip shared cache to enhance DMA performance. This approach involves ena-
bling the DMA function to have direct access to the last-level cache. Next we exam-
ine cache-related performance issues that manifest when high-speed network traffic
is processed. From there, we look at several different strategies for DCA that are
designed to enhance network protocol processing performance. Finally, this section
describes a DCA approach implemented by Intel, referred to as Direct Data 1/O.

7.6 / DIRECT CACHE ACCESS 255

DMA Using Shared Last-Level Cache

As was discussed in Chapter 1 (see Figure 1.2), contemporary multicore systems
include both cache dedicated to each core and an additional level of shared cache,
either L2 or L3. With the increasing size of available last-level cache, system design-
ers have enhanced the DMA function so that the DMA controller has access to the
shared cache in a manner similar to the cores. To clarify the interaction of DMA and
cache, it will be useful to first describe a specific system architecture. For this pur-
pose, the following is an overview of the Intel Xeon system.

XEON MULTICORE PROCESSOR Intel Xeon is Intel’s high-end, high-performance
processor family, used in servers, high-performance workstations, and
supercomputers. Many of the members of the Xeon family use a ring interconnect
system, as illustrated for the Xeon E5-2600/4600 in Figure 7.16.

The E5-2600/4600 can be configured with up to eight cores on a single chip.
Each core has dedicated L1 and L2 caches. There is a shared L3 cache of up to
20 MB. The L3 cache is divided into slices, one associated with each core although
each core can address the entire cache. Further, each slice has its own cache pipe-
line, so that requests can be sent in parallel to the slices.

The bidirectional high-speed ring interconnect links cores, last-level cache,
PCle, and integrated memory controller (IMC).

In essence, the ring operates as follows:

1. Each component that attaches to the bidirectional ring (QPI, PCle, L3 cache,
L2 cache) is considered a ring agent, and implements ring agent logic.

2. The ring agents cooperate via a distributed protocol to request and allocate
access to the ring, in the form of time slots.

3. When an agent has data to send, it chooses the ring direction that results in the
shortest path to the destination and transmits when a scheduling slot is available.

The ring architecture provides good performance and scales well for multiple
cores, up to a point. For systems with a greater number of cores, multiple rings are
used, with each ring supporting some of the cores.

DMA USE OF THE CACHE In traditional DMA operation, data are exchanged
between main memory and an I/O device by means of the system interconnection
structure, such as a bus, ring, or QPI point-to-point matrix. So, for example, if the
Xeon E5-2600/4600 used a traditional DMA technique, output would proceed as
follows. An I/O driver running on a core would send an I/O command to the I/O
controller (labeled PCle in Figure 7.16) with the location and size of the buffer in
main memory containing the data to be transferred. The I/O controller issues a read
request that is routed to the memory controller hub (MCH), which accesses the data
on DDR3 memory and puts it on the system ring for delivery to the I/O controller.
The L3 cache is not involved in this transaction and one or more off-chip memory
reads are required. Similarly, for input, data arrive from the I/O controller and is
delivered over the system ring to the MCH and written out to main memory. The
MCH must also invalidate any L3 cache lines corresponding to the updated memory
locations. In this case, one or more off-chip memory writes are required. Further, if
an application wants to access the new data, a main memory read is required.

256 CHAPTER 7 / INPUT/OUTPUT

To other To I/O
processor chips devices

. 1
X 1
' 1
' 1
' 1
' 1
' 1
' 1
' 1
' 1
' 1
1 r‘ I~ — !
: =| & L3 L3 2 (g :
. Core § n» Cache Cache i NS EDE !
. o |E| & 25MB) | (2.5MB) S !
: 7= a3 X
1 E 5 - - 1
' 1
1 - = |~ !
: =| & L3 L3 2 (g :
. Core § N Cache Cache 2 = ED T !
' 1 =) (2.5MB) | (2.5 MB) Q|e 6 !
' = a |3 X
! = 5 - |- 1
' 1
1 = !
! = 8 L3 L3 AE ;
. Core § N Cache Cache 2 | EDE !
: 2 [E| 2 25MB) | (2.5MB) a el s '

= 3 '
. 2l & = |2 '
: = :
: =| S L3 L3 2|2 :
! Core 2| B Cache Cache R EDE !
: 3 [E| 2 25MB) | (2.5MB) a4 '

= = '
. | & == '
: :
' 1
' 1
' 1
| 5 '
' 1
: Memory :
' Controller Hub !
' 1
: Chip boundary :

To DDR3
memory

Figure 7.16 Xeon E5-2600/4600 Chip Architecture

With the availability of large amounts of last-level cache, a more efficient
technique is possible, and is used by the Xeon E5-2600/4600. For output, when the
I/O controller issues a read request, the MCH first checks to see if the data are in
the L3 cache. This is likely to be the case, if an application has recently written data
into the memory block to be output. In that case, the MCH directs data from the L3
cache to the I/O controller; no main memory accesses are needed. However, it also
causes the data to be evicted from cache, that is, the act of reading by an I/O device

7.6 / DIRECT CACHE ACCESS 257

causes data to be evicted. Thus, the I/O operation proceeds efficiently because it
does not require main memory access. But, if an application does need that data
in the future, it must be read back into the L3 cache from main memory. The input
operation on the Xeon E5-2600/4600 operates as described in the previous para-
graph; the L3 cache is not involved. Thus, the performance improvement involves
only output operations.

A final point. Although the output transfer is directly from cache to the I/O
controller, the term direct cache access is not used for this feature. Rather, the term
is reserved for the I/O protocol application, as described in the remainder of this
section.

Cache-Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks, called
packets or protocol data units. The lowest, or link, level protocol is typically
Ethernet, so that each arriving and departing block of data consists of an Ethernet
packet containing as payload the higher-level protocol packet. The higher-level pro-
tocols are usually the Internet Protocol (IP), operating on top of Ethernet, and
the Transmission Control Protocol (TCP), operating on top of IP. Accordingly, the
Ethernet payload consists of a block of data with a TCP header and an IP header.
For outgoing data, Ethernet packets are formed in a peripheral component, such
as an I/O controller or network interface controller (NIC). Similarly, for incoming
traffic, the 1/O controller strips off the Ethernet information and delivers the TCP/
IP packet to the host CPU.

For both outgoing and incoming traffic, the core, main memory, and cache
are all involved. In a DMA scheme, when an application wishes to transmit data, it
places that data in an application-assigned buffer in main memory. The core trans-
fers this to a system buffer in main memory and creates the necessary TCP and IP
headers, which are also buffered in system memory. The packet is then picked up
via DMA for transfer via the NIC. This activity engages not only main memory but
also the cache. For incoming traffic, similar transfers between system and applica-
tion buffers are required.

When large volumes of protocol traffic are processed, two factors in this sce-
nario degrade performance. First, the core consumes valuable clock cycles in copy-
ing data between system and application buffers. Second, because memory speeds
have not kept up with CPU speeds, the core loses time waiting on memory reads
and writes. In this traditional way of processing protocol traffic, the cache does not
help because the data and protocol headers are constantly changing and thus the
cache must constantly be updated.

To clarify the performance issue and to explain the benefit of DCA as a way
of improving performance, let us look at the processing of protocol traffic in more
detail for incoming traffic. In general terms, the following steps occur:

1. Packet arrives: The NIC receives an incoming Ethernet packet. The NIC pro-
cesses and strips off the Ethernet control information. This includes doing an
error detection calculation. The remaining TCP/IP packet is then transferred
to the system’s DMA module, which generally is part of the NIC. The NIC
also creates a packet descriptor with information about the packet, such as its
buffer location in memory.

258 CHAPTER 7 / INPUT/OUTPUT

2.

DMA: The DMA module transfers data, including the packet descriptor, to
main memory. It must also invalidate the corresponding cache lines, if any.

. NIC interrupts host: After a number of packets have been transferred, the

NIC issues an interrupt to the host processor.

. Retrieve descriptors and headers: The core processes the interrupt, invoking

an interrupt handling procedure, which reads the descriptor and header of the
received packets.

. Cache miss occurs: Because this is new data coming in, the cache lines corre-

sponding to the system buffer containing the new data are invalidated. Thus,
the core must stall to read the data from main memory into cache, and then to
core registers.

. Header is processed: The protocol software executes on the core to analyze

the contents of the TCP and IP headers. This will likely include accessing a
transport control block (TCB), which contains context information related
to TCP. The TCB access may or may not trigger a cache miss, necessitating a
main memory access.

. Payload transferred: The data portion of the packet is transferred from the

system buffer to the appropriate application buffer.

A similar sequence of steps occurs for outgoing packet traffic, but there are

some differences that affect how the cache is managed. For outgoing traffic, the
following steps occur:

1.

Packet transfer requested: When an application has a block of data to transfer
to a remote system, it places the data in an application buffer and alerts the
OS with some type of system call.

. Packet created: The OS invokes a TCP/IP process to create the TCP/IP packet

for transmission. The TCP/IP process accesses the TCB (which may involve a
cache miss) and creates the appropriate headers. It also reads the data from
the application buffer, and then places the completed packet (headers plus
data) in a system buffer. Note that the data that is written into the system buf-
fer also exists in the cache. The TCP/IP process also creates a packet descrip-
tor that is placed in memory shared with the DMA module.

. Output operation invoked: This uses a device driver program to signal the

DMA module that output is ready for the NIC.

. DMA transfer: The DMA module reads the packet descriptor, then a

DMA transfer is performed from main memory or the last-level cache to
the NIC. Note that DMA transfers invalidate the cache line in cache even in
the case of a read (by the DMA module). If the line is modified, this causes a
write back. The core does not do the invalidates. The invalidates happen when
the DMA module reads the data.

. NIC signals completion: After the transfer is complete, the NIC signals the

driver on the core that originated the send signal.

. Driver frees buffer: Once the driver receives the completion notice, it frees

up the buffer space for reuse. The core must also invalidate the cache lines
containing the buffer data.

7.6 / DIRECT CACHE ACCESS 259

As can be seen, network I/O involves a number of accesses to cache and main
memory and the movement of data between an application buffer and a system
buffer. The heavy involvement of main memory becomes a bottleneck, as both core
and network performance outstrip gains in memory access times.

Direct Cache Access Strategies

Several strategies have been proposed for making more efficient use of caches for
network I/O, with the general term direct cache access applied to all of these strategies.

The simplest strategy is one that was implemented as a prototype on a number
of Intel Xeon processors between 2006 and 2010 [KUMAO07, INTEO08]. This form
of DCA applies only to incoming network traffic. The DCA function in the mem-
ory controller sends a prefetch hint to the core as soon as the data are available in
system memory. This enables the core to prefetch the data packet from the system
buffer, thus avoiding cache misses and the associated waste of core cycles.

While this simple form of DCA does provide some improvement, much more
substantial gains can be realized by avoiding the system buffer in main memory
altogether. For the specific function of protocol processing, note that the packet
and packet descriptor information are accessed only once in the system buffer by
the core. For incoming packets, the core reads the data from the buffer and trans-
fers the packet payload to an application buffer. It has no need to access that data
in the system buffer again. Similarly, for outgoing packets, once the core has placed
the data in the system buffer, it has no need to access that data again. Suppose,
therefore, that the I/O system were equipped not only with the capability of directly
accessing main memory, but also of accessing the cache, both for input and output
operations. Then it would be possible to use the last-level cache instead of the main
memory to buffer packets and descriptors of incoming and outgoing packets.

This last approach, which is a true DCA, was proposed in [HUGGO5]. It has
also been described as cache injection [LEONO6]. A version of this more complete
form of DCA is implemented in Intel’s Xeon processor line, referred to as Direct
Data I/0 [INTE12].

Direct Data I/0

Intel Direct Data I/O (DDIO) is implemented on all of the Xeon ES family of pro-
cessors. Its operation is best explained with a side-by-side comparison of transfers
with and without DDIO.

PACKET INPUT First, we look at the case of a packet arriving at the NIC from the
network. Figure 7.17a shows the steps involved for a DMA operation. The NIC
initiates a memory write (1). Then the NIC invalidates the cache lines corresponding
to the system buffer (2). Next, the DMA operation is performed, depositing the
packet directly into main memory (3). Finally, after the appropriate core receives a
DMA interrupt signal, the core can read the packet data from memory through the
cache (4).

Before discussing the processing of an incoming packet using DDIO, we need
to summarize the discussion of cache write policy from Chapter 4, and introduce a
new technique. For the following discussion, there are issues relating to cache coher-
ency that arise in a multiprocessor or multicore environment. These are discussed

260 CHAPTER 7 / INPUT/OUTPUT

Core || Core Core Core || Core Core
[] [} [] [} [} []

1 2 /’ N 1 2 9 N
Last-level cach Last-level cache

(]

T =
@— Main Main
/o < /o <>
@ controller __| _@_ _»memory @ controller memory
(a) Normal DMA transfer to memory (b) DDIO transfer to cache
Cc;re C;re e o o Cxlre C(;re C(;re e o o C[(;]re
(O

Last-level cache Last-level cache

o | o |

OF v :
1/0 b Main 0 Main
controller _ | _@__»memory controller memory
(c) Normal DMA transfer to I/O (d) DDIO transfer to 1/O

Figure 7.17 Comparison of DMA and DDIO

in Chapter 17 but the details need not concern us here. Recall that there are two
techniques for dealing with an update to a cache line:

= Write through: All write operations are made to main memory as well as to
the cache, ensuring that main memory is always valid. Any other core—cache
module can monitor traffic to main memory to maintain consistency within its
own local cache.

m Write back: Updates are made only in the cache. When an update occurs, a
dirty bit associated with the line is set. Then, when a block is replaced, it is
written back to main memory if and only if the dirty bit is set.

DDIO uses the write-back strategy in the L3 cache.
A cache write operation may encounter a cache miss, which is dealt with by
one of two strategies:

= Write allocate: The required line is loaded into the cache from main memory.
Then, the line in the cache is updated by the write operation. This scheme is
typically used with the write-back method.

= Non-write allocate: The block is modified directly in main memory. No change is
made to the cache. This scheme is typically used with the write-through method.

With the above in mind, we can describe the DDIO strategy for inbound
transfers initiated by the NIC.

1. If there is a cache hit, the cache line is updated, but not main memory; this is
simply the write-back strategy for a cache hit. The Intel literature refers to this
as write update.

7.7 / I/O CHANNELS AND PROCESSORS 261

2. If there is a cache miss, the write operation occurs to a line in the cache that will not
be written back to main memory. Subsequent writes update the cache line, again
with no reference to main memory or no future action that writes this data to main
memory. The Intel documentation [INTE12] refers to this as write allocate, which
unfortunately is not the same meaning for the term in the general cache literature.

The DDIO strategy is effective for a network protocol application because the
incoming data need not be retained for future use. The protocol application is going
to write the data to an application buffer, and there is no need to temporarily store
it in a system buffer.

Figure 7.17b shows the operation for DDIO input. The NIC initiates a memory
write (1). Then the NIC invalidates the cache lines corresponding to the system buffer
and deposits the incoming data in the cache (2). Finally, after the appropriate core
receives a DCA interrupt signal, the core can read the packet data from the cache (3).

PACKET OUTPUT Figure 7.17c shows the steps involved for a DMA operation for
outbound packet transmission. The TCP/IP protocol handler executing on the core reads
data in from an application buffer and writes it out to a system buffer. These data access
operations result in cache misses and cause data to be read from memory and into the L3
cache (1). When the NIC receives notification for starting a transmit operation, it reads
the data from the L3 cache and transmits it (2). The cache access by the NIC causes the
data to be evicted from the cache and written back to main memory (3).

Figure 7.17d shows the steps involved for a DDIO operation for packet trans-
mission. The TCP/IP protocol handler creates the packet to be transmitted and
stores it in allocated space in the L3 cache (1), but not in main memory (2). The
read operation initiated by the NIC is satisfied by data from the cache, without
causing evictions to main memory.

It should be clear from these side-by-side comparisons that DDIO is more
efficient than DMA for both incoming and outgoing packets and is therefore better
able to keep up with the high packet traffic rate.

7.7 1/O CHANNELS AND PROCESSORS

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than
in the I/O function. We have already seen part of that evolution. The evolutionary
steps can be summarized as follows:

1. The CPU directly controls a peripheral device. This is seen in simple
microprocessor-controlled devices.

2. A controller or I/O module is added. The CPU uses programmed I/O without
interrupts. With this step, the CPU becomes somewhat divorced from the spe-
cific details of external device interfaces.

3. The same configuration as in step 2 is used, but now interrupts are employed.
The CPU need not spend time waiting for an I/O operation to be performed,
thus increasing efficiency.

262 CHAPTER 7 / INPUT/OUTPUT

4. The I/O module is given direct access to memory via DMA. It can now move
a block of data to or from memory without involving the CPU, except at the
beginning and end of the transfer.

5. The I/O module is enhanced to become a processor in its own right, with a
specialized instruction set tailored for I/O. The CPU directs the I/O processor
to execute an I/O program in memory. The I/O processor fetches and executes
these instructions without CPU intervention. This allows the CPU to specity a
sequence of I/O activities and to be interrupted only when the entire sequence
has been performed.

6. The I/O module has a local memory of its own and is, in fact, a computer in its
own right. With this architecture, a large set of I/O devices can be controlled,
with minimal CPU involvement. A common use for such an architecture has
been to control communication with interactive terminals. The I/O processor
takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O func-
tion is performed without CPU involvement. The CPU is increasingly relieved of
I/O-related tasks, improving performance. With the last two steps (5-6), a major
change occurs with the introduction of the concept of an I/O module capable of
executing a program. For step 5, the I/O module is often referred to as an I/O
channel. For step 6, the term I/O processor is often used. However, both terms are
on occasion applied to both situations. In what follows, we will use the term I/O
channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O channel
has the ability to execute I/O instructions, which gives it complete control over
I/O operations. In a computer system with such devices, the CPU does not execute
I/O instructions. Such instructions are stored in main memory to be executed by a
special-purpose processor in the I/O channel itself. Thus, the CPU initiates an 1/O
transfer by instructing the I/O channel to execute a program in memory. The pro-
gram will specify the device or devices, the area or areas of memory for storage,
priority, and actions to be taken for certain error conditions. The I/O channel follows
these instructions and controls the data transfer.

Two types of I/O channels are common, as illustrated in Figure 7.18. A
selector channel controls multiple high-speed devices and, at any one time, is
dedicated to the transfer of data with one of those devices. Thus, the I/O chan-
nel selects one device and effects the data transfer. Each device, or a small set of
devices, is handled by a controller, or I/O module, that is much like the I/O mod-
ules we have been discussing. Thus, the I/O channel serves in place of the CPU
in controlling these I/O controllers. A multiplexor channel can handle I/O with
multiple devices at the same time. For low-speed devices, a byte multiplexor
accepts or transmits characters as fast as possible to multiple devices. For example,
the resultant character stream from three devices with different rates and indi-
vidual streams A1A2A3A4 e B1B2B3B4 ey and C1C2C3C4 e mlght be
AB1C1A,C,A3B,C3A,, and so on. For high-speed devices, a block multiplexor
interleaves blocks of data from several devices.

7.8 / EXTERNAL INTERCONNECTION STANDARDS 263

Data and
address channel

to main memory
Selector
channel | |
Control signal e oo
path to CPU controller controller
(a) Selector
Data and
address channel
to main memory
Multiplexor
channel
Control signal
path to CPU e oo I /0
controller
/o
controller

/0

controller

(b) Multiplexor

Figure 7.18 1/O Channel Architecture

7.8 EXTERNAL INTERCONNECTION STANDARDS

In this section, we provide a brief overview of the most widely used external inter-
face standards to support I/O. Two of these, Thunderbolt and InfiniBand, are exam-

ined in detail in Appendix J.

Universal Serial Bus (USB)

/0
controller

USB is widely used for peripheral connections. It is the default interface for slower-
speed devices, such as keyboard and pointing devices, but is also commonly used for
high-speed 1/0, including printers, disk drives, and network adapters.

USB has gone through multiple generations. The first version, USB 1.0,
defined a Low Speed data rate of 1.5 Mbps and a Full Speed rate of 12 Mbps. USB
2.0 provides a data rate of 480 Mbps. USB 3.0 includes a new, higher speed bus

264 CHAPTER 7 / INPUT/OUTPUT

called SuperSpeed in parallel with the USB 2.0 bus. The signaling speed of Super-
Speed is 5 Gbps, but due to signaling overhead, the usable data rate is up to 4 Gbps.
The most recent specification is USB 3.1, which includes a faster transfer mode
called SuperSpeed+. This transfer mode achieves a signaling rate of 10 Gbps and a
theoretical usable data rate of 9.7 Gbps.

A USB system is controlled by a root host controller, which attaches to devices
to create a local network with a hierarchical tree topology.

FireWire Serial Bus

FireWire was developed as an alternative to the small computer system interface
(SCSI) to be used on smaller systems, such as personal computers, workstations,
and servers. The objective was to meet the increasing demands for high I/O rates
on these systems, while avoiding the bulky and expensive I/O channel technologies
developed for mainframe and supercomputer systems. The result is the IEEE stan-
dard 1394, for a High Performance Serial Bus, commonly known as FireWire.

FireWire uses a daisy-chain configuration, with up to 63 devices connected
off a single port. Moreover, up to 1022 FireWire buses can be interconnected using
bridges, enabling a system to support as many peripherals as required.

FireWire provides for what is known as hot plugging, which makes it possible
to connect and disconnect peripherals without having to power the computer system
down or reconfigure the system. Also, FireWire provides for automatic configur-
ation; it is not necessary manually to set device IDs or to be concerned with the rela-
tive position of devices. With FireWire, there are no terminations, and the system
automatically performs a configuration function to assign addresses. A FireWire bus
need not be a strict daisy chain. Rather, a tree-structured configuration is possible.

An important feature of the FireWire standard is that it specifies a set of three
layers of protocols to standardize the way in which the host system interacts with the
peripheral devices over the serial bus. The physical layer defines the transmission media
that are permissible under FireWire and the electrical and signaling characteristics of
each. Data rates from 25 Mbps to 3.2 Gbps are defined. The link layer describes the
transmission of data in the packets. The transaction layer defines a request-response
protocol that hides the lower-layer details of FireWire from applications.

Small Computer System Interface (SCSI)

SCSI is a once common standard for connecting peripheral devices (disks, modems,
printers, etc.) to small and medium-sized computers. Although SCSI has evolved to
higher data rates, it has lost popularity to such competitors as USB and FireWire
in smaller systems. However, high-speed versions of SCSI remain popular for mass
memory support on enterprise systems. For example, the IBM zEnterprise EC12
and other IBM mainframes offer support for SCSI, and a number of Seagate hard
drive systems use SCSI.

The physical organization of SCSI is a shared bus, which can support up to 16
or 32 devices, depending on the generation of the standard. The bus provides for
parallel transmission rather than serial, with a bus width of 16 bits on earlier gener-
ations and 32 bits on later generations. Speeds range from 5 Mbps on the original
SCSI-1 specification to 160 Mbps on SCSI-3 U3.

7.8 / EXTERNAL INTERCONNECTION STANDARDS 265

Thunderbolt

The most recent, and one of fastest, peripheral connection technology to become
available for general-purpose use is Thunderbolt, developed by Intel with collabora-
tion from Apple. One Thunderbolt cable can manage the work previously required
of multiple cables. The technology combines data, video, audio, and power into a
single high-speed connection for peripherals such as hard drives, RAID (Redundant
Array of Independent Disks) arrays, video-capture boxes, and network interfaces. It
provides up to 10 Gbps throughput in each direction and up to 10 watts of power to
connected peripherals.
Thunderbolt is described in detail in Appendix J.

InfiniBand

InfiniBand is an I/O specification aimed at the high-end server market. The first
version of the specification was released in early 2001 and has attracted numerous
vendors. For example, IBM zEnterprise series of mainframes has relied heavily on
InfiniBand for a number of years. The standard describes an architecture and speci-
fications for data flow among processors and intelligent I/O devices. InfiniBand has
become a popular interface for storage area networking and other large storage con-
figurations. In essence, InfiniBand enables servers, remote storage, and other network
devices to be attached in a central fabric of switches and links. The switch-based archi-
tecture can connect up to 64,000 servers, storage systems, and networking devices.
Infiniband is described in detail in Appendix J.

PCI Express

PCI Express is a high-speed bus system for connecting peripherals of a wide variety
of types and speeds. Chapter 3 discusses PCI Express in detail.

SATA

Serial ATA (Serial Advanced Technology Attachment) is an interface for disk stor-
age systems. It provides data rates of up to 6 Gbps, with a maximum per device of
300 Mbps. SATA is widely used in desktop computers, and in industrial and embed-
ded applications.

Ethernet

Ethernet is the predominant wired networking technology, used in homes, offices,
data centers, enterprises, and wide-area networks. As Ethernet has evolved to sup-
port data rates up to 100 Gbps and distances from a few meters to tens of km, it
has become essential for supporting personal computers, workstations, servers, and
massive data storage devices in organizations large and small.

Ethernet began as an experimental bus-based 3-Mbps system. With a bus sys-
tem, all of the attached devices, such as PCs, connect to a common coaxial cable,
much like residential cable TV systems. The first commercially-available Ether-
net, and the first version of IEEE 802.3, were bus-based systems operating at 10
Mbps. As technology has advanced, Ethernet has moved from bus-based to switch-
based, and the data rate has periodically increased by an order of magnitude. With

266 CHAPTER 7 / INPUT/OUTPUT

switch-based systems, there is a central switch, with all of the devices connected
directly to the switch. Currently, Ethernet systems are available at speeds up to 100
Gbps. Here is a brief chronology.

1983: 10 Mbps (megabit per second, million bits per second)
1995: 100 Mbps

1998: 1 Gbps (gigabit per second, billion bits per second)
2003: 10 Gbps

2010: 40 Gbps and 100 Gbps

Wi-Fi

Wi-Fi is the predominant wireless Internet access technology, used in homes, offices,
and public spaces. Wi-Fi in the home now connects computers, tablets, smart phones,
and a host of electronic devices, such as video cameras, TVs, and thermostats. Wi-Fi
in the enterprise has become an essential means of enhancing worker productivity
and network effectiveness. And public Wi-Fi hotspots have expanded dramatically
to provide free Internet access in most public places.

As the technology of antennas, wireless transmission techniques, and wireless

protocol design has evolved, the IEEE 802.11 committee has been able to introduce
standards for new versions of Wi-Fi at ever-higher speeds. Once the standard is
issued, industry quickly develops the products. Here is a brief chronology, starting
with the original standard, which was simply called IEEE 802.11, and showing the
maximum data rate for each version:

802.11 (1997): 2 Mbps (megabit per second, million bits per second)
802.11a (1999): 54 Mbps

802.11b (1999): 11 Mbps

802.11n (1999): 600 Mbps

802.11g (2003): 54 Mbps

802.11ad (2012): 6.76 Gbps (billion bits per second)

802.11ac (2014): 3.2 Gbps

7.9 IBM zENTERPRISE EC12 I/O STRUCTURE

The zEnterprise EC12 is IBM’s latest mainframe computer offering (at the time of
this writing). The system is based on the use of the zEC12 processor chip, which is a
5.5-GHz multicore chip with six cores. The zZEC12 architecture can have a maximum
of 101 processor chips for a total of 606 cores. In this section, we look at the I/O
structure of the zEnterprise EC12.

Channel Structure

The zEnterprise EC12 has a dedicated I/O subsystem that manages all I/O oper-
ations, completely off-loading this processing and memory burden from the main

7.9 / IBM zENTERPRISE EC12 I/O STRUCTURE 267

< 60 partitions per system

~ N
< 15 partitions per channel subsystem
Partition Partition Partition Partition
[] [J [J [J [J [] []
subchannels subchannels subchannels subchannels

[[[[J [] [
Channel Channel Channel Channel 4 channel

subsystem subsystem subsystem subsystem subsystems

[] L[] L] [] L] L[]

[[[[] [] []

Channel e o o Channel e o

< 256 channels per channel subsystem

~—

® [Channel e o o Channel

—

< 1024 partitions per system

Figure 7.19 IBM zEC12 I/O Channel Subsystem Structure

processors. Figure 7 21 shows the logical structure of the I/O subsystem. Of the 96
core processors, up to 4 of these can be dedicated for I/O use, creating 4 channel
subsystems (CSS). Each CSS is made up of the following elements:

= System assist processor (SAP): The SAP is a core processor configured for I/O
operation. Its role is to offload I/O operations and manage channels and the
I/O operations queues. It relieves the other processors of all I/O tasks, allowing
them to be dedicated to application logic.

= Hardware system area (HSA): The HSA is a reserved part of the system mem-
ory containing the I/O configuration. It is used by SAPs. A fixed amount of
32 GB is reserved, which is not part of the customer-purchased memory. This
provides for greater configuration flexibility and higher availability by elimi-
nating planned and preplanned outages.

= Logical partitions: A logical partition is a form of virtual machine, which is in
essence, a logical processor defined at the operating system level.> Each CSS
supports up to 16 logical partitions.

3A virtual machine is an instance of an operating system along with one or more applications running in
an isolated memory partition within the computer. It enables different operating systems to run in the
same computer at the same time as well as prevents applications from interfering with each other. See
[STAL12] for a discussion of virtual machines.

268 CHAPTER 7 / INPUT/OUTPUT

= Subchannels: A subchannel appears to a program as a logical device and con-
tains the information required to perform an I/O operation. One subchannel
exists for each I/O device addressable by the CSS. A subchannel is used by the
channel subsystem code running on a partition to pass an I/O request to the
channel subsystem. A subchannel is assigned for each device defined to the
logical partition. Up to 196k subchannels are supported per CSS.

= Channel path: A channel path is a single interface between a channel subsys-
tem and one or more control units, via a channel. Commands and data are sent
across a channel path to perform I/O requests. Each CSS can have up to 256
channel paths.

= Channel: Channels are small processors that communicate with the I/O con-
trol units (CUs). They manage the data transfer between memory and the
external devices.

This elaborate structure enables the mainframe to manage a massive num-
ber of I/O devices and communication links. All I/O processing is offloaded from
the application and server processors, enhancing performance. The channel subsys-
tem processors are somewhat general in configuration, enabling them to manage
a wide variety of I/O duties and to keep up with evolving requirements. The chan-
nel processors are specifically programmed for the I/O control units to which they
interface.

I/0 System Organization

To explain the I/O system organization, we need to first briefly explain the physical
layout of the zEnterprise EC12. Figure 720 is a front view of the water-cooled version
of the machine (there is also an air-cooled version). The system has the following
characteristics:

m Weight: 2430 kg (5358 Ibs)
m Width: 1.568 m (5.14 ft)

m Depth: 1.69 m (6.13 ft)

m Height: 2.015 m (6.6 ft)

Not exactly a laptop.

The system consists of two large bays, called frames, that house the various
components of the zEnterprise EC12. The right-hand A frame includes two large
cages, plus room for cabling and other components. The upper cage is a processor
cage, with four slots to house up to four processor books that are fully intercon-
nected. Each book contains a multichip module (MCM), memory cards, and I/O
cage connections. Each MCM is a board that houses six multicore chips and two
storage control chips.

The lower cage in the A frame is an I/O cage, which contains I/O hardware,
including multiplexors and channels. The I/O cage is a fixed unit installed by IBM to
the customer specifications at the factory.

The left-hand Z frame contains internal batteries and power supplies and
room for one or more support elements, which are used by a system manager for
platform management. The Z frame also contains slots for two or more I/O drawers.

7.9 / IBM zENTERPRISE EC12 I/O STRUCTURE 269

Internal . .
batteries Flexible service
(optional) processor (FSP)
controller cards
Power Processor books
supplies with memory HCA-
and PCle-fanout
cards
Support InfiniBand and
elements PCle /O
interconnects
I/O cage
’ ? carried
B4 = 7 forward
PCle IO W r N+1 water
drawer

cooling units

iif-'!'fé\

Figure 7.20 IBM zEC12 I/O Frames-Front View

An I/O drawer contains similar components to an I/O cage. The differences are that
the drawer is smaller and easily swapped in and out at the customer site to meet
changing requirements.

With this background, we now show a typical configuration of the zEnterprise
EC12 I/O system structure (Figure 7.21). Each zEC12 processor book supports two
internal (i.e., internal to the A and Z frames) I/O infrastructures: InfiniBand for
1/O cages and /O drawers, and PCI Express (PCle) for I/O drawers. These channel
controllers are referred to as fanouts.

The InfiniBand connections from the processor book to the I/O cages and
I/O drawers are via a Host Channel Adapter (HCA) fanout, which has InfiniBand
links to InfiniBand multiplexors in the I/O cage or drawer. The InfiniBand multi-
plexors are used to interconnect servers, communications infrastructure equipment,
storage, and embedded systems. In addition to using InfiniBand to interconnect
systems, all of which use InfiniBand, the InfiniBand multiplexor supports other I/O
technologies. ESCON (Enterprise Systems Connection) supports connectivity to
disks, tapes, and printer devices using a proprietary fiber-based technology. Eth-
ernet connections provide 1-Gbps and 10-Gbps connections to a variety of devices
that support this popular local area network technology. One noteworthy use of
Ethernet is to construct large server farms, particularly to interconnect blade serv-
ers with each other and with other mainframes.*

4A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It
is widely used in data centers to save space and improve system management. Either self-standing or rack
mounted, the chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.

270 CHAPTER 7 / INPUT/OUTPUT

o

===

switch

switch

-

-

Fibre Channel 10-Gbps
controller Ethernet controller
PCle I/O Drawer

Figure 7.21 IBM zEC12 I/O System Structure

ESCON 1-Gbps
Ethernet controller
I/O Cage & I/0 Drawer

The PCle connections from the processor book to the I/O drawers are via a
PCle fanout to PCle switches. The PCle switches can connect to a number of 1/0
device controllers. Typical examples for zEnterprise EC12 are 1-Gbps and 10-Gbps
Ethernet and Fiber Channel.

Each book contains a combination of up to 8 InfiniBand HCA and PCle
fanouts. Each fanout supports up to 32 connections, for a total maximum of 256
connections per processor book, each connection controlled by a channel processor.

7.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

cache injection

cycle stealing

direct cache access (DCA)
Direct Data I/O

InfiniBand
interrupt
interrupt-driven I/O
I/O channel

direct memory access (DMA)

I/O module

isolated I/O

parallel I/O

1I/O command

I/O processor

last-level cache
memory-mapped I/O
multiplexor channel
non-write allocate

peripheral device
programmed I/O
selector channel
serial I/O
Thunderbolt
write allocate
write back

write through
write update

7.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 271

Review Questions

71
72
73
74
75
7.6

77

List three broad classifications of external, or peripheral, devices.

What is the International Reference Alphabet?

What are the major functions of an I/O module?

List and briefly define three techniques for performing I/O.

What is the difference between memory-mapped I/O and isolated I/0O?

When a device interrupt occurs, how does the processor determine which device
issued the interrupt?

‘When a DMA module takes control of a bus, and while it retains control of the bus,
what does the processor do?

Problems

71

72

73

74

7.5

7.6

On a typical microprocessor, a distinct I/O address is used to refer to the I/O data
registers and a distinct address for the control and status registers in an I/O controller
for a given device. Such registers are referred to as ports. In the Intel 8088, two I/O
instruction formats are used. In one format, the 8-bit opcode specifies an I/O opera-
tion; this is followed by an 8-bit port address. Other I/O opcodes imply that the port
address is in the 16-bit DX register. How many ports can the 8088 address in each I/O
addressing mode?

A similar instruction format is used in the Zilog Z8000 microprocessor family. In this
case, there is a direct port addressing capability, in which a 16-bit port address is part
of the instruction, and an indirect port addressing capability, in which the instruction
references one of the 16-bit general purpose registers, which contains the port address.
How many ports can the Z8000 address in each I/O addressing mode?

The Z8000 also includes a block I/O transfer capability that, unlike DMA, is under the
direct control of the processor. The block transfer instructions specify a port address
register (Rp), a count register (Rc), and a destination register (Rd). Rd contains
the main memory address at which the first byte read from the input port is to be
stored. Rc is any of the 16-bit general purpose registers. How large a data block can be
transferred?

Consider a microprocessor that has a block I/O transfer instruction such as that found
on the Z8000. Following its first execution, such an instruction takes five clock cycles
to re-execute. However, if we employ a nonblocking I/O instruction, it takes a total
of 20 clock cycles for fetching and execution. Calculate the increase in speed with the
block I/O instruction when transferring blocks of 128 bytes.

A system is based on an 8-bit microprocessor and has two I/O devices. The I/O con-

trollers for this system use separate control and status registers. Both devices handle

data on a 1-byte-at-a-time basis. The first device has two status lines and three control

lines. The second device has three status lines and four control lines.

a. How many 8-bit I/O control module registers do we need for status reading and
control of each device?

b. What is the total number of needed control module registers given that the first
device is an output-only device?

c¢. How many distinct addresses are needed to control the two devices?

For programmed I/O, Figure 7.5 indicates that the processor is stuck in a wait loop

doing status checking of an I/O device. To increase efficiency, the I/O software could

be written so that the processor periodically checks the status of the device. If the

device is not ready, the processor can jump to other tasks. After some timed interval,

the processor comes back to check status again.

a. Consider the above scheme for outputting data one character at a time to a printer
that operates at 10 characters per second (cps). What will happen if its status is
scanned every 200 ms?

272 CHAPTER 7 / INPUT/OUTPUT

7.7

7.8

7.9

710

711

712

713

7.14

715

b. Next consider a keyboard with a single character buffer. On average, characters
are entered at a rate of 10 cps. However, the time interval between two consecu-
tive key depressions can be as short as 60 ms. At what frequency should the key-
board be scanned by the I/O program?

A microprocessor scans the status of an output I/O device every 20 ms. This is accom-
plished by means of a timer alerting the processor every 20 ms. The interface of the
device includes two ports: one for status and one for data output. How long does it
take to scan and service the device, given a clocking rate of 8 MHz? Assume for sim-
plicity that all pertinent instruction cycles take 12 clock cycles.

In Section 73, one advantage and one disadvantage of memory-mapped I/O, compared
with isolated I/O, were listed. List two more advantages and two more disadvantages.

A particular system is controlled by an operator through commands entered from a

keyboard. The average number of commands entered in an 8-hour interval is 60.

a. Suppose the processor scans the keyboard every 100 ms. How many times will the
keyboard be checked in an 8-hour period?

b. By what fraction would the number of processor visits to the keyboard be reduced
if interrupt-driven I/O were used?

Suppose that the 8255A shown in Figure 79 is configured as follows: port A as input,
port B as output, and all the bits of port C as output. Show the bits of the control reg-
ister to define this configuration.

Consider a system employing interrupt-driven I/O for a particular device that trans-

fers data at an average of 8 KB/s on a continuous basis.

a. Assume that interrupt processing takes about 100 us (i.e., the time to jump to
the interrupt service routine (ISR), execute it, and return to the main program).
Determine what fraction of processor time is consumed by this I/O device if it
interrupts for every byte.

b. Now assume that the device has two 16-byte buffers and interrupts the proces-
sor when one of the buffers is full. Naturally, interrupt processing takes longer,
because the ISR must transfer 16 bytes. While executing the ISR, the processor
takes about 8 us for the transfer of each byte. Determine what fraction of proces-
sor time is consumed by this I/O device in this case.

c. Now assume that the processor is equipped with a block transfer I/O instruction
such as that found on the Z8000. This permits the associated ISR to transfer each
byte of a block in only 2 us. Determine what fraction of processor time is con-
sumed by this I/O device in this case.

In virtually all systems that include DMA modules, DMA to main memory is given
higher priority than CPU access to main memory. Why?

A DMA module is transferring characters to memory using cycle stealing, from a
device transmitting at 9600 bps. The processor is fetching instructions at the rate of
1 million instructions per second (1 MIPS). By how much will the processor be slowed
down due to the DMA activity?

Consider a system in which bus cycles takes 500 ns. Transfer of bus control in either
direction, from processor to I/O device or vice versa, takes 250 ns. One of the I/O
devices has a data transfer rate of 50 KB/s and employs DMA. Data are transferred 1
byte at a time.

a. Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus
mastership prior to the start of a block transfer and maintains control of the bus
until the whole block is transferred. For how long would the device tie up the bus
when transferring a block of 128 bytes?

b. Repeat the calculation for cycle-stealing mode.

Examination of the timing diagram of the 8237A indicates that once a block transfer

begins, it takes three bus clock cycles per DMA cycle. During the DMA cycle, the

8237A transfers one byte of information between memory and I/O device.

a. Suppose we clock the 8237A at a rate of 5 MHz. How long does it take to transfer
one byte?

716

717

718

719

720

721

7.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 273

b. What would be the maximum attainable data transfer rate?
c. Assume that the memory is not fast enough and we have to insert two wait states
per DMA cycle. What will be the actual data transfer rate?

Assume that in the system of the preceding problem, a memory cycle takes 750 ns. To
what value could we reduce the clocking rate of the bus without effect on the attain-
able data transfer rate?

A DMA controller serves four receive-only telecommunication links (one per DMA
channel) having a speed of 64 Kbps each.

a. Would you operate the controller in burst mode or in cycle-stealing mode?

b. What priority scheme would you employ for service of the DMA channels?

A 32-bit computer has two selector channels and one multiplexor channel. Each selec-
tor channel supports two magnetic disk and two magnetic tape units. The multiplexor
channel has two line printers, two card readers, and 10 VDT terminals connected to it.
Assume the following transfer rates:

Disk drive 800 Kbytes/s
Magnetic tape drive 200 Kbytes/s
Line printer 6.6 Kbytes/s
Card reader 1.2 Kbytes/s
VDT 1 Kbyte/s

Estimate the maximum aggregate I/0O transfer rate in this system.

A computer consists of a processor and an I/O device D connected to main mem-

ory M via a shared bus with a data bus width of one word. The processor can exe-

cute a maximum of 10° instructions per second. An average instruction requires five
machine cycles, three of which use the memory bus. A memory read or write operation
uses one machine cycle. Suppose that the processor is continuously executing “back-

ground” programs that require 95% of its instruction execution rate but not any I/O

instructions. Assume that one processor cycle equals one bus cycle. Now suppose the

1/0 device is to be used to transfer very large blocks of data between M and D.

a. If programmed I/O is used and each one-word I/O transfer requires the processor
to execute two instructions, estimate the maximum I/O data-transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA is used.

A data source produces 7-bit IRA characters, to each of which is appended a parity

bit. Derive an expression for the maximum effective data rate (rate of IRA data bits)

over an R-bps line for the following:

a. Asynchronous transmission, with a 1.5-unit stop bit;

b. Bit-synchronous transmission, with a frame consisting of 48 control bits and 128
information bits;

c. Same as (b), with a 1024-bit information field;

d. Character-synchronous, with nine control characters per frame and 16 information
characters;

e. Same as (d), with 128 information characters.

Two women are on either side of a high fence. One of the women, named Apple-
server, has a beautiful apple tree loaded with delicious apples growing on her side of
the fence; she is happy to supply apples to the other woman whenever needed. The
other woman, named Apple-eater, loves to eat apples but has none. In fact, she must
eat her apples at a fixed rate (an apple a day keeps the doctor away). If she eats them
faster than that rate, she will get sick. If she eats them slower, she will suffer malnutri-
tion. Neither woman can talk, and so the problem is to get apples from Apple-server
to Apple-eater at the correct rate.
a. Assume that there is an alarm clock sitting on top of the fence and that the clock
can have multiple alarm settings. How can the clock be used to solve the problem?
Draw a timing diagram to illustrate the solution.

274 CHAPTER 7 / INPUT/OUTPUT

b.

C.

Now assume that there is no alarm clock. Instead Apple-eater has a flag that she
can wave whenever she needs an apple. Suggest a new solution. Would it be help-
ful for Apple-server also to have a flag? If so, incorporate this into the solution.
Discuss the drawbacks of this approach.

Now take away the flag and assume the existence of a long piece of string. Suggest
a solution that is superior to that of (b) using the string.

722 Assume that one 16-bit and two 8-bit microprocessors are to be interfaced to a system
bus. The following details are given:

1.

2.
3.

All microprocessors have the hardware features necessary for any type of data

transfer: programmed I/O, interrupt-driven I/O, and DMA.

All microprocessors have a 16-bit address bus.

Two memory boards, each of 64-Kbytes capacity, are interfaced with the bus. The

designer wishes to use a shared memory that is as large as possible.

The system bus supports a maximum of four interrupt lines and one DMA line.

Make any other assumptions necessary, and:

a. Give the system bus specifications in terms of number and types of lines.

b. Describe a possible protocol for communicating on the bus (i.e., read-write,
interrupt, and DMA sequences).

c. Explain how the aforementioned devices are interfaced to the system bus.

2\ M
CHAPTE

OPERATING SYSTEM SUPPORT

8.1 Operating System Overview
Operating System Objectives and Functions
Types of Operating Systems

8.2 Scheduling
Long-Term Scheduling
Medium-Term Scheduling
Short-Term Scheduling

8.3 Memory Management
Swapping
Partitioning
Paging
Virtual Memory
Translation Lookaside Buffer
Segmentation

8.4 Intel x86 Memory Management
Address Spaces
Segmentation
Paging

8.5 ARM Memory Management
Memory System Organization
Virtual Memory Address Translation
Memory-Management Formats
Access Control

8.6 Key Terms, Review Questions, and Problems

275

276 CHAPTER 8 / OPERATING SYSTEM SUPPORT

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

€ Summarize, at a top level, the key functions of an operating system (OS).

@ Discuss the evolution of operating systems for early simple batch systems to
modern complex systems.

@ Explain the differences among long-, medium-, and short-term scheduling.

@ Understand the reason for memory partitioning and explain the various tech-
niques that are used.

@ Assess the relative advantages of paging and segmentation.
@ Define virtual memory.

Although the focus of this text is computer hardware, there is one area of software
that needs to be addressed: the computer’s OS. The OS is a program that manages
the computer’s resources, provides services for programmers, and schedules the exe-
cution of other programs. Some understanding of operating systems is essential to
appreciate the mechanisms by which the CPU controls the computer system. In par-
ticular, explanations of the effect of interrupts and of the management of the mem-
ory hierarchy are best explained in this context.

The chapter begins with an overview and brief history of operating systems. The
bulk of the chapter looks at the two OS functions that are most relevant to the study
of computer organization and architecture: scheduling and memory management.

8.1 OPERATING SYSTEM OVERVIEW

Operating System Objectives and Functions

An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having two objectives:

= Convenience: An OS makes a computer more convenient to use.

m Efficiency: An OS allows the computer system resources to be used in an
efficient manner.

Let us examine these two aspects of an OS in turn.

THE OPERATING SYSTEM AS A USER/COMPUTER INTERFACE The hardware
and software used in providing applications to a user can be viewed in a layered
or hierarchical fashion, as depicted in Figure 8.1. The user of those applications,
the end user, generally is not concerned with the computer’s architecture. Thus
the end user views a computer system in terms of an application. That application
can be expressed in a programming language and is developed by an application
programmer. To develop an application program as a set of processor instructions

8.1 / OPERATING SYSTEM OVERVIEW 277

Application Application programs
programming interface
Appllcatl on Libraries/utilities Software
binary interface
Operating system
Instruction set
architecture
Execution hardware
i Memory
System zg:lesl)'connect translation Hardware
/0 :Ifglces Main
networking memory

Figure 8.1 Computer Hardware and Software Structure

that is completely responsible for controlling the computer hardware would be an
overwhelmingly complex task. To ease this task, a set of system programs is provided.
Some of these programs are referred to as utilities. These implement frequently
used functions that assist in program creation, the management of files, and the
control of I/O devices. A programmer makes use of these facilities in developing an
application, and the application, while it is running, invokes the utilities to perform
certain functions. The most important system program is the OS. The OS masks the
details of the hardware from the programmer and provides the programmer with a
convenient interface for using the system. It acts as mediator, making it easier for
the programmer and for application programs to access and use those facilities and
services.
Briefly, the OS typically provides services in the following areas:

= Program creation: The OS provides a variety of facilities and services, such as
editors and debuggers, to assist the programmer in creating programs. Typi-
cally, these services are in the form of utility programs that are not actually
part of the OS but are accessible through the OS.

= Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices
and files must be initialized, and other resources must be prepared. The OS
handles all of this for the user.

= Access to I/0 devices: Each 1/O device requires its own specific set of instruc-
tions or control signals for operation. The OS takes care of the details so that
the programmer can think in terms of simple reads and writes.

= Controlled access to files: In the case of files, control must include an under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the file format on the storage medium. Again, the OS worries about the
details. Further, in the case of a system with multiple simultaneous users, the
OS can provide protection mechanisms to control access to the files.

278 CHAPTER 8 / OPERATING SYSTEM SUPPORT

m System access: In the case of a shared or public system, the OS controls access
to the system as a whole and to specific system resources. The access function
must provide protection of resources and data from unauthorized users and
must resolve conflicts for resource contention.

= Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such
as a memory error, or a device failure or malfunction; and various software
errors, such as arithmetic overflow, attempt to access forbidden memory loca-
tion, and inability of the OS to grant the request of an application. In each
case, the OS must make the response that clears the error condition with the
least impact on running applications. The response may range from ending the
program that caused the error, to retrying the operation, to simply reporting
the error to the application.

= Accounting: A good OS collects usage statistics for various resources and
monitors performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes. Figure 8.1 also indicates three key
interfaces in a typical computer system:

= Instruction set architecture (ISA): The ISA defines the repertoire of
machine language instructions that a computer can follow. This interface
is the boundary between hardware and software. Note that both appli-
cation programs and utilities may access the ISA directly. For these pro-
grams, a subset of the instruction repertoire is available (user ISA). The
OS has access to additional machine language instructions that deal with
managing system resources (system ISA).

= Application binary interface (ABI): The ABI defines a standard for bin-
ary portability across programs. The ABI defines the system call inter-
face to the operating system and the hardware resources and services
available in a system through the user ISA.

= Application programming interface (API): The API gives a program
access to the hardware resources and services available in a system
through the user ISA supplemented with high-level language (HLL)
library calls. Any system calls are usually performed through libraries.
Using an API enables application software to be ported easily, through
recompilation, to other systems that support the same API.

THE OPERATING SYSTEM AS RESOURCE MANAGER A computer is a set of
resources for the movement, storage, and processing of data and for the control of
these functions. The OS is responsible for managing these resources.

Can we say that the OS controls the movement, storage, and processing of
data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating system

8.1 / OPERATING SYSTEM OVERVIEW 279

is controlled by a thermostat, which is completely distinct from the heat-generation
and heat-distribution apparatus.) This is not the case with the OS, which as a control
mechanism is unusual in two respects:

m The OS functions in the same way as ordinary computer software; that is, it is a
program executed by the processor.

m The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor
in the use of the other system resources and in the timing of its execution of other
programs. But in order for the processor to do any of these things, it must cease
executing the OS program and execute other programs. Thus, the OS relinquishes
control for the processor to do some “useful” work and then resumes control long
enough to prepare the processor to do the next piece of work. The mechanisms
involved in all this should become clear as the chapter proceeds.

Figure 8.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel, or nucleus, which contains
the most frequently used functions in the OS and, at a given time, other portions of
the OS currently in use. The remainder of main memory contains user programs and
data. The allocation of this resource (main memory) is controlled jointly by the OS
and memory-management hardware in the processor, as we will see. The OS decides
when an I/O device can be used by a program in execution, and controls access to and

Computer system

Wty 1/0 devices
Operating 1/0O controller O Printers,
system keyboards,
digital camera,

UL I/O controller O etc. ’
Programs . .

and data . .

1/O controller

Processor oo Processor

Storage

0S
Programs

Data

Figure 8.2 The Operating System as Resource Manager

280 CHAPTER 8 / OPERATING SYSTEM SUPPORT

use of files. The processor itself is a resource, and the OS must determine how much
processor time is to be devoted to the execution of a particular user program. In the
case of a multiple-processor system, this decision must span all of the processors.

Types of Operating Systems

Certain key characteristics serve to differentiate various types of operating systems.
The characteristics fall along two independent dimensions. The first dimension spec-
ifies whether the system is batch or interactive. In an interactive system, the user/pro-
grammer interacts directly with the computer, usually through a keyboard/display
terminal, to request the execution of a job or to perform a transaction. Furthermore,
the user may, depending on the nature of the application, communicate with the
computer during the execution of the job. A batch system is the opposite of interac-
tive. The user’s program is batched together with programs from other users and sub-
mitted by a computer operator. After the program is completed, results are printed
out for the user. Pure batch systems are rare today, however, it will be useful to the
description of contemporary operating systems to briefly examine batch systems.

An independent dimension specifies whether the system employs multipro-
gramming or not. With multiprogramming, the attempt is made to keep the pro-
cessor as busy as possible, by having it work on more than one program at a time.
Several programs are loaded into memory, and the processor switches rapidly
among them. The alternative is a uniprogramming system that works only one pro-
gram at a time.

EARLY SYSTEMS With the earliest computers, from the late 1940s to the mid-
1950s, the programmer interacted directly with the computer hardware; there was
no OS. These processors were run from a console, consisting of display lights, toggle
switches, some form of input device, and a printer. Programs in processor code were
loaded via the input device (e.g., a card reader). If an error halted the program,
the error condition was indicated by the lights. The programmer could proceed
to examine registers and main memory to determine the cause of the error. If the
program proceeded to a normal completion, the output appeared on the printer.
These early systems presented two main problems:

= Scheduling: Most installations used a sign-up sheet to reserve processor time.
Typically, a user could sign up for a block of time in multiples of a half hour
or so. A user might sign up for an hour and finish in 45 minutes; this would
result in wasted computer idle time. On the other hand, the user might run into
problems, not finish in the allotted time, and be forced to stop before resolving
the problem.

= Setup time: A single program, called a job, could involve loading the com-
piler plus the high-level language program (source program) into memory,
saving the compiled program (object program), and then loading and linking
together the object program and common functions. Each of these steps could
involve mounting or dismounting tapes, or setting up card decks. If an error
occurred, the hapless user typically had to go back to the beginning of the
setup sequence. Thus a considerable amount of time was spent just in setting
up the program to run.

8.1 / OPERATING SYSTEM OVERVIEW 281

This mode of operation could be termed serial processing, reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These
include libraries of common functions, linkers, loaders, debuggers, and I/O driver
routines that were available as common software for all users.

SIMPLE BATCH SYSTEMS Early processors were very expensive, and therefore it
was important to maximize processor utilization. The wasted time due to scheduling
and setup time was unacceptable.

To improve utilization, simple batch operating systems were developed. With
such a system, also called a monitor, the user no longer has direct access to the pro-
cessor. Rather, the user submits the job on cards or tape to a computer operator,
who batches the jobs together sequentially and places the entire batch on an input
device, for use by the monitor.

To understand how this scheme works, let us look at it from two points of
view: that of the monitor and that of the processor. From the point of view of the
monitor, the monitor controls the sequence of events. For this to be so, much of the
monitor must always be in main memory and available for execution (Figure 8.3).
That portion is referred to as the resident monitor. The rest of the monitor consists
of utilities and common functions that are loaded as subroutines to the user pro-
gram at the beginning of any job that requires them. The monitor reads in jobs one
at a time from the input device (typically a card reader or magnetic tape drive). As it
is read in, the current job is placed in the user program area, and control is passed to
this job. When the job is completed, it returns control to the monitor, which imme-
diately reads in the next job. The results of each job are printed out for delivery to
the user.

Interrupt
processing

Device
drivers

Job
sequencing

Monitor

Control language

interpreter
Boundary

User
program
area

Figure 8.3 Memory Layout for a
Resident Monitor

282 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Now consider this sequence from the point of view of the processor. At a certain
point in time, the processor is executing instructions from the portion of main mem-
ory containing the monitor. These instructions cause the next job to be read in to
another portion of main memory. Once a job has been read in, the processor will
encounter in the monitor a branch instruction that instructs the processor to con-
tinue execution at the start of the user program. The processor will then execute
the instruction in the user’s program until it encounters an ending or error condi-
tion. Either event causes the processor to fetch its next instruction from the monitor
program. Thus the phrase “control is passed to a job” simply means that the pro-
cessor is now fetching and executing instructions in a user program, and “control is
returned to the monitor” means that the processor is now fetching and executing
instructions from the monitor program.

It should be clear that the monitor handles the scheduling problem. A batch of
jobs is queued up, and jobs are executed as rapidly as possible, with no intervening
idle time.

How about the job setup time? The monitor handles this as well. With each
job, instructions are included in a job control language (JCL). This is a special type
of programming language used to provide instructions to the monitor. A simple
example is that of a user submitting a program written in FORTRAN plus some
data to be used by the program. Each FORTRAN instruction and each item of data
is on a separate punched card or a separate record on tape. In addition to FOR-
TRAN and data lines, the job includes job control instructions, which are denoted
by the beginning “$”. The overall format of the job looks like this:

$JOB

$FTN

} FORTRAN instructions
$LOAD

$RUN

} Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate compiler from its mass storage (usually tape). The compiler translates the user’s
program into object code, which is stored in memory or mass storage. If it is stored
in memory, the operation is referred to as “compile, load, and go.” If it is stored
on tape, then the SLOAD instruction is required. This instruction is read by the
monitor, which regains control after the compile operation. The monitor invokes
the loader, which loads the object program into memory in place of the compiler
and transfers control to it. In this manner, a large segment of main memory can
be shared among different subsystems, although only one such subsystem could be
resident and executing at a time.

We see that the monitor, or batch OS, is simply a computer program. It relies
on the ability of the processor to fetch instructions from various portions of main

8.1 / OPERATING SYSTEM OVERVIEW 283

memory in order to seize and relinquish control alternately. Certain other hardware
features are also desirable:

= Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load the
next job.

= Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, an interrupt
occurs, and control returns to the monitor.

m Privileged instructions: Certain instructions are designated privileged and can
be executed only by the monitor. If the processor encounters such an instruc-
tion while executing a user program, an error interrupt occurs. Among the
privileged instructions are I/O instructions, so that the monitor retains con-
trol of all I/O devices. This prevents, for example, a user program from acci-
dentally reading job control instructions from the next job. If a user program
wishes to perform I/O, it must request that the monitor perform the operation
for it. If a privileged instruction is encountered by the processor while it is
executing a user program, the processor hardware considers this an error and
transfers control to the monitor.

= Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

Processor time alternates between execution of user programs and execution
of the monitor. There have been two sacrifices: Some main memory is now given
over to the monitor and some processor time is consumed by the monitor. Both
of these are forms of overhead. Even with this overhead, the simple batch system
improves utilization of the computer.

MULTIPROGRAMMED BATCH SYSTEMS Even with the automatic job sequencing
provided by a simple batch OS, the processor is often idle. The problem is that
1/O devices are slow compared to the processor. Figure 8.4 details a representative
calculation. The calculation concerns a program that processes a file of records and
performs, on average, 100 processor instructions per record. In this example the
computer spends over 96% of its time waiting for I/O devices to finish transferring
data! Figure 8.5a illustrates this situation. The processor spends a certain amount of

Read one record from file 15 ws

Execute 100 instructions 1 us
Werite one record to file 15 us
TOTAL 31 us

Percent CPU utilization = % = 0.032 = 3.2%

Figure 8.4 System Utilization Example

284 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Program A | Run Wait Run Wait

Time

(a) Uniprogramming

Program A | Run Wait Run Wait
Program B Wait| Run Wait Run Wait
. Run | Run . Run | Run .
Combined A B Wait A B Wait
Time

(b) Multiprogramming with two programs

Program A | Run Wait Run Wait

Program B Wait| Run Wait Run Wait

Program C Wait . Wait . Wait
. Run | Run . Run | Run .
Combined A B . Wait A B . Wait

Time

(c) Multiprogramming with three programs

Figure 8.5 Multiprogramming Example

time executing, until it reaches an I/O instruction. It must then wait until that I/O
instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough memory
to hold the OS (resident monitor) and one user program. Suppose that there is room
for the OS and two user programs. Now, when one job needs to wait for I/O, the pro-
cessor can switch to the other job, which likely is not waiting for I/O (Figure 8.5b).
Furthermore, we might expand memory to hold three, four, or more programs and
switch among all of them (Figure 8.5¢). This technique is known as multiprogram-
ming, or multitasking.1 It is the central theme of modern operating systems.

The term mudtitasking is sometimes reserved to mean multiple tasks within the same program that may
be handled concurrently by the OS, in contrast to multiprogramming, which would refer to multiple
processes from multiple programs. However, it is more common to equate the terms multitasking and
multiprogramming, as is done in most standards dictionaries (e.g., IEEE Std 100-1992, The New IEEE
Standard Dictionary of Electrical and Electronics Terms).

8.1 / OPERATING SYSTEM OVERVIEW 285

This example illustrates the benefit of multiprogramming. Consider a
computer with 250 Mbytes of available memory (not used by the OS), a disk, a terminal,
and a printer. Three programs, JOB1,JOB2, and JOB3, are submitted for execution at the
same time, with the attributes listed in Table 8.1. We assume minimal processor require-
ments for JOB1 and JOB2 and continuous disk and printer use by JOB3. For a simple
batch environment, these jobs will be executed in sequence. Thus, JOB1 completes in
5 minutes. JOB2 must wait until the 5 minutes is over and then completes 15 minutes
after that. JOB3 begins after 20 minutes and completes at 30 minutes from the time it was
initially submitted. The average resource utilization, throughput, and response times are
shown in the uniprogramming column of Table 8.2. Device-by-device utilization is illus-
trated in Figure 8.6a. It is evident that there is gross underutilization for all resources when
averaged over the required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming OS. Be-
cause there is little resource contention between the jobs, all three can run in nearly min-
imum time while coexisting with the others in the computer (assuming that JOB2 and
JOB3 are allotted enough processor time to keep their input and output operations ac-
tive). JOB1 will still require 5 minutes to complete but at the end of that time, JOB2 will be
one-third finished, and JOB3 will be half finished. All three jobs will have finished within
15 minutes. The improvement is evident when examining the multiprogramming column
of Table 8.2, obtained from the histogram shown in Figure 8.6b.

As with a simple batch system, a multiprogramming batch system must
rely on certain computer hardware features. The most notable additional feature
that is useful for multiprogramming is the hardware that supports I/O interrupts

Table 8.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/O
Duration (min) 5 15 10
Memory required (M) 50 100 80
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

Table 8.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming
Processor use (%) 20 40
Memory use (%) 33 67
Disk use (%) 33 67
Printer use (%) 33 67
Elapsed time (min) 30 15
Throughput rate (jobs/hr) 6 12

Mean response time (min) 18 10

286 CHAPTER 8 / OPERATING SYSTEM SUPPORT

CPU

Memory

Disk

Terminal

Printer

100%

100%

CPU

0%
100%

Memory

0%
100%

Disk

Terminal

Printer

| | | | | 0% | | 0%
I T T T T T I < > 1 1
Job history I JOB1 JOB2 JOB3 I Job history | JOB1
T T T T T JOB2
0 5 10 15 20 25 30 JOB3
Minutes ! '
Time 0 5) 10 15
Minutes Time
(a) Uniprogramming (b) Multiprogramming

Figure 8.6 Utilization Histograms

and DMA. With interrupt-driven I/O or DMA, the processor can issue an I/O com-
mand for one job and proceed with the execution of another job while the I/O is car-
ried out by the device controller. When the I/O operation is complete, the processor
is interrupted and control is passed to an interrupt-handling program in the OS. The
OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run, the
jobs must be kept in main memory, requiring some form of memory management.
In addition, if several jobs are ready to run, the processor must decide which one
to run, which requires some algorithm for scheduling. These concepts are discussed
later in this chapter.

TIME-SHARING SYSTEMS With the use of multiprogramming, batch processing
can be quite efficient. However, for many jobs, it is desirable to provide a mode in
which the user interacts directly with the computer. Indeed, for some jobs, such as
transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated microcomputer. That option was not available in the
1960s, when most computers were big and costly. Instead, time sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because the proces-
sor’s time is shared among multiple users. In a time-sharing system, multiple users

8.2 / SCHEDULING 287

Table 8.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language commands Commands entered at the
operating system provided with the job terminal

simultaneously access the system through terminals, with the OS interleaving the
execution of each user program in a short burst or quantum of computation. Thus,
if there are n users actively requesting service at one time, each user will only see on
the average 1/n of the effective computer speed, not counting OS overhead. How-
ever, given the relatively slow human reaction time, the response time on a properly
designed system should be comparable to that on a dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The
key differences are listed in Table 8.3.

8.2 SCHEDULING

The key to multiprogramming is scheduling. In fact, four types of scheduling are
typically involved (Table 8.4). We will explore these presently. But first, we introduce
the concept of process. This term was first used by the designers of the Multics OS in
the 1960s. It is a somewhat more general term than job. Many definitions have been
given for the term process, including

m A program in execution
m The “animated spirit” of a program
m That entity to which a processor is assigned

This concept should become clearer as we proceed.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for
processing. Thus, it controls the degree of multiprogramming (number of processes
in memory). Once admitted, a job or user program becomes a process and is added
to the queue for the short-term scheduler. In some systems, a newly created pro-
cess begins in a swapped-out condition, in which case it is added to a queue for the
medium-term scheduler.

Table 8.4 Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be executed.

Medium-term scheduling The decision to add to the number of processes that are partially or
fully in main memory.

Short-term scheduling The decision as to which available process will be executed by the
processor.

I/0 scheduling The decision as to which process’s pending I/O request shall be han-

dled by an available I/O device.

288 CHAPTER 8 / OPERATING SYSTEM SUPPORT

In a batch system, or for the batch portion of a general-purpose OS, newly submit-
ted jobs are routed to disk and held in a batch queue. The long-term scheduler creates
processes from the queue when it can. There are two decisions involved here. First,
the scheduler must decide that the OS can take on one or more additional processes.
Second, the scheduler must decide which job or jobs to accept and turn into processes.
The criteria used may include priority, expected execution time, and I/O requirements.

For interactive programs in a time-sharing system, a process request is gen-
erated when a user attempts to connect to the system. Time-sharing users are not
simply queued up and kept waiting until the system can accept them. Rather, the
OS will accept all authorized comers until the system is saturated, using some pre-
defined measure of saturation. At that point, a connection request is met with a
message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function, described in Section 8.3.
Typically, the swapping-in decision is based on the need to manage the degree of
multiprogramming. On a system that does not use virtual memory, memory man-
agement is also an issue. Thus, the swapping-in decision will consider the memory
requirements of the swapped-out processes.

Short-Term Scheduling

The long-term scheduler executes relatively infrequently and makes the coarse-
grained decision of whether or not to take on a new process, and which one to take.
The short-term scheduler, also known as the dispatcher, executes frequently and
makes the fine-grained decision of which job to execute next.

PROCESS STATES To understand the operation of the short-term scheduler, we need to
consider the concept of a process state. During the lifetime of a process, its status will
change a number of times. Its status at any point in time is referred to as a state. The
term state is used because it connotes that certain information exists that defines the
status at that point. At minimum, there are five defined states for a process (Figure 8.7):

m New: A program is admitted by the high-level scheduler but is not yet ready to
execute. The OS will initialize the process, moving it to the ready state.

. Dispatch
Admit —_— Release
(New _>(Ready Running —_— Exit

Timeout

Event
occurs

(Blocked

Figure 8.7 Five-State Process Model

Event
wait

8.2 / SCHEDULING 289

Ready: The process is ready to execute and is awaiting access to the processor.
Running: The process is being executed by the processor.

Waiting: The process is suspended from execution waiting for some system
resource, such as I/O.

Halted: The process has terminated and will be destroyed by the OS.

For each process in the system, the OS must maintain information indicat-

ing the state of the process and other information necessary for process execution.
For this purpose, each process is represented in the OS by a process control block
(Figure 8.8), which typically contains:

Identifier: Each current process has a unique identifier.

State: The current state of the process (new, ready, and so on).

Priority: Relative priority level.

Program counter: The address of the next instruction in the program to be
executed.

Memory pointers: The starting and ending locations of the process in memory.

Context data: These are data that are present in registers in the processor
while the process is executing, and they will be discussed in Part Three. For
now, it is enough to say that these data represent the “context” of the process.
The context data plus the program counter are saved when the process leaves
the running state. They are retrieved by the processor when it resumes execu-
tion of the process.

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0 status
information

Accounting
information

Figure 8.8 Process Control Block

290 CHAPTER 8 / OPERATING SYSTEM SUPPORT

m 1/O status information: Includes outstanding I/O requests, I/O devices (e.g.,
tape drives) assigned to this process, a list of files assigned to the process, and
SO on.

= Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

When the scheduler accepts a new job or user request for execution, it creates
a blank process control block and places the associated process in the new state.
After the system has properly filled in the process control block, the process is
transferred to the ready state.

SCHEDULING TECHNIQUES To understand how the OS manages the scheduling
of the various jobs in memory, let us begin by considering the simple example in
Figure 8.9. The figure shows how main memory is partitioned at a given point in time.
The kernel of the OS is, of course, always resident. In addition, there are a number of
active processes, including A and B, each of which is allocated a portion of memory.

Service handler

Interrupt handler

A
"Waiting"

Service handler Service handler
Interrupt handler Interrupt handler

A A
"Running' ""Waiting"'

B B B
"Ready" ""Ready" "Running"

(a) (b)
Figure 8.9 Scheduling Example

8.2 / SCHEDULING 291

We begin at a point in time when process A is running. The processor is exe-

cuting instructions from the program contained in A’s memory partition. At some
later point in time, the processor ceases to execute instructions in A and begins exe-
cuting instructions in the OS area. This will happen for one of three reasons:

1.

2.

Process A issues a service call (e.g., an I/O request) to the OS. Execution of A
is suspended until this call is satisfied by the OS.

Process A causes an interrupt. An interrupt is a hardware-generated signal to
the processor. When this signal is detected, the processor ceases to execute A
and transfers to the interrupt handler in the OS. A variety of events related
to A will cause an interrupt. One example is an error, such as attempting to
execute a privileged instruction. Another example is a timeout; to prevent any
one process from monopolizing the processor, each process is only granted the
processor for a short period at a time.

Some event unrelated to process A that requires attention causes an interrupt.
An example is the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context

data and the program counter for A in A’s process control block and then begins
executing in the OS. The OS may perform some work, such as initiating an I/O
operation. Then the short-term-scheduler portion of the OS decides which process
should be executed next. In this example, B is chosen. The OS instructs the proces-
sor to restore B’s context data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short-term sched-

uler. Figure 8.10 shows the major elements of the OS involved in the multiprogram-
ming and scheduling of processes. The OS receives control of the processor at the

Operating system
[|
Service call Service i |
from process call | :
handler (code) I I
[]
| |
[]
[]
| |
[]
Interrupt Long- Short- T/O
term term queues
from process Interrupt
handler (code) (HEDS Qs
Interrupt
from 10 Short-term
scheduler
(code)

Pass control
to process

Figure 8.10 Key Elements of an Operating System for Multiprogramming

292 CHAPTER 8 / OPERATING SYSTEM SUPPORT

interrupt handler if an interrupt occurs and at the service-call handler if a service
call occurs. Once the interrupt or service call is handled, the short-term scheduler is
invoked to select a process for execution.

To do its job, the OS maintains a number of queues. Each queue is simply a
waiting list of processes waiting for some resource. The long-term queue is a list of
jobs waiting to use the system. As conditions permit, the high-level scheduler will
allocate memory and create a process for one of the waiting items. The short-term
queue consists of all processes in the ready state. Any one of these processes could
use the processor next. It is up to the short-term scheduler to pick one. Generally,
this is done with a round-robin algorithm, giving each process some time in turn.
Priority levels may also be used. Finally, there is an I/O queue for each I/O device.
More than one process may request the use of the same 1/O device. All processes
waiting to use each device are lined up in that device’s queue.

Figure 8.11 suggests how processes progress through the computer under the
control of the OS. Each process request (batch job, user-defined interactive job) is
placed in the long-term queue. As resources become available, a process request
becomes a process and is then placed in the ready state and put in the short-term
queue. The processor alternates between executing OS instructions and executing
user processes. While the OS is in control, it decides which process in the short-term
queue should be executed next. When the OS has finished its immediate tasks, it
turns the processor over to the chosen process.

As was mentioned earlier, a process being executed may be suspended for
a variety of reasons. If it is suspended because the process requests 1/O, then it

Long-term Short-term

queue queue
Admit End

— L = processor
—

e [LLL L L]
occurs

1/0 1 queue
ceans L L[]
occurs

1/0 2 queue

L]

L]

L]
weurs LT [T]
oceurs

1/0 n queue

Figure 8.11 Queuing Diagram Representation of Processor Scheduling

8.3 / MEMORY MANAGEMENT 293

is placed in the appropriate I/O queue. If it is suspended because of a timeout or
because the OS must attend to pressing business, then it is placed in the ready state
and put into the short-term queue.

Finally, we mention that the OS also manages the I/O queues. When an I/O
operation is completed, the OS removes the satisfied process from that I/O queue
and places it in the short-term queue. It then selects another waiting process (if any)
and signals for the I/O device to satisfy that process’s request.

8.3 MEMORY MANAGEMENT

In a uniprogramming system, main memory is divided into two parts: one part for
the OS (resident monitor) and one part for the program currently being executed.
In a multiprogramming system, the “user” part of memory is subdivided to accom-
modate multiple processes. The task of subdivision is carried out dynamically by the
OS and is known as memory management.

Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes will be
waiting for I/O and the processor will be idle. Thus, memory needs to be allocated
efficiently to pack as many processes into memory as possible.

Swapping

Referring back to Figure 8.11, we have discussed three types of queues: the long-
term queue of requests for new processes, the short-term queue of processes ready
to use the processor, and the various I/O queues of processes that are not ready to
use the processor. Recall that the reason for this elaborate machinery is that I/O
activities are much slower than computation and therefore the processor in a unipro-
gramming system is idle most of the time.

But the arrangement in Figure 8.11 does not entirely solve the problem. It is
true that, in this case, memory holds multiple processes and that the processor can
move to another process when one process is waiting. But the processor is so much
faster than I/O that it will be common for all the processes in memory to be waiting
on I/O. Thus, even with multiprogramming, a processor could be idle most of the
time.

What to do? Main memory could be expanded, and so be able to accommo-
date more processes. But there are two flaws in this approach. First, main memory
is expensive, even today. Second, the appetite of programs for memory has grown
as fast as the cost of memory has dropped. So larger memory results in larger pro-
cesses, Not more processes.

Another solution is swapping, depicted in Figure 8.12. We have a long-term
queue of process requests, typically stored on disk. These are brought in, one at a
time, as space becomes available. As processes are completed, they are moved out
of main memory. Now the situation will arise that none of the processes in mem-
ory are in the ready state (e.g., all are waiting on an I/O operation). Rather than
remain idle, the processor swaps one of these processes back out to disk into an
intermediate queue. This is a queue of existing processes that have been temporarily

294 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Main
Disk storage memory
Operating
system
Long-term > Completed jobs
queue /—> / and user sessions

N~

(a) Simple job scheduling

Disk storage
‘ Main
Intermediate memory
queue Operating
- system
BN
\\ Completed jobs
Long-term - L—and user sessions
queue L~ /
|

N~

(b) Swapping
Figure 8.12 The Use of Swapping

kicked out of memory. The OS then brings in another process from the intermedi-
ate queue, or it honors a new process request from the long-term queue. Execution
then continues with the newly arrived process.

Swapping, however, is an 1/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk I/O is generally the
fastest I/O on a system (e.g., compared with tape or printer I/O), swapping will usu-
ally enhance performance. A more sophisticated scheme, involving virtual memory,
improves performance over simple swapping. This will be discussed shortly. But
first, we must prepare the ground by explaining partitioning and paging.

Partitioning

The simplest scheme for partitioning available memory is to use fixed-size partitions,
as shown in Figure 8.13. Note that, although the partitions are of fixed size, they
need not be of equal size. When a process is brought into memory, it is placed in the
smallest available partition that will hold it.

Even with the use of unequal fixed-size partitions, there will be wasted mem-
ory. In most cases, a process will not require exactly as much memory as provided

8.3 / MEMORY MANAGEMENT 295

Operating system Operating system

(a) Equal-size partitions (b) Unequal-size partitions

Figure 8.13 Example of Fixed Partitioning of a 64-Mbyte Memory

by the partition. For example, a process that requires 3M bytes of memory would
be placed in the 4M partition of Figure 8.13b, wasting 1M that could be used by
another process.

A more efficient approach is to use variable-size partitions. When a process is
brought into memory, it is allocated exactly as much memory as it requires and no more.

An example, using 64 Mbytes of main memory, is shown in Figure 8.14.
Initially, main memory is empty, except for the OS (a). The first three processes are loaded
in, starting where the OS ends and occupying just enough space for each process (b, c, d).
This leaves a “hole” at the end of memory that is too small for a fourth process. At some
point, none of the processes in memory is ready. The OS swaps out process 2 (e), which
leaves sufficient room to load a new process, process 4 (f). Because process 4 is smaller
than process 2, another small hole is created. Later, a point is reached at which none of the
processes in main memory is ready, but process 2, in the ready-suspend state, is available.
Because there is insufficient room in memory for process 2, the OS swaps process 1 out (g)
and swaps process 2 back in (h).

296 CHAPTER 8 / OPERATING SYSTEM SUPPORT

As this example shows, this method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, mem-
ory becomes more and more fragmented, and memory utilization declines. One
technique for overcoming this problem is compaction: From time to time, the OS
shifts the processes in memory to place all the free memory together in one block.
This is a time-consuming procedure, wasteful of processor time.

Before we consider ways of dealing with the shortcomings of partitioning, we
must clear up one loose end. Consider Figure 8.14; it should be obvious that a pro-
cess is not likely to be loaded into the same place in main memory each time it is
swapped in. Furthermore, if compaction is used, a process may be shifted while in
main memory. A process in memory consists of instructions plus data. The instruc-
tions will contain addresses for memory locations of two types:

m Addresses of data items

m Addresses of instructions, used for branching instructions

Operating aM Operating Operating Operating
system system system system
Process 1 20M Process 1 20M Process 1 20M
56M Process 2 14M Process 2 14M
36M
9M Process 3 18M
4M
(a) (b) (©) (d)
Operating Operating Operating Operating
system system system system
Process 2 14M
Process 1 20M Process 1 20M 20M
6M
LM Process 4 SM Process 4 SM Process 4 M
6M 6M 6M
Process 3 18M Process 3 18M Process 3 18M Process 3 18M
4M 4M 4M 4M
(e) () (2) (h)

Figure 8.14 The Effect of Dynamic Partitioning

8.3 / MEMORY MANAGEMENT 297

But these addresses are not fixed. They will change each time a process is
swapped in. To solve this problem, a distinction is made between logical addresses
and physical addresses. A logical address is expressed as a location relative to the
beginning of the program. Instructions in the program contain only logical addresses.
A physical address is an actual location in main memory. When the processor exe-
cutes a process, it automatically converts from logical to physical address by adding
the current starting location of the process, called its base address, to each logical
address. This is another example of a processor hardware feature designed to meet
an OS requirement. The exact nature of this hardware feature depends on the mem-
ory management strategy in use. We will see several examples later in this chapter.

Paging

Both unequal fixed-size and variable-size partitions are inefficient in the use of mem-
ory. Suppose, however, that memory is partitioned into equal fixed-size chunks that
are relatively small, and that each process is also divided into small fixed-size chunks
of some size. Then the chunks of a program, known as pages, could be assigned to
available chunks of memory, known as frames, or page frames. At most, then, the
wasted space in memory for that process is a fraction of the last page.

Figure 8.15 shows an example of the use of pages and frames. At a given point
in time, some of the frames in memory are in use and some are free. The list of free
frames is maintained by the OS. Process A, stored on disk, consists of four pages.

Main Main
memory memory
Page 1
Process A 13 Process A 13 oig A
Page 0 Page 0
Page 1 14 Page 1 14| Page2
Page 2 Page 2 of A
Page 3 Page 3
15 15 | Pase3
of A
N~ N~
In In
™ 161 use
Free frame list Free frame list
13 In 20 In
14 171 use 171 use
15 Process A .
;g 18 page table 18 ::tgz
In In
19 19
use m use

20 E 20

(a) Before (b) After

Figure 8.15 Allocation of Free Frames

298 CHAPTER 8 / OPERATING SYSTEM SUPPORT

When it comes time to load this process, the OS finds four free frames and loads the
four pages of the process A into the four frames.

Now suppose, as in this example, that there are not sufficient unused con-
tiguous frames to hold the process. Does this prevent the OS from loading A?
The answer is no, because we can once again use the concept of logical address. A
simple base address will no longer suffice. Rather, the OS maintains a page table
for each process. The page table shows the frame location for each page of the
process. Within the program, each logical address consists of a page number and
a relative address within the page. Recall that in the case of simple partitioning, a
logical address is the location of a word relative to the beginning of the program;
the processor translates that into a physical address. With paging, the logical-to-
physical address translation is still done by processor hardware. The processor
must know how to access the page table of the current process. Presented with a
logical address (page number, relative address), the processor uses the page table
to produce a physical address (frame number, relative address). An example is
shown in Figure 8.16.

This approach solves the problems raised earlier. Main memory is divided
into many small equal-size frames. Each process is divided into frame-size pages:
smaller processes require fewer pages, larger processes require more. When a
process is brought in, its pages are loaded into available frames, and a page table

is set up.
Main
memory
Page 1
ofa | 13
Page Relative address Frame Relative address Page 2 14
number within page number within frame of A
Logical / Physical \ / Page 3
address | 1 address | 13| 30 of A 15
16

.
13
n Page 0
ofa | 18

Process A
page table

Figure 8.16 Logical and Physical Addresses

8.3 / MEMORY MANAGEMENT 299

Virtual Memory

DEMAND PAGING With the use of paging, truly effective multiprogramming
systems came into being. Furthermore, the simple tactic of breaking a process up
into pages led to the development of another important concept: virtual memory.

To understand virtual memory, we must add a refinement to the paging
scheme just discussed. That refinement is demand paging, which simply means that
each page of a process is brought in only when it is needed, that is, on demand.

Consider a large process, consisting of a long program plus a number of arrays
of data. Over any short period of time, execution may be confined to a small section
of the program (e.g., a subroutine), and perhaps only one or two arrays of data are
being used. This is the principle of locality, which we introduced in Appendix 4A. It
would clearly be wasteful to load in dozens of pages for that process when only a
few pages will be used before the program is suspended. We can make better use of
memory by loading in just a few pages. Then, if the program branches to an instruc-
tion on a page not in main memory, or if the program references data on a page not
in memory, a page fault is triggered. This tells the OS to bring in the desired page.

Thus, at any one time, only a few pages of any given process are in memory,
and therefore more processes can be maintained in memory. Furthermore, time is
saved because unused pages are not swapped in and out of memory. However, the
OS must be clever about how it manages this scheme. When it brings one page in, it
must throw another page out; this is known as page replacement. If it throws out a
page just before it is about to be used, then it will just have to go get that page again
almost immediately. Too much of this leads to a condition known as thrashing: the
processor spends most of its time swapping pages rather than executing instructions.
The avoidance of thrashing was a major research area in the 1970s and led to a var-
iety of complex but effective algorithms. In essence, the OS tries to guess, based on
recent history, which pages are least likely to be used in the near future.

Page Replacement Algorithm Simulators

A discussion of page replacement algorithms is beyond the scope of this chap-
ter. A potentially effective technique is least recently used (LRU), the same algo-
rithm discussed in Chapter 4 for cache replacement. In practice, LRU is difficult
to implement for a virtual memory paging scheme. Several alternative approaches
that seek to approximate the performance of LRU are in use; see Appendix K for
details.

With demand paging, it is not necessary to load an entire process into main
memory. This fact has a remarkable consequence: It is possible for a process to be
larger than all of main memory. One of the most fundamental restrictions in pro-
gramming has been lifted. Without demand paging, a programmer must be acutely
aware of how much memory is available. If the program being written is too large,
the programmer must devise ways to structure the program into pieces that can be

300 CHAPTER 8 / OPERATING SYSTEM SUPPORT

loaded one at a time. With demand paging, that job is left to the OS and the hard-
ware. As far as the programmer is concerned, he or she is dealing with a huge mem-
ory, the size associated with disk storage.

Because a process executes only in main memory, that memory is referred to
as real memory. But a programmer or user perceives a much larger memory—that
which is allocated on the disk. This latter is therefore referred to as virtual memory.
Virtual memory allows for very effective multiprogramming and relieves the user of
the unnecessarily tight constraints of main memory.

PAGE TABLE STRUCTURE The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.16 suggests a hardware implementation of this scheme.
When a particular process is running, a register holds the starting address of the
page table for that process. The page number of a virtual address is used to index
that table and look up the corresponding frame number. This is combined with the
offset portion of the virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can occupy
huge amounts of virtual memory. For example, in the VAX architecture, each pro-
cess can have up to 23! = 2 Gbytes of virtual memory. Using 2’ = 512 — byte pages,
that means that as many as 222 page table entries are required per process. Clearly,
the amount of memory devoted to page tables alone could be unacceptably high. To
overcome this problem, most virtual memory schemes store page tables in virtual
memory rather than real memory. This means that page tables are subject to paging
just as other pages are. When a process is running, at least a part of its page table must
be in main memory, including the page table entry of the currently executing page.
Some processors make use of a two-level scheme to organize large page tables. In this
scheme, there is a page directory, in which each entry points to a page table. Thus, if
the length of the page directory is X, and if the maximum length of a page table is Y,
then a process can consist of up to X X Y pages. Typically, the maximum length of a
page table is restricted to be equal to one page. We will see an example of this two-
level approach when we consider the Intel x86 later in this chapter.

An alternative approach to the use of one- or two-level page tables is the use
of an inverted page table structure (Figure 8.17). Variations on this approach are
used on the PowerPC, UltraSPARC, and the IA-64 architecture. An implementa-
tion of the Mach OS on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into
a hash value using a simple hashing function.? The hash value is a pointer to the
inverted page table, which contains the page table entries. There is one entry in the

%A hash function maps numbers in the range 0 through M into numbers in the range 0 through N, where
M > N.The output of the hash function is used as an index into the hash table. Since more than one input
maps into the same output, it is possible for an input item to map to a hash table entry that is already
occupied. In that case, the new item must overflow into another hash table location. Typically, the new
item is placed in the first succeeding empty space, and a pointer from the original location is provided to
chain the entries together. See Appendix L for more information on hash functions.

8.3 / MEMORY MANAGEMENT 301

Virtual address

n bits
Page # | Offset
Control
n bits bits
Process
Hash m bits Page # ID Chain
function 0

2" -1 Frame # | Offset

m bits
Real address

Inverted page table
(one entry for each
physical memory frame)

Figure 8.17 Inverted Page Table Structure

inverted page table for each real memory page frame rather than one per virtual
page. Thus a fixed proportion of real memory is required for the tables regardless of
the number of processes or virtual pages supported. Because more than one virtual
address may map into the same hash table entry, a chaining technique is used for
managing the overflow. The hashing technique results in chains that are typically
short—between one and two entries. The page table’s structure is called inverted
because it indexes page table entries by frame number rather than by virtual page
number.

Translation Lookaside Buffer

In principle, then, every virtual memory reference can cause two physical mem-
ory accesses: one to fetch the appropriate page table entry, and one to fetch the
desired data. Thus, a straightforward virtual memory scheme would have the effect
of doubling the memory access time. To overcome this problem, most virtual mem-
ory schemes make use of a special cache for page table entries, usually called a
translation lookaside buffer (TLB). This cache functions in the same way as a
memory cache and contains those page table entries that have been most recently
used. Figure 8.18 is a flowchart that shows the use of the TLB. By the principle of
locality, most virtual memory references will be to locations in recently used pages.
Therefore, most references will involve page table entries in the cache. Studies of
the VAX TLB have shown that this scheme can significantly improve performance
[CLARSS, SATYS1].

302 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Return to

faulted instruction
CPU checks the TLB

Page table
entry in
TLB?

Page fault Access page table

handling routine

OS instructs CPU] Page.
to read the page in main
from disk memory?

1
1
1
1
1
CPU activates 1
1/0 hardware : LRI LT
1
1
1
Page transferred : ¢
fr?m disk to ! CPU generates
main memory 1 physical address
1
1
1

No

]
£g
=B
g2
(e}

g <
(<)
A

Figure 8.18 Operation of Paging and Translation Lookaside Buffer (TLB)

Note that the virtual memory mechanism must interact with the cache system
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.19.
A virtual address will generally be in the form of a page number, offset. First, the
memory system consults the TLB to see if the matching page table entry is present.
If it is, the real (physical) address is generated by combining the frame number with
the offset. If not, the entry is accessed from a page table. Once the real address is
generated, which is in the form of a tag and a remainder, the cache is consulted to
see if the block containing that word is present (see Figure 4.5). If so, it is returned
to the processor. If not, the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into
a real address. This involves reference to a page table, which may be in the TLB, in

8.3 / MEMORY MANAGEMENT 303

TLB operation

Virtual address

Y
Page # | Offset
TLB

TLB miss
TLB
hit Cache operation
i Real address
Y
© Tag|Remainder| Cachelit_| Value
—

Miss

\/\ Main

memory

Page table
Value

\/\

Figure 8.19 Translation Lookaside Buffer and Cache Operation

main memory, or on disk. The referenced word may be in cache, in main memory,
or on disk. In the latter case, the page containing the word must be loaded into main
memory and its block loaded into the cache. In addition, the page table entry for
that page must be updated.

Segmentation

There is another way in which addressable memory can be subdivided, known as
segmentation. Whereas paging is invisible to the programmer and serves the purpose
of providing the programmer with a larger address space, segmentation is usually
visible to the programmer and is provided as a convenience for organizing programs
and data and as a means for associating privilege and protection attributes with
instructions and data.

Segmentation allows the programmer to view memory as consisting of multiple
address spaces or segments. Segments are of variable, indeed dynamic, size. Typi-
cally, the programmer or the OS will assign programs and data to different segments.
There may be a number of program segments for various types of programs as well as
a number of data segments. Each segment may be assigned access and usage rights.
Memory references consist of a (segment number, offset) form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:

304 CHAPTER 8 / OPERATING SYSTEM SUPPORT

1.

It simplifies the handling of growing data structures. If the programmer does
not know ahead of time how large a particular data structure will become, it
is not necessary to guess. The data structure can be assigned its own segment,
and the OS will expand or shrink the segment as needed.

It allows programs to be altered and recompiled independently without
requiring that an entire set of programs be relinked and reloaded. Again, this
is accomplished using multiple segments.

It lends itself to sharing among processes. A programmer can place a utility
program or a useful table of data in a segment that can be addressed by other
processes.

It lends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or a system administra-
tor can assign access privileges in a convenient fashion.

These advantages are not available with paging, which is invisible to the pro-

grammer. On the other hand, we have seen that paging provides for an efficient
form of memory management. To combine the advantages of both, some systems
are equipped with the hardware and OS software to provide both.

8.4 INTEL x86 MEMORY MANAGEMENT

Since the introduction of the 32-bit architecture, microprocessors have evolved
sophisticated memory management schemes that build on the lessons learned with
medium- and large-scale systems. In many cases, the microprocessor versions are
superior to their larger-system antecedents. Because the schemes were developed by
the microprocessor hardware vendor and may be employed with a variety of operat-
ing systems, they tend to be quite general purpose. A representative example is the
scheme used on the Intel x86 architecture.

Address Spaces

The x86 includes hardware for both segmentation and paging. Both mechanisms can
be disabled, allowing the user to choose from four distinct views of memory:

Unsegmented unpaged memory: In this case, the virtual address is the same
as the physical address. This is useful, for example, in low-complexity, high-
performance controller applications.

Unsegmented paged memory: Here memory is viewed as a paged linear
address space. Protection and management of memory is done via paging.
This is favored by some operating systems (e.g., Berkeley UNIX).

Segmented unpaged memory: Here memory is viewed as a collection of
logical address spaces. The advantage of this view over a paged approach is
that it affords protection down to the level of a single byte, if necessary. Fur-
thermore, unlike paging, it guarantees that the translation table needed (the
segment table) is on-chip when the segment is in memory. Hence, segmented
unpaged memory results in predictable access times.

8.4 / INTEL x86 MEMORY MANAGEMENT 305

= Segmented paged memory: Segmentation is used to define logical memory
partitions subject to access control, and paging is used to manage the alloca-
tion of memory within the partitions. Operating systems such as UNIX System
V favor this view.

Segmentation

When segmentation is used, each virtual address (called a logical address in the x86
documentation) consists of a 16-bit segment reference and a 32-bit offset. Two bits
of the segment reference deal with the protection mechanism, leaving 14 bits for
specifying a particular segment. Thus, with unsegmented memory, the user’s virtual
memory is 2°2 = 4 Gbytes. With segmented memory, the total virtual memory space
as seen by a user is 2¢ = 64 terabytes (Tbytes). The physical address space employs
a 32-bit address for a maximum of 4 Gbytes.

The amount of virtual memory can actually be larger than the 64 Tbytes. This
is because the processor’s interpretation of a virtual address depends on which pro-
cess is currently active. Virtual address space is divided into two parts. One-half of
the virtual address space (8K segments X 4 Gbytes) is global, shared by all pro-
cesses; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and
access attribute. There are four privilege levels, from most protected (level 0) to least
protected (level 3). The privilege level associated with a data segment is its “classifica-
tion”; the privilege level associated with a program segment is its “clearance.” An exe-
cuting program may only access data segments for which its clearance level is lower than
(more privileged) or equal to (same privilege) the privilege level of the data segment.

The hardware does not dictate how these privilege levels are to be used; this
depends on the OS design and implementation. It was intended that privilege level
1 would be used for most of the OS, and level 0 would be used for that small portion
of the OS devoted to memory management, protection, and access control. This
leaves two levels for applications. In many systems, applications will reside at level
3, with level 2 being unused. Specialized application subsystems that must be pro-
tected because they implement their own security mechanisms are good candidates
for level 2. Some examples are database management systems, office automation
systems, and software engineering environments.

In addition to regulating access to data segments, the privilege mechanism limits
the use of certain instructions. Some instructions, such as those dealing with memory-
management registers, can only be executed in level 0. I/O instructions can only be
executed up to a certain level that is designated by the OS; typically, this will be level 1.

The access attribute of a data segment specifies whether read/write or read-
only accesses are permitted. For program segments, the access attribute specifies
read/execute or read-only access.

The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual
address consists of the 32-bit offset and a 16-bit segment selector (Figure 8.20a). An
instruction fetching or storing an operand specifies the offset and a register contain-
ing the segment selector. The segment selector consists of the following fields:

= Table Indicator (TI): Indicates whether the global segment table or a local
segment table should be used for translation.

306 CHAPTER 8 / OPERATING SYSTEM SUPPORT

15 3210

T|rpL
I

Index

TI = Table indicator
RPL = Requestor privilege level
(a) Segment selector

31 22 21 12 11 0

Directory Table Offset

(b) Linear address

31 242322 2019 1615141312 11 8 7 0
D| |A| Segment
Base 31...24 G|/ |L|V| limit (P(DPL|S| Type Base 23...16
B| |L| 19..16
Base 15...0 Segment limit 15...0
AVL = Available for use by system software L = 64-bit code segment
Base = Segment base address (64-bit mode only)
D/B = Default operation size P = Segment present
DPL = Descriptor privilege size Type = Segment type
G = Granularity S = Descriptor type

(c) Segment descriptor (segment table entry)

31 1211 9 765 43210
P PPuUlr
Page frame address 31...12 AVL S [0 (A S YrV S (wiP
AVL = Available for systems programmer use PWT= Write through = Reserved
P =Pagesize US = User/supervisor
A =Accessed RW = Read-write
PCD = Cache disable P =Present
(d) Page directory entry
31 1211 9 765 43210
PIPIyiR
Page frame address 31...12 AVL D|A S VTV S (WP

D =Dirty
(e) Page table entry

Figure 8.20 Intel x86 Memory Management Formats

= Segment Number: The number of the segment. This serves as an index into
the segment table.

= Requested Privilege Level (RPL): The privilege level requested for this
access.

Each entry in a segment table consists of 64 bits, as shown in Figure 8.20c. The
fields are defined in Table 8.5.

8.4 / INTEL x86 MEMORY MANAGEMENT 307

Table 8.5 x86 Memory Management Parameters

Segment Descriptor (Segment Table Entry)

Base

Defines the starting address of the segment within the 4-Gbyte linear address space.
D/B bit

In a code segment, this is the D bit and indicates whether operands and addressing modes are 16 or 32 bits.
Descriptor Privilege Level (DPL)

Specifies the privilege level of the segment referred to by this segment descriptor.
Granularity bit (G)

Indicates whether the Limit field is to be interpreted in units by one byte or 4 Kbytes.
Limit

Defines the size of the segment. The processor interprets the limit field in one of two ways, depending on

the granularity bit: in units of one byte, up to a segment size limit of 1 Mbyte, or in units of 4 Kbytes, up to a
segment size limit of 4 Gbytes.

S bit

Determines whether a given segment is a system segment or a code or data segment.
Segment Present bit (P)

Used for nonpaged systems. It indicates whether the segment is present in main memory. For paged
systems, this bit is always set to 1.
Type

Distinguishes between various kinds of segments and indicates the access attributes.

Page Directory Entry and Page Table Entry

Accessed bit (A)

This bit is set to 1 by the processor in both levels of page tables when a read or write operation to the
corresponding page occurs.

Dirty bit (D)
This bit is set to 1 by the processor when a write operation to the corresponding page occurs.

Page Frame Address

Provides the physical address of the page in memory if the present bit is set. Since page frames are aligned
on 4K boundaries, the bottom 12 bits are 0, and only the top 20 bits are included in the entry. In a page direc-
tory, the address is that of a page table.

Page Cache Disable bit (PCD)
Indicates whether data from page may be cached.
Page Size bit (PS)
Indicates whether page size is 4 Kbyte or 4 Mbyte.
Page Write Through bit (PWT)
Indicates whether write-through or write-back caching policy will be used for data in the corresponding page.
Present bit (P)
Indicates whether the page table or page is in main memory.
Read/Write bit (RW)
For user-level pages, indicates whether the page is read-only access or read/write access for user-level
programs.
User/Supervisor bit (US)

Indicates whether the page is available only to the operating system (supervisor level) or is available to
both operating system and applications (user level).

308 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Paging

Segmentation is an optional feature and may be disabled. When segmentation is in
use, addresses used in programs are virtual addresses and are converted into linear
addresses, as just described. When segmentation is not in use, linear addresses are
used in programs. In either case, the following step is to convert that linear address
into a real 32-bit address.

To understand the structure of the linear address, you need to know that the x86
paging mechanism is actually a two-level table lookup operation. The first level is a page
directory, which contains up to 1024 entries. This splits the 4-Gbyte linear memory space
into 1024 page groups, each with its own page table, and each 4 Mbytes in length. Each
page table contains up to 1024 entries; each entry corresponds to a single 4-Kbyte page.
Memory management has the option of using one page directory for all processes, one
page directory for each process, or some combination of the two. The page directory for
the current task is always in main memory. Page tables may be in virtual memory.

Figure 8.20 shows the formats of entries in page directories and page tables,
and the fields are defined in Table 8.5. Note that access control mechanisms can be
provided on a page or page group basis.

The x86 also makes use of a translation lookaside buffer. The buffer can hold 32
page table entries. Each time that the page directory is changed, the buffer is cleared.

Figure 8.21 illustrates the combination of segmentation and paging mechanisms. For
clarity, the translation lookaside buffer and memory cache mechanisms are not shown.

Logical address

Segment l

selector Offset Linear address
[space
. Linear address
Global descriptor - Physical
table (GDT) [Dir [Table [Offset | ad(ylress
space
Segment
Segment Page table Page
| ,| descriptor [| | T I e
Page directory Phy. Addr.
Lin. Addr.
Entry ——>---------
% Entry

Segment j

base address

~— Page

|————— Segmentation } Paging |

Figure 8.21 Intel x86 Memory Address Translation Mechanisms

8.5 / ARM MEMORY MANAGEMENT 309

Finally, the x86 includes a new extension not found on the earlier 80386 or
80486, the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set to 1, then the paging unit permits the OS programmer to define
a page as either 4 Kbyte or 4 Mbyte in size.

When 4-Mbyte pages are used, there is only one level of table lookup for
pages. When the hardware accesses the page directory, the page directory entry
(Figure 8.20d) has the PS bit set to 1. In this case, bits 9 through 21 are ignored and
bits 22 through 31 define the base address for a 4-Mbyte page in memory. Thus,
there is a single page table.

The use of 4-Mbyte pages reduces the memory-management storage require-
ments for large main memories. With 4-Kbyte pages, a full 4-Gbyte main memory
requires about 4 Mbytes of memory just for the page tables. With 4-Mbyte pages, a
single table, 4 Kbytes in length, is sufficient for page memory management.

8.5 ARM MEMORY MANAGEMENT

ARM provides a versatile virtual memory system architecture that can be tailored to
the needs of the embedded system designer.

Memory System Organization

Figure 8.22 provides an overview of the memory management hardware in the ARM
for virtual memory. The virtual memory translation hardware uses one or two levels
of tables for translation from virtual to physical addresses, as explained subsequently.
The translation lookaside buffer (TLB) is a cache of recent page table entries. If an
entry is available in the TLB, then the TLB directly sends a physical address to main
memory for a read or write operation. As explained in Chapter 4, data is exchanged

Memory-management unit (MMU)

|
|
|
|
Access DL Virtual : Physical
domain Virtual address memory ! ddr
control TLB A | accress
hardware Access bits, translation |
domain hardware :
|
A DD S - _I ________________________ 1
Abort : Physical address
: X Main
Control 1 Physical memory
bits : address
1
Y
ARM
core Cache
Virtual > and Cache
address write line fetch
buffer hardware
——

Figure 8.22 ARM Memory System Overview

310 CHAPTER 8 / OPERATING SYSTEM SUPPORT

between the processor and main memory via the cache. If a logical cache organization
is used (Figure 4.7a), then the ARM supplies that address directly to the cache as well
as supplying it to the TLB when a cache miss occurs. If a physical cache organization
is used (Figure 4.7b), then the TLB must supply the physical address to the cache.
Entries in the translation tables also include access control bits, which deter-
mine whether a given process may access a given portion of memory. If access is
denied, access control hardware supplies an abort signal to the ARM processor.

Virtual Memory Address Translation
The ARM supports memory access based on either sections or pages:

= Supersections (optional): Consist of 16-MB blocks of main memory.
m Sections: Consist of 1-MB blocks of main memory.

m Large pages: Consist of 64-kB blocks of main memory.

= Small pages: Consist of 4-kB blocks of main memory.

Sections and supersections are supported to allow mapping of a large region
of memory while using only a single entry in the TLB. Additional access control
mechanisms are extended within small pages to 1kB subpages, and within large
pages to 16kB subpages. The translation table held in main memory has two levels:

= Level 1 table: Holds level 1 descriptors that contain the base address and
translation properties for a Section and Supersection; and translation proper-
ties and pointers to a level 2 table for a large page or a small page.

= Level 2 table: Holds level 2 descriptors that contain the base address and trans-
lation properties for a Small page or a Large page. A level 2 table requires 1
kB of memory.

The memory-management unit (MMU) translates virtual addresses generated
by the processor into physical addresses to access main memory, and also derives
and checks the access permission. Translations occur as the result of a TLB miss,
and start with a first-level fetch. A section-mapped access only requires a first-level
fetch, whereas a page-mapped access also requires a second-level fetch.

Figure 8.23 shows the two-level address translation process for small pages.
There is a single level 1 (L1) page table with 4K 32-bit entries. Each L1 entry points
to a level 2 (L.2) page table with 256 32-bit entries. Each of the L2 entry points to a
4-kB page in main memory. The 32-bit virtual address is interpreted as follows: The
most significant 12 bits are an index into the L1 page table. The next 8 bits are an
index into the relevant L2 page table. The least significant 12 bits index a byte in the
relevant page in main memory.

A similar two-page lookup procedure is used for large pages. For sections and
supersection, only the L1 page table lookup is required.

Memory-Management Formats

To get a better understanding of the ARM memory management scheme, we con-
sider the key formats, as shown in Figure 8.24. The control bits shown in this figure
are defined in Table 8.6.

8.5 / ARM MEMORY MANAGEMENT 311

Virtual address
31 19 11 0

Level 1 (L1) page table

Main memory

4095

Level 2 (L2)
page table

255

L2 PT base addr] _[01

page base addr] __[10

Small page (4 kB)

Figure 8.23 ARM Virtual Memory Address Translation for Small Pages

For the L1 table, each entry is a descriptor of how its associated 1-MB virtual
address range is mapped. Each entry has one of four alternative formats:

m Bits [1:0] = 00: The associated virtual addresses are unmapped, and attempts
to access them generate a translation fault.

= Bits [1:0] = 01: The entry gives the physical address of an L2 page table,
which specifies how the associated virtual address range is mapped.

= Bits [1:0] = 01: and bit 19 = 0: The entry is a section descriptor for its asso-
ciated virtual addresses.

= Bits [1:0] = 01: and bit 19 = 1: The entry is a supersection descriptor for its
associated virtual addresses.

Entries with bits [1:0] = 11 are reserved.

For memory structured into pages, a two-level page table access is required.
Bits [31:10] of the L1 page entry contain a pointer to a L2 page table. For small
pages, the L2 entry contains a 20-bit pointer to the base address of a 4-kB page in
main memory.

For large pages, the structure is more complex. As with virtual addresses for
small pages, a virtual address for a large page structure includes a 12-bit index into

312 CHAPTER 8 / OPERATING SYSTEM SUPPORT

31 24 23 20 19 14 121110 9 8 543210
Fault | IGN | 0 0 |
Page table | Coarse page table base address | P | Domain | SBZ | 01 |
S| In|. AP X
Section Section base address B|0 S TEX AP | P| Domain C|B|1 0
7 G X N
q S
. Supersection Base address| n AP Base address| X
Supersection base address [35:32) g 1 G S X TEX AP | P [39:36] N C(B|1 O
(a) Alternative first-level descriptor formats
31 16 15 14 121110 9 8 7 6 5 4 3 2 10
Fault IGN | 0 0 |
Small page Small page base address El; S 1§(P TEX | AP |[C|B|1 §
X n AP
Large page Large page base address N TEX G S X SBZ | AP |[C(B|0 1
(b) Alternative second-level descriptor formats
31 24 23 20 19 0
Supersection Level 1 table index \—\ Supersection index
31 20 19 0
Section | Level 1 table index | Section index |
31 20 19 12 11 0
Small . A q
page Level 1 table index Level 2 table index Page index
31 20 19 16 15 12 11 0

Large Level 1 table index Lev.el 2 Page index
page table index

(c) Virtual memory address formats

Figure 8.24 ARM Memory-Management Formats

the level one table and an 8-bit index into the L2 table. For the 64-kB large pages,
the page index portion of the virtual address must be 16 bits. To accommodate all
of these bits in a 32-bit format, there is a 4-bit overlap between the page index field
and the L2 table index field. ARM accommodates this overlap by requiring that each
page table entry in a L2 page table that supports large pages be replicated 16 times.
In effect, the size of the L2 page table is reduced from 256 entries to 16 entries, if all
of the entries refer to large pages. However, a given L2 page can service a mixture of
large and small pages, hence the need for the replication for large page entries.

8.5 / ARM MEMORY MANAGEMENT 313

Table 8.6 ARM Memory-Management Parameters

Access Permission (AP), Access Permission Extension (APX)

These bits control access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, a Permission Fault is raised.

Bufferable (B) bit

Determines, with the TEX bits, how the write buffer is used for cacheable memory.
Cacheable (C) bit

Determines whether this memory region can be mapped through the cache.
Domain

Collection of memory regions. Access control can be applied on the basis of domain.
not Global (nG)

Determines whether the translation should be marked as global (0), or process specific (1).
Shared (S)

Determines whether the translation is for not-shared (0), or shared (1) memory.
SBZ

Should be zero.
Type Extension (TEX)

These bits, together with the B and C bits, control accesses to the caches, how the write buffer is used, and
if the memory region is shareable and therefore must be kept coherent.

Execute Never (XN)
Determines whether the region is executable (0) or not executable (1).

For memory structured into sections or supersections, a one-level page table
access is required. For sections, bits [31:20] of the L1 entry contain a 12-bit pointer
to the base of the 1-MB section in main memory.

For supersections, bits [31:24] of the L1 entry contain an 8-bit pointer to the
base of the 16-MB section in main memory. As with large pages, a page table entry
replication is required. In the case of supersections, the L1 table index portion of
the virtual address overlaps by 4 bits with the supersection index portion of the vir-
tual address Therefore, 16 identical L1 page table entries are required.

The range of physical address space can be expanded by up to eight additional
address bits (bits [23:20] and [8:5]). The number of additional bits is implementation
dependent. These additional bits can be interpreted as extending the size of phys-
ical memory by as much as a factor of 28 = 256. Thus, physical memory may in fact
be as much as 256 times as large as the memory space available to each individual
process.

Access Control

The AP access control bits in each table entry control access to a region of memory
by a given process. A region of memory can be designated as no access, read only, or
read-write. Further, the region can be designated as privileged access only, reserved
for use by the OS and not by applications.

ARM also employs the concept of a domain, which is a collection of sec-
tions and/or pages that have particular access permissions. The ARM architecture

314 CHAPTER 8 / OPERATING SYSTEM SUPPORT

supports 16 domains. The domain feature allows multiple processes to use the same
translation tables while maintaining some protection from each other.

Each page table entry and TLB entry contains a field that specifies which
domain the entry is in. A 2-bit field in the Domain Access Control Register controls
access to each domain. Each field allows the access to an entire domain to be ena-
bled and disabled very quickly, so that whole memory areas can be swapped in and
out of virtual memory very efficiently. Two kinds of domain access are supported:

m Clients: Users of domains (execute programs and access data) that must
observe the access permissions of the individual sections and/or pages that
make up that domain.

®= Managers: Control the behavior of the domain (the current sections and pages
in the domain, and the domain access), and bypass the access permissions for
table entries in that domain.

One program can be a client of some domains, and a manager of some other
domains, and have no access to the remaining domains. This allows very flexible
memory protection for programs that access different memory resources.

8.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
batch system multitasking resident monitor
demand paging nucleus segmentation
interactive operating system operating system (OS) short-term scheduling
interrupt page table swapping
job control language (JCL) paging thrashing
kernel partitioning time-sharing system
logical address physical address translation lookaside
long-term scheduling privileged instruction buffer (TLB)
medium-term scheduling process utility
memory management process control block virtual memory
memory protection process state
multiprogramming real memory

Review Questions

8.1 What is an operating system?

8.2 List and briefly define the key services provided by an OS.

8.3 List and briefly define the major types of OS scheduling.

8.4 What is the difference between a process and a program?

8.5 What is the purpose of swapping?

8.6 If a process may be dynamically assigned to different locations in main memory, what
is the implication for the addressing mechanism?

8.7 Isit necessary for all of the pages of a process to be in main memory while the process
is executing?

8.8
8.9
8.10

8.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 315

Must the pages of a process in main memory be contiguous?
Is it necessary for the pages of a process in main memory to be in sequential order?
What is the purpose of a translation lookaside buffer?

Problems

8.1

8.2

8.3

8.4

8.5

8.6

Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, 7, for a job, half the time is spent in I/O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin priority is used, and that I/O operations can overlap with
processor operation. Define the following quantities:

® Turnaround time = actual to complete a job.

® Throughput = average number of jobs completed per time period 7.

B Processor utilization = percentage of time that the processor is active (not waiting).

Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period T is distributed in each of the following ways:

a. I/O first half, processor second half;

b. I/O first and fourth quarters, processor second and third quarters.

An I/0O-bound program is one that, if run alone, would spend more time waiting for
I/O than using the processor. A processor-bound program is the opposite. Suppose a
short-term scheduling algorithm favors those programs that have used little processor
time in the recent past. Explain why this algorithm favors I/O-bound programs and
yet does not permanently deny processor time to processor-bound programs.

A program computes the row sums

of an array A thatis 100 by 100. Assume that the computer uses demand paging with a
page size of 1000 words, and that the amount of main memory allotted for data is five
page frames. Is there any difference in the page fault rate if A were stored in virtual
memory by rows or columns? Explain.

Consider a fixed partitioning scheme with equal-size partitions of 2!° bytes and a total
main memory size of 2* bytes. A process table is maintained that includes a pointer to
a partition for each resident process. How many bits are required for the pointer?
Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

Suppose the page table for the process currently executing on the processor looks like
the following. All numbers are decimal, everything is numbered starting from zero,
and all addresses are memory byte addresses. The page size is 1024 bytes.

Virtual page Page frame
number Valid bit Reference bit Modify bit number
0 1 1 0 4
1 1 1 1 7
2 0 0 0 —
3 1 0 0 2
4 0 0 0 —
5 1 0 1 0

316 CHAPTER 8 / OPERATING SYSTEM SUPPORT

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

a. Describe exactly how, in general, a virtual address generated by the CPU is trans-

lated into a physical main memory address.
b. What physical address, if any, would each of the following virtual addresses corre-

spond to? (Do not try to handle any page faults, if any.)

i. 1052

ii. 2221

iii. 5499
Give reasons that the page size in a virtual memory system should be neither very
small nor very large.
A process references five pages, A, B, C, D, and E, in the following order:

A;B;C;D;A;B;E;A;B;C;D;E
Assume that the replacement algorithm is first-in-first-out and find the number of
page transfers during this sequence of references starting with an empty main mem-
ory with three page frames. Repeat for four page frames.
The following sequence of virtual page numbers is encountered in the course of exe-
cution on a computer with virtual memory:
342647132635123

Assume that a least recently used page replacement policy is adopted. Plot a graph of
page hit ratio (fraction of page references in which the page is in main memory) as a
function of main-memory page capacity n for | = n =< 8. Assume that main memory
is initially empty.
In the VAX computer, user page tables are located at virtual addresses in the system
space. What is the advantage of having user page tables in virtual rather than main
memory? What is the disadvantage?
Suppose the program statement

for(i = 1;i6 =n;i +)
afi] = b[i] + c[i];

is executed in a memory with page size of 1000 words. Let n = 1000. Using a machine
that has a full range of register-to-register instructions and employs index registers,
write a hypothetical program to implement the foregoing statement. Then show the
sequence of page references during execution.

The IBM System/370 architecture uses a two-level memory structure and refers to the
two levels as segments and pages, although the segmentation approach lacks many
of the features described earlier in this chapter. For the basic 370 architecture, the
page size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is 4
Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does this
scheme lack? What is the benefit of segmentation for the 370?

Consider a computer system with both segmentation and paging. When a segment is
in memory, some words are wasted on the last page. In addition, for a segment size s
and a page size p, there are s/p page table entries. The smaller the page size, the less
waste in the last page of the segment, but the larger the page table. What page size
minimizes the total overhead?

A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache, and then the reference is
started again. If the word is not in main memory, 12 ms are required to fetch the word
from disk, followed by 60 ns to copy it to the cache, and then the reference is started
again. The cache hit ratio is 0.9 and the main-memory hit ratio is 0.6. What is the aver-
age time in ns required to access a referenced word on this system?

Assume a task is divided into four equal-sized segments and that the system builds an
eight-entry page descriptor table for each segment. Thus, the system has a combina-
tion of segmentation and paging. Assume also that the page size is 2 Kbytes.

8.16

8.17

8.18

8.19

8.20

8.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 317

What is the maximum size of each segment?

What is the maximum logical address space for the task?

c. Assume that an element in physical location 00021ABC is accessed by this task.
What is the format of the logical address that the task generates for it? What is the
maximum physical address space for the system?

Assume a microprocessor capable of accessing up to 2°2 bytes of physical main mem-
ory. It implements one segmented logical address space of maximum size 2°! bytes.
Each instruction contains the whole two-part address. External memory management
units (MMUs) are used, whose management scheme assigns contiguous blocks of
physical memory of fixed size 2%? bytes to segments. The starting physical address of a
segment is always divisible by 1024. Show the detailed interconnection of the external
mapping mechanism that converts logical addresses to physical addresses using the
appropriate number of MMU S, and show the detailed internal structure of an MMU
(assuming that each MMU contains a 128-entry directly mapped segment descriptor
cache) and how each MMU is selected.

Consider a paged logical address space (composed of 32 pages of 2 Kbytes each)

mapped into a 1-Mbyte physical memory space.

a. What is the format of the processor’s logical address?

b. What is the length and width of the page table (disregarding the “access rights” bits)?

c. What is the effect on the page table if the physical memory space is reduced by
half?

In IBM’s mainframe operating system, OS/390, one of the major modules in the ker-
nel is the System Resource Manager (SRM). This module is responsible for the alloca-
tion of resources among address spaces (processes). The SRM gives OS/390 a degree
of sophistication unique among operating systems. No other mainframe OS, and cer-
tainly no other type of OS, can match the functions performed by SRM. The concept
of resource includes processor, real memory, and I/O channels. SRM accumulates sta-
tistics pertaining to utilization of processor, channel, and various key data structures.
Its purpose is to provide optimum performance based on performance monitoring
and analysis. The installation sets forth various performance objectives, and these
serve as guidance to the SRM, which dynamically modifies installation and job perfor-
mance characteristics based on system utilization. In turn, the SRM provides reports
that enable the trained operator to refine the configuration and parameter settings to
improve user service.

This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
approximately 20 times per second and inspects each and every page frame. If the
page has not been referenced or changed, a counter is incremented by 1. Over time,
SRM averages these numbers to determine the average number of seconds that a
page frame in the system goes untouched. What might be the purpose of this and what
action might SRM take?

For each of the ARM virtual address formats shown in Figure 8.24, show the physical
address format.

Draw a figure similar to Figure 8.23 for ARM virtual memory translation when main
memory is divided into sections.

g

PART THREE ARITHMETIC
AND LogGIC)

CHAPTER

NUMBER SYSTEMS

318

9.1
9.2
9.3
9.4

9.5
9.6

The Decimal System
Positional Number Systems
The Binary System

Converting Between Binary and Decimal
Integers
Fractions

Hexadecimal Notation

Key Terms and Problems

9.1 / THE DECIMAL SYSTEM 319

LEARNING OBJECTIVES
After studying this chapter, you should be able to:
@ Understand the basic concepts and terminology of positional number

systems.

@ Explain the techniques for converting between decimal and binary for both
integers and fractions.

@ Explain the rationale for using hexadecimal notation.

9.1 THE DECIMAL SYSTEM

In everyday life we use a system based on decimal digits (0, 1,2,3,4,5,6,7.8,9) to
represent numbers, and refer to the system as the decimal system. Consider what the
number 83 means. It means eight tens plus three:

83 = (8 X 10) + 3

The number 4728 means four thousands, seven hundreds, two tens, plus eight:
4728 = (4 X 1000) + (7 X 100) + (2 X 10) + 8

The decimal system is said to have a base, or radix, of 10. This means that each digit
in the number is multiplied by 10 raised to a power corresponding to that digit’s
position:

83 = (8 X 10") + (3 x 10°)
4728 = (4 X 10°) + (7 X 10%) + (2 X 10") + (8 X 10%)

The same principle holds for decimal fractions, but negative powers of 10 are
used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus 6
thousandths:

0256 = (2 X 1071) + (5 X 1072) + (6 X 107%)

A number with both an integer and fractional part has digits raised to both
positive and negative powers of 10:

442256 = (4 X 10°) + (4 + 10") + (2 X 10°) + (2 X 107") + (5 X 107?)
+ (6 X 107%)

In any number, the leftmost digit is referred to as the most significant digit,
because it carries the highest value. The rightmost digit is called the least significant
digit. In the preceding decimal number, the 4 on the left is the most significant digit
and the 6 on the right is the least significant digit.

Table 9.1 shows the relationship between each digit position and the value
assigned to that position. Each position is weighted 10 times the value of the position
to the right and one-tenth the value of the position to the left. Thus, positions rep-
resent successive powers of 10. If we number the positions as indicated in Table 9.1,
then position i is weighted by the value 10/,

320 CHAPTER 9 / NUMBER SYSTEMS

Table 9.1 Positional Interpretation of a Decimal Number

4 7 2 2 5 6
100s 10s 1s tenths hundredths thousandths
10? 10 10° 107! 1072 107
position 2 position 1 position 0 position —1 position —2 position -3

In general, for the decimal representation of X = {...dd dy.d_1d_»d 5. ..}, the
value of Xis

X = 3(d; x 10) ©.1)

One other observation is worth making. Consider the number 509 and ask
how many tens are in the number. Because there is a 0 in the tens position, you
might be tempted to say there are no tens. But there are in fact 50 tens. What the 0
in the tens position means is that there are no tens left over that cannot be lumped
into the hundreds, or thousands, and so on. Therefore, because each position holds
only the leftover numbers that cannot be lumped into higher positions, each digit
position needs to have a value of no greater than nine. Nine is the maximum value
that a position can hold before it flips over into the next higher position.

9.2 POSITIONAL NUMBER SYSTEMS

In a positional number system, each number is represented by a string of digits in
which each digit position i has an associated weight 7, where r is the radix, or base,
of the number system. The general form of a number in such a system with radix r is

(. . .azaraapg.aaa_j. ..)r

where the value of any digit g; is an integer in the range 0 =< a; < r. The dot between
ap and a_q is called the radix point. The number is defined to have the value

cootayr? Fap? +apt +ag® +art v art a4

= (@ x b) 9.2)

The decimal system, then, is a special case of a positional number system with
radix 10 and with digits in the range 0 through 9.

As an example of another positional system, consider the system with base 7.
Table 9.2 shows the weighting value for positions —1 through 4. In each position,
the digit value ranges from 0 through 6.

Table 9.2 Positional Interpretation of a Number in Base 7

Position 4 3 2 1 0 =il
Value in Exponential Form 74 73 72 71 7 7

Decimal Value 2401 343 49 7 1 1/7

9.4 / CONVERTING BETWEEN BINARY AND DECIMAL 321

9.3 THE BINARY SYSTEM

In the decimal system, 10 different digits are used to represent numbers with a base
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the
binary system are represented to base 2.

To avoid confusion, we will sometimes put a subscript on a number to indicate
its base. For example, 83, and 4728, are numbers represented in decimal notation
or, more briefly, decimal numbers. The digits 1 and 0 in binary notation have the
same meaning as in decimal notation:

0, = 00
1, =1y

To represent larger numbers, as with decimal notation, each digit in a binary num-
ber has a value depending on its position:

10, = (1 x 21 + (0 x 2°) = 24
11, = (1 x 2 + (1 x 2% = 3,
100, = (1 X 22) + (0 X 21) + (0 X 2°) = 4,

and so on. Again, fractional values are represented with negative powers of the
radix:

1001.101 = 23 + 20 + 271 + 273 = 9.625,,

In general, for the binary representation of Y = {...bybbo.b_1b_yb_3...}, the
value of Y'is

Y = (b % 2) 93)

9.4 CONVERTING BETWEEN BINARY AND DECIMAL

It is a simple matter to convert a number from binary notation to decimal notation.

In fact, we showed several examples in the previous subsection. All that is required

is to multiply each binary digit by the appropriate power of 2 and add the results.
To convert from decimal to binary, the integer and fractional parts are han-

dled separately.

Integers

For the integer part, recall that in binary notation, an integer represented by

bm—lbm—Z e bzblb() bi =0orl
has the value

(D1 X 2N + (by X 2™ 2y + ...+ (by X 21 + by

322 CHAPTER 9 / NUMBER SYSTEMS

Suppose it is required to convert a decimal integer N into binary form. If we
divide N by 2, in the decimal system, and obtain a quotient N, and a remainder R,
we may write

NZZXN1+R0 ROZOOI'l

Next, we divide the quotient N; by 2. Assume that the new quotient is N, and the
new remainder R;. Then

N1:2XN2+R1 R1:001'1

so that
N =202N, + R)) + Ry = (N, X 2°) + (R; X 2") + R,
If next
N, =2N; + R,
we have
N = (N3 X2+ (R, X2 + (R X2 + R,
Because N > Ny > N, ... , continuing this sequence will eventually produce

a quotient N,,_; = 1 (except for the decimal integers 0 and 1, whose binary
equivalents are 0 and 1, respectively) and a remainder R,,_,, which is 0 or 1.
Then

N=(0X2"Y+ (R, X2") + ...+ (R, X2) + (R X2") + R,
which is the binary form of N. Hence, we convert from base 10 to base 2 by repeated
divisions by 2. The remainders and the final quotient, 1, give us, in order of increas-
ing significance, the binary digits of N. Figure 9.1 shows two examples.

Fractions

For the fractional part, recall that in binary notation, a number with a value between
0 and 1 is represented by

0.b_1byb_5 ... b;=0orl
and has the value
by X2H + (b X272+ (bygx273)...
This can be rewritten as
27X (b + 27V X (b, + 27V X (b5 + ..))..0))

This expression suggests a technique for conversion. Suppose we want to con-
vert the number F(0 < F < 1) from decimal to binary notation. We know that F
can be expressed in the form

F=21"X (b +2"'Xby+2'X(bs+ ...)...)
If we multiply F by 2, we obtain,
2XF=b_ +2'X(b,+2'X(bs+ ...)...)

9.4 / CONVERTING BETWEEN BINARY AND DECIMAL 323

Quotient Remainder

2

[y

NESIRNI IS
Il \II
[N
o [

A\

N
I
o

'

1011, = iy,

(@) 119

Quotient Remainder

N
=

= = 10 1
2

10

= 5

> 0

o
N
i

AVAVANAN

o

VN
[
o

NI

3

10101, = 21,

(b) 214

Figure 9.1 Examples of Converting from Decimal
Notation to Binary Notation for Integers

From this equation, we see that the integer part of (2 X F), which must be
either 0 or 1 because 0 < F < 1, is simply b_y. So we cansay (2 X F) = b_y + F,
where 0 < F; < 1 and where

Fi=2"X(b,+2'"X(bs+2'X(b,y+ ...)...)

To find b_,, we repeat the process. Therefore, the conversion algorithm involves
repeated multiplication by 2. At each step, the fractional part of the number from
the previous step is multiplied by 2. The digit to the left of the decimal point in the
product will be 0 or 1 and contributes to the binary representation, starting with the
most significant digit. The fractional part of the product is used as the multiplicand
in the next step. Figure 9.2 shows two examples.

This process is not necessarily exact; that is, a decimal fraction with a finite
number of digits may require a binary fraction with an infinite number of digits. In
such cases, the conversion algorithm is usually halted after a prespecified number of
steps, depending on the desired accuracy.

324 CHAPTER 9 / NUMBER SYSTEMS

Product Integer Part 0.110011,

0.81x2 = 1.62 l—4

\

0.62X2 = 1.24 1

\

0.24 x2 = 0.48 0

\

0.48x2 = 0.96 0

\

0.96 X2 = 1.92 1

\

0.92 X2 =1.84 1

(a) 0.81,5= 0.110011, (approximately)

Product Integer Part 0.01,

0.25 x2 = 0.5 O—*

0.5 X 2 =1.0 1

(b) 0.25,, = 0.01, (exactly)

Figure 9.2 Examples of Converting from Decimal
Notation to Binary Notation for Fractions

9.5 HEXADECIMAL NOTATION

Because of the inherent binary nature of digital computer components, all forms of
data within computers are represented by various binary codes. However, no matter
how convenient the binary system is for computers, it is exceedingly cumbersome
for human beings. Consequently, most computer professionals who must spend time
working with the actual raw data in the computer prefer a more compact notation.

What notation to use? One possibility is the decimal notation. This is certainly
more compact than binary notation, but it is awkward because of the tediousness of
converting between base 2 and base 10.

Instead, a notation known as hexadecimal has been adopted. Binary digits are
grouped into sets of four bits, called a nibble. Each possible combination of four
binary digits is given a symbol, as follows:

0000 =0 0100 =4 1000 = 8 1100 = C
0001 =1 0101 =5 1001 =9 1101 = D
0010 =2 0110=6 1010=A 1110=E
0011 =3 0111=7 1011 =B 1111 =F

9.5 / HEXADECIMAL NOTATION 325

Because 16 symbols are used, the notation is called hexadecimal, and the 16 symbols
are the hexadecimal digits.

A sequence of hexadecimal digits can be thought of as representing an integer
in base 16 (Table 9.3). Thus,

2C16 = (216 X 16Y) + (Cy X 16%)
= (249 X 16") + (1249 X 16") = 44

Thus, viewing hexadecimal numbers as numbers in the positional number sys-
tem with base 16, we have

Z = 3 (h; X 16) 9.4)

where 16is the base and each hexadecimal digit /;isin the decimal range 0 < h; < 15,
equivalent to the hexadecimal range 0 < h; =< F.

Table 9.3 Decimal, Binary, and Hexadecimal

Decimal (base 10) Binary (base 2) Hexadecimal (base 16)
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 15
15 1111 F
16 0001 0000 10
17 0001 0001 11
18 0001 0010 12
31 0001 1111 1F
100 0110 0100 64
255 1111 1111 FF
256 0001 0000 0000 100

326

CHAPTER 9 / NUMBER SYSTEMS

Hexadecimal notation is not only used for representing integers but also used
as a concise notation for representing any sequence of binary digits, whether they
represent text, numbers, or some other type of data. The reasons for using hexadec-
imal notation are as follows:

1. It is more compact than binary notation.

2. In most computers, binary data occupy some multiple of 4 bits, and hence
some multiple of a single hexadecimal digit.

3. Itis extremely easy to convert between binary and hexadecimal notation.

As an example of the last point, consider the binary string 110111100001. This
is equivalent to

1101 1110 0001 =DEly4
D E 1
This process is performed so naturally that an experienced programmer can

mentally convert visual representations of binary data to their hexadecimal equiva-
lent without written effort.

9.6 KEY TERMS AND PROBLEMS

Key Terms
base hexadecimal nibble
binary integer positional number system
decimal least significant digit radix
fraction most significant digit radix point
Problems

9.1 Count from 1 to 20y, in the following bases:
a. 8 b. 6 c. 5 d. 3
9.2 Order the numbers (1.1),,(1.4);y, and (1.5);4 from smallest to largest.
9.3 Perform the indicated base conversions:
a. 54gto base 5 b. 312, to base 7 c. 520qto base 7 d. 122125 to base 9

9.4 What generalizations can you draw about converting a number from one base to a
power of that base; e.g., from base 3 to base 9 (3%) or from base 2 to base 4 (2%) or base

8 (2%)?
9.5 Convert the following binary numbers to their decimal equivalents:

a. 001100 b. 000011 c. 011100 d. 111100 e. 101010
9.6 Convert the following binary numbers to their decimal equivalents:

a. 11100.011 b. 110011.10011 c¢. 1010101010.1
9.7 Convert the following decimal numbers to their binary equivalents:

a. 64 b. 100 c. 111 d. 145 e. 255

9.8 Convert the following decimal numbers to their binary equivalents:
a. 34.75 b. 2525 c. 271875

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.6 / KEY TERMS AND PROBLEMS 327

Prove that every real number with a terminating binary representation (finite number
of digits to the right of the binary point) also has a terminating decimal representation
(finite number of digits to the right of the decimal point).

Express the following octal numbers (number with radix 8) in hexadecimal notation:
a. 12 b. 5655 c. 2550276 d. 76545336 e. 3726755
Convert the following hexadecimal numbers to their decimal equivalents:

a. C b. 9F c. D52 d. 67E e. ABCD

Convert the following hexadecimal numbers to their decimal equivalents:
a. F4 b. D3.E c. 11111 d. 888.8 e. EBA.C

Convert the following decimal numbers to their hexadecimal equivalents:

a. 16 b. 80 c. 2560 d. 3000 e. 62,500
Convert the following decimal numbers to their hexadecimal equivalents:

a. 204.125 b. 255.875 c. 63125 d. 10000.00390625
Convert the following hexadecimal numbers to their binary equivalents:

a. E b. 1C c. Ao4 d. 1EC e. 2394
Convert the following binary numbers to their hexadecimal equivalents:

a. 1001.1111 b. 110101.011001 c¢. 10100111.111011

CHAPTER

COMPUTER ARITHMETIC

328

10.1 The Arithmetic and Logic Unit

10.2 Integer Representation
Sign-Magnitude Representation
Twos Complement Representation
Range Extension
Fixed-Point Representation

10.3 Integer Arithmetic
Negation
Addition and Subtraction
Multiplication
Division
10.4 Floating-Point Representation
Principles
IEEE Standard for Binary Floating-Point Representation

10.5 Floating-Point Arithmetic
Addition and Subtraction
Multiplication and Division
Precision Considerations
IEEE Standard for Binary Floating-Point Arithmetic

10.6 Key Terms, Review Questions, and Problems

10.1 / THE ARITHMETIC AND LOGIC UNIT 329

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Understand the distinction between the way in which numbers are represented
(the binary format) and the algorithms used for the basic arithmetic operations.

@ Explain twos complement representation.

@ Present an overview of the techniques for doing basic arithmetic operation in
two complement notation.

@ Understand the use of significand, base, and exponent in the representation
of floating-point numbers.

@ Present an overview of the IEEE 754 standard for floating-point
representation.

@ Understand some of the key concepts related to floating-point arithmetic,
including guard bits, rounding, subnormal numbers, underflow and overflow.

We begin our examination of the processor with an overview of the arithmetic and
logic unit (ALU). The chapter then focuses on the most complex aspect of the ALU,
computer arithmetic. The implementations of simple logic and arithmetic functions
in digital logic are described in Chapter 11, and logic functions that are part of the
ALU are described in Chapter 12.

Computer arithmetic is commonly performed on two very different types of
numbers: integer and floating point. In both cases, the representation chosen is a cru-
cial design issue and is treated first, followed by a discussion of arithmetic operations.

This chapter includes a number of examples, each of which is highlighted in a
shaded box.

10.1 THE ARITHMETIC AND LOGIC UNIT

The ALU is that part of the computer that actually performs arithmetic and logical
operations on data. All of the other elements of the computer system —control unit,
registers, memory, I/O —are there mainly to bring data into the ALU for it to process
and then to take the results back out. We have, in a sense, reached the core or essence
of a computer when we consider the ALU.

An ALU and indeed, all electronic components in the computer, are based on
the use of simple digital logic devices that can store binary digits and perform simple
Boolean logic operations.

Figure 10.1 indicates, in general terms, how the ALU is interconnected with the
rest of the processor. Operands for arithmetic and logic operations are presented to
the ALU in registers, and the results of an operation are stored in registers. These
registers are temporary storage locations within the processor that are connected
by signal paths to the ALU (e.g., see Figure 2.3). The ALU may also set flags as the
result of an operation. For example, an overflow flag is set to 1 if the result of a com-
putation exceeds the length of the register into which it is to be stored.

330 CHAPTER 10 / COMPUTER ARITHMETIC

Control -~ >

signals : : Flags

ALU

Operand Result
registers ﬁ registers

Figure 10.1 ALU Inputs and Outputs

The flag values are also stored in registers within the processor. The processor pro-
vides signals that control the operation of the ALU and the movement of the data
into and out of the ALU.

10.2 INTEGER REPRESENTATION

In the binary number system,! arbitrary numbers can be represented with just the
digits zero and one, the minus sign (for negative numbers), and the period, or radix
point (for numbers with a fractional component).

—1101.0101, = —13.3125;,

For purposes of computer storage and processing, however, we do not have the ben-
efit of special symbols for the minus sign and radix point. Only binary digits (0 and
1) may be used to represent numbers. If we are limited to nonnegative integers, the
representation is straightforward.

An 8-bit word can represent the numbers from 0 to 255, such as

00000000 = 0O
00000001 = 1
00101001 = 41
10000000 = 128

11111111 = 255

In general, if an n-bit sequence of binary digits a,_1a,—, ... aa, is inter-
preted as an unsigned integer A, its value is

n—1
A= D2g
i=0

ISee Chapter 9 for a basic refresher on number systems (decimal, binary, hexadecimal).

10.2 / INTEGER REPRESENTATION 331

Sign-Magnitude Representation

There are several alternative conventions used to represent negative as well as pos-
itive integers, all of which involve treating the most significant (leftmost) bit in the
word as a sign bit. If the sign bit is 0, the number is positive; if the sign bit is 1, the
number is negative.

The simplest form of representation that employs a sign bit is the sign-magni-
tude representation. In an n-bit word, the rightmost n — 1 bits hold the magnitude
of the integer.

+18 = 00010010
—18 = 10010010 (sign magnitude)

The general case can be expressed as follows:

n—2)
M2, ifa, ;=0
Sign Magnitude A=< 0 (10.1)

n-2
—E2lai if a, 1 = 1
i=0

There are several drawbacks to sign-magnitude representation. One is that
addition and subtraction require a consideration of both the signs of the numbers
and their relative magnitudes to carry out the required operation. This should
become clear in the discussion in Section 10.3. Another drawback is that there are
two representations of 0:

+ 04 = (00000000
—0p9 = 10000000 (sign magnitude)

This is inconvenient because it is slightly more difficult to test for 0 (an operation
performed frequently on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in
implementing the integer portion of the ALU. Instead, the most common scheme is
twos complement representation.’

Twos Complement Representation

Like sign magnitude, twos complement representation uses the most significant bit
as a sign bit, making it easy to test whether an integer is positive or negative. It dif-
fers from the use of the sign-magnitude representation in the way that the other bits
are interpreted. Table 10.1 highlights key characteristics of twos complement repre-
sentation and arithmetic, which are elaborated in this section and the next.

Most treatments of twos complement representation focus on the rules for
producing negative numbers, with no formal proof that the scheme is valid. Instead,

%In the literature, the terms two’s complement or 2’s complement are often used. Here we follow the
practice used in standards documents and omit the apostrophe (e.g., IEEE Std 100-1992, The New IEEE
Standard Dictionary of Electrical and Electronics Terms).

332 CHAPTER 10 / COMPUTER ARITHMETIC

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Range =271 through 2" ! — 1

Number of Representations
One

of Zero

Negation Take the Boolean complement of each bit of the corresponding
positive number, then add 1 to the resulting bit pattern viewed
as an unsigned integer.

Expansion of Bit Length Add additional bit positions to the left and fill in with the value
of the original sign bit.

Overflow Rule If two numbers with the same sign (both positive or both nega-
tive) are added, then overflow occurs if and only if the result has
the opposite sign.

Subtraction Rule To subtract B from A, take the twos complement of B and add
it to A.

our presentation of twos complement integers in this section and in Section 10.3 is
based on [DATT93], which suggests that twos complement representation is best
understood by defining it in terms of a weighted sum of bits, as we did previously
for unsigned and sign-magnitude representations. The advantage of this treatment
is that it does not leave any lingering doubt that the rules for arithmetic operations
in twos complement notation may not work for some special cases.

Consider an n-bit integer, A, in twos complement representation. If A is pos-
itive, then the sign bit, a,,_1, is zero. The remaining bits represent the magnitude of
the number in the same fashion as for sign magnitude:

n—2
A= ZZiai forA =0
=0

The number zero is identified as positive and therefore has a 0 sign bit and a magni-
tude of all 0s. We can see that the range of positive integers that may be represented
is from 0 (all of the magnitude bits are 0) through 2"~ — 1 (all of the magnitude
bits are 1). Any larger number would require more bits.

Now, for a negative number A(A < 0), the sign bit, a,_4, is one. The remain-
ing n — 1 bits can take on any one of 2"~ ! values. Therefore, the range of negative
integers that can be represented is from —1 to —2"~ . We would like to assign the bit
values to negative integers in such a way that arithmetic can be handled in a straight-
forward fashion, similar to unsigned integer arithmetic. In unsigned integer represen-
tation, to compute the value of an integer from the bit representation, the weight of the
most significant bit is +2"~!. For a representation with a sign bit, it turns out that the
desired arithmetic properties are achieved, as we will see in Section 10.3, if the weight
of the most significant bit is —2"~!. This is the convention used in twos complement
representation, yielding the following expression for negative numbers:

n—2
Twos Complement A=-2"1q, | + EZiai (10.2)
=0

Equation (10.2) defines the twos complement representation for both positive and
negative numbers. For a,_; = 0, the term —2"'a,_; = 0 and the equation defines

10.2 / INTEGER REPRESENTATION 333

Table 10.2 Alternative Representations for 4-Bit Integers

Decimal Sign-Magnitude Twos Complement Biased
Representation Representation Representation Representation

+8 — — 1111
+7 0111 0111 1110
810 0110 0110 1101
S 0101 0101 1100
+4 0100 0100 1011
3 0011 0011 1010
2 0010 0010 1001
+1 0001 0001 1000
+0 0000 0000 0111
-0 1000 = =

=il 1001 1111 0110
=2 1010 1110 0101
-3 1011 1101 0100
—4 1100 1100 0011
=3 1101 1011 0010
=@ 1110 1010 0001
=7 1111 1001 0000
-8 — 1000 =

anonnegative integer. When a,_; = 1, the term 2"~ ! is subtracted from the summa-
tion term, yielding a negative integer.

Table 10.2 compares the sign-magnitude and twos complement representa-
tions for 4-bit integers. Although twos complement is an awkward representation
from the human point of view, we will see that it facilitates the most important arith-
metic operations, addition and subtraction. For this reason, it is almost universally
used as the processor representation for integers.

A useful illustration of the nature of twos complement representation is a
value box, in which the value on the far right in the box is 1 (2) and each succeeding
position to the left is double in value, until the leftmost position, which is negated.
As you can see in Figure 10.2a, the most negative twos complement number that
can be represented is —2""!; if any of the bits other than the sign bit is one, it adds a
positive amount to the number. Also, it is clear that a negative number must have a
1 at its leftmost position and a positive number must have a 0 in that position. Thus,
the largest positive number is a 0 followed by all 1s, which equals 2"~ — 1.

The rest of Figure 10.2 illustrates the use of the value box to convert from twos
complement to decimal and from decimal to twos complement.

Range Extension

It is sometimes desirable to take an n-bit integer and store it in m bits, where m > n.
This expansion of bit length is referred to as range extension, because the range of
numbers that can be expressed is extended by increasing the bit length.

334 CHAPTER 10 / COMPUTER ARITHMETIC

—128 | 64 | 32 | 16 | 8 4 2 1

(a) An eight-position twos complement value box

—128 | 64 | 32 | 16 | 8 4 2 1
1 0 0 0 0 0 1 1

—128 +2 +1 =-125
(b) Convert binary 10000011 to decimal

—128| 64 | 32 | 16 | 8 4 2 1
1 0 0 0 1 0 0 0

—120 = —128 +8
(c) Convert decimal —120 to binary

Figure 10.2 Use of a Value Box for Conversion between
Twos Complement Binary and Decimal

In sign-magnitude notation, this is easily accomplished: simply move the sign bit to
the new leftmost position and fill in with zeros.

+18 = 00010010 (sign magnitude, 8 bits)
+18 = 0000000000010010 (sign magnitude, 16 bits)
-18 = 10010010 (sign magnitude, 8 bits)
—18 = 1000000000010010 (sign magnitude, 16 bits)

This procedure will not work for twos complement negative integers. Using the
same example,

+18 = 00010010 (twos complement, 8 bits)

+18 = 0000000000010010 (twos complement, 16 bits)

—18 = 11101110 (twos complement, 8 bits)
—32,658 = 1000000001101110 (twos complement, 16 bits)

The next to last line is easily seen using the value box of Figure 10.2. The last line
can be verified using Equation (10.2) or a 16-bit value box.

Instead, the rule for twos complement integers is to move the sign bit to the
new leftmost position and fill in with copies of the sign bit. For positive numbers,
fill in with zeros, and for negative numbers, fill in with ones. This is called sign
extension.

—18 = 11101110 (twos complement, 8 bits)
—18 1111111111101110 (twos complement, 16 bits)

10.3 / INTEGER ARITHMETIC 335

To see why this rule works, let us again consider an n-bit sequence of bin-
ary digits a,,_1a,—, ... ajayinterpreted as a twos complement integer A, so that its
value is

n—2
A= -2"1a, ; + D2
i=0

If A is a positive number, the rule clearly works. Now, if A is negative and we want
to construct an m-bit representation, with m > n. Then

m=2
A= =2""g, 1+ D2
i=0
The two values must be equal:
m-2 n-2
_ZM71 + EZ’ai == _2n71 + 221611-
=0 =0

m—2
_2m—1 + E ziai — _2n—1

i=n—1

_on—1 M72i‘: m—1
277+ Y 2ig; =2

i=n—1

n-2 m=2 m-2

T+ D20+ D 2g=1+ D72

i=0 i=n—1 i=0
m-2 m-2
> 2g = D2
i=n—1 i=n—1

= a4, 2= ... =a,,=a, ,=1

In going from the first to the second equation, we require that the least signifi-
cant n — 1 bits do not change between the two representations. Then we get to the
next to last equation, which is only true if all of the bits in positions n — 1 through
m — 2 are 1. Therefore, the sign-extension rule works. The reader may find the rule
easier to grasp after studying the discussion on twos complement negation at the
beginning of Section 10.3.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes
referred to as fixed point. This is because the radix point (binary point) is fixed and
assumed to be to the right of the rightmost digit. The programmer can use the same
representation for binary fractions by scaling the numbers so that the binary point is
implicitly positioned at some other location.

10.3 INTEGER ARITHMETIC

This section examines common arithmetic functions on numbers in twos comple-
ment representation.

336 CHAPTER 10 / COMPUTER ARITHMETIC

Negation

In sign-magnitude representation, the rule for forming the negation of an integer is
simple: invert the sign bit. In twos complement notation, the negation of an integer
can be formed with the following rules:

1. Take the Boolean complement of each bit of the integer (including the sign
bit). That is, set each 1 to 0 and each O to 1.

2. Treating the result as an unsigned binary integer, add 1.

This two-step process is referred to as the twos complement operation, or the taking
of the twos complement of an integer.

+18 = 00010010 (twos complement)
bitwise complement = 11101101
4 1

11101110=-18
As expected, the negative of the negative of that number is itself:

—18 = 11101110 (twos complement)
00010001

s 1

00010010 =+18

bitwise complement

We can demonstrate the validity of the operation just described using the defi-
nition of the twos complement representation in Equation (10.2). Again, interpret
an n-bit sequence of binary digits a,_1a,,—, ... a1ay as a twos complement integer
A, so that its value is

n—2
A = _2n710n71 + EZiai
=0

Now form the bitwise complement, a, ia, , ... ay and, treating this as an
unsigned integer, add 1. Finally, interpret the resulting n-bit sequence of binary dig-
its as a twos complement integer B, so that its value is
B=-2"1a, | +1+ D2
i=0

Now, we want A = —B, which means A + B = 0. This is easily shown to be true:

A+ B

n—2
—(an,l + an,1)2"71 + 1+ (EZi(ai + (ll))
i=0
n—2

=-2"1+1+ (22")
=0

=24 14t -1)
=2+l =0

10.3 / INTEGER ARITHMETIC 337

The preceding derivation assumes that we can first treat the bitwise complement of
A as an unsigned integer for the purpose of adding 1, and then treat the result as a
twos complement integer. There are two special cases to consider. First, consider
A = 0. In that case, for an 8-bit representation:

0

bitwise complement

00000000 (twos complement)
11111111
s 1
100000000 =0

There is a carry out of the most significant bit position, which is ignored. The result
is that the negation of 0 is 0, as it should be.

The second special case is more of a problem. If we take the negation of the bit
pattern of 1 followed by n — 1 zeros, we get back the same number. For example,
for 8-bit words,

+128 = 10000000 (twos complement)
bitwise complement = 01111111
A 1

10000000 =—128

Some such anomaly is unavoidable. The number of different bit patterns in an
n-bit word is 2n, which is an even number. We wish to represent positive and neg-
ative integers and 0. If an equal number of positive and negative integers are rep-
resented (sign magnitude), then there are two representations for 0. If there is only
one representation of 0 (twos complement), then there must be an unequal number
of negative and positive numbers represented. In the case of twos complement, for
an n-bit length, there is a representation for —2"~! but not for +2" .

Addition and Subtraction

Addition in twos complement is illustrated in Figure 10.3. Addition proceeds as if
the two numbers were unsigned integers. The first four examples illustrate successful
operations. If the result of the operation is positive, we get a positive number in twos
complement form, which is the same as in unsigned-integer form. If the result of the
operation is negative, we get a negative number in twos complement form. Note
that, in some instances, there is a carry bit beyond the end of the word (indicated by
shading), which is ignored.

On any addition, the result may be larger than can be held in the word size
being used. This condition is called overflow. When overflow occurs, the ALU must
signal this fact so that no attempt is made to use the result. To detect overflow, the
following rule is observed:

OVERFLOW RULE: If two numbers are added, and they are both positive or both
negative, then overflow occurs if and only if the result has the opposite sign.

338 CHAPTER 10 / COMPUTER ARITHMETIC

1001 = =7 1100 = —4
+0101 = 5 +0100 = 4
1110 = —2 10000 = O
@ (=7) + (+5) () (=4) + (+4)
0011 = 3 1100 = —4
+0100 = 4 +1111 = -1
0111 = 7 B1011 = -5
©) (+3) + (+4) @ (=4 + (=1
0101 = 5 1001 = —7
+0100 = 4 +1010 = -6
1001 = Overflow 10011 = Overflow
@) (+5) + (+4)) (=7) + (=6)

Figure 10.3 Addition of Numbers in Twos Complement
Representation

Figures 10.3e and f show examples of overflow. Note that overflow can occur
whether or not there is a carry.
Subtraction is easily handled with the following rule:

SUBTRACTION RULE: To subtract one number (subtrahend) from another
(minuend), take the twos complement (negation) of the subtrahend and add it to the
minuend.

Thus, subtraction is achieved using addition, as illustrated in Figure 10.4. The
last two examples demonstrate that the overflow rule still applies.

0010 = 2 0101 = 5
+1001 = =7 +1110 = =2
1011 = -5 10011 = 3
(a) M =2 = 0010 (b) M =5 = 0101
S =7 = 0111 S =2 = 0010
—-S = 1001 —-S = 1110
1011 = =5 0101 = 5
+1110 = -2 +0010 = 2
11001 = —7 0111 = 7
(c) M= -5 = 1011 (d) M = 5 = 0101
S = 2 = 0010 S = -2 = 1110
—-S = 1110 —S = 0010
0111 = 7 1010 = —6
+0111 = 7 +1100 = —4
1110 = Overflow 10110 = Overflow
(e) M= 7 = 0111 (f) M = —6 = 1010
S = -7 = 1001 S = 4 = 0100
—-S = 0111 —S = 1100

Figure 10.4 Subtraction of Numbers in Twos Complement
Representation (M — S)

10.3 / INTEGER ARITHMETIC 339

Subtraction Addition Subtraction Addition

of positive
numbers

_9_8§—

of positive of positive of positiv
numbers numbers, 000...0 numbers

. 1_2n—1 on=1 _;111
2" -1 2
(a) 4-bit numbers (b) n-bit numbers

7-6-5-4-3-2-1 0123456789

Figure 10.5 Geometric Depiction of Twos Complement Integers

Some insight into twos complement addition and subtraction can be gained by
looking at a geometric depiction [BENH92], as shown in Figure 10.5. The circle in
the upper half of each part of the figure is formed by selecting the appropriate seg-
ment of the number line and joining the endpoints. Note that when the numbers are
laid out on a circle, the twos complement of any number is horizontally opposite that
number (indicated by dashed horizontal lines). Starting at any number on the circle,
we can add positive k (or subtract negative k) to that number by moving k positions
clockwise, and we can subtract positive k (or add negative k) from that number by
moving k positions counterclockwise. If an arithmetic operation results in traversal
of the point where the endpoints are joined, an incorrect answer is given (overflow).

ALL OF the examples of Figures 10.3 and 10.4 are easily traced in the circle of Figure 10.5.

Figure 10.6 suggests the data paths and hardware elements needed to accom-
plish addition and subtraction. The central element is a binary adder, which is pre-
sented two numbers for addition and produces a sum and an overflow indication.
The binary adder treats the two numbers as unsigned integers. (A logic implemen-
tation of an adder is given in Chapter 11.) For addition, the two numbers are pre-
sented to the adder from two registers, designated in this case as A and B registers.
The result may be stored in one of these registers or in a third. The overflow indi-
cation is stored in a 1-bit overflow flag (0 = no overflow; 1 = overflow). For sub-
traction, the subtrahend (B register) is passed through a twos complementer so that
its twos complement is presented to the adder. Note that Figure 10.6 only shows the

340 CHAPTER 10 / COMPUTER ARITHMETIC

B Register A Register

Complementer

Adder

OF = Overflow bit
SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and
Subtraction

data paths. Control signals are needed to control whether or not the complementer
is used, depending on whether the operation is addition or subtraction.

Multiplication

Compared with addition and subtraction, multiplication is a complex operation,
whether performed in hardware or software. A wide variety of algorithms have been
used in various computers. The purpose of this subsection is to give the reader some
feel for the type of approach typically taken. We begin with the simpler problem
of multiplying two unsigned (nonnegative) integers, and then we look at one of
the most common techniques for multiplication of numbers in twos complement
representation.

UNSIGNED INTEGERS Figure 10.7 illustrates the multiplication of unsigned
binary integers, as might be carried out using paper and pencil. Several important
observations can be made:

1. Multiplication involves the generation of partial products, one for each digit in the
multiplier. These partial products are then summed to produce the final product.

1011 Multiplicand (11)
X1101 Multiplier (13)
1011
0000 .
1011 Partial products
1011
10001111 Product (143)

Figure 10.7 Multiplication of
Unsigned Binary Integers

10.3 / INTEGER ARITHMETIC 341

2. The partial products are easily defined. When the multiplier bit is 0, the partial
product is 0. When the multiplier is 1, the partial product is the multiplicand.

3. The total product is produced by summing the partial products. For this oper-
ation, each successive partial product is shifted one position to the left relative
to the preceding partial product.

4. The multiplication of two n-bit binary integers results in a product of up to 2n
bits in length (e.g., 11 X 11 = 1001).

Compared with the pencil-and-paper approach, there are several things we can
do to make computerized multiplication more efficient. First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates
the need for storage of all the partial products; fewer registers are needed. Second, we
can save some time on the generation of partial products. For each 1 on the multiplier,
an add and a shift operation are required; but for each 0, only a shift is required.

Figure 10.8a shows a possible implementation employing these measures.
The multiplier and multiplicand are loaded into two registers (Q and M). A third

Multiplicand

Add i
> n-bit adder Shift and a(‘id
control logic
Shift right
————
N —— P
Multiplier
(a) Block diagram
© A Q M
0 0000 1101 1011 Initial values
0 1011 1101 1011 Add } First
0 0101 1110 1011 Shift cycle
. Second
0 0010 1111 1011 Shift } cycle

0 1101 1111 1011 Add Third
0 0110 1111 1011 Shift } cycle

1 0001 1111 1011 Add } Fourth
0 1000 1111 1011 Shift cycle

(b) Example from Figure 10.7 (product in A, Q)

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

342 CHAPTER 10 / COMPUTER ARITHMETIC

register, the A register, is also needed and is initially set to 0. There is also a 1-bit
C register, initialized to 0, which holds a potential carry bit resulting from addition.

The operation of the multiplier is as follows. Control logic reads the bits of the
multiplier one at a time. If Q is 1, then the multiplicand is added to the A register
and the result is stored in the A register, with the C bit used for overflow. Then all
of the bits of the C, A, and Q registers are shifted to the right one bit, so that the C
bit goes into A,,_1, A(goes into Q,,_, and Qy is lost. If Q is 0, then no addition is
performed, just the shift. This process is repeated for each bit of the original multi-
plier. The resulting 2n-bit product is contained in the A and Q registers. A flowchart
of the operation is shown in Figure 10.9, and an example is given in Figure 10.8b.
Note that on the second cycle, when the multiplier bit is 0, there is no add operation.

TWOS COMPLEMENT MULTIPLICATION We have seen that addition and
subtraction can be performed on numbers in twos complement notation by treating
them as unsigned integers. Consider

1001
+0011
1100

If these numbers are considered to be unsigned integers, then we are adding
9 (1001) plus 3 (0011) to get 12 (1100). As twos complement integers, we are adding
—7(1001) to 3 (0011) to get —4(1100).

START

C, A< 0

M « Multiplicand
Q < Multiplier
Count < n

CA—A+M

Shift right C, A, Q
Count <Count -1

Product
inA, Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication

10.3 / INTEGER ARITHMETIC 343

1011
x 1101

00001011 1011 X 1 x 2°

00000000 1011 x 0 x 2!

00101100 1011 x 1 x 22

01011000 1011 x 1 x 23

10001111

Figure 10.10 Multiplication of Two
Unsigned 4-Bit Integers Yielding an
8-Bit Result

Unfortunately, this simple scheme will not work for multiplication. To see
this, consider again Figure 10.7. We multiplied 11 (1011) by 13 (1101) to get 143
(10001111). If we interpret these as twos complement numbers, we have —5(1011)
times —3 (1101) equals —113 (10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are
negative. In fact, it will not work if either the multiplicand or the multiplier is nega-
tive. To justify this statement, we need to go back to Figure 10.7 and explain what is
being done in terms of operations with powers of 2. Recall that any unsigned binary
number can be expressed as a sum of powers of 2. Thus,

1101 =1 X232 +1xX224+0x20+1x20 =23 422420

Further, the multiplication of a binary number by 2" is accomplished by shift-
ing that number to the left n bits. With this in mind, Figure 10.10 recasts Figure
10.7 to make the generation of partial products by multiplication explicit. The only
difference in Figure 10.10 is that it recognizes that the partial products should be
viewed as 2n-bit numbers generated from the n-bit multiplicand.

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit
word as 00001011. Each partial product (other than that for 2°) consists of this num-
ber shifted to the left, with the unoccupied positions on the right filled with zeros
(e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if
the multiplicand is negative. The problem is that each contribution of the negative
multiplicand as a partial product must be a negative number on a 2n-bit field; the sign
bits of the partial products must line up. This is demonstrated in Figure 10.11, which
shows that multiplication of 1001 by 0011. If these are treated as unsigned integers,
the multiplication of 9 X 3 = 27 proceeds simply. However, if 1001 is interpreted

1001 (9) 1001 (=7)
X 0011 (3) X 0011 (3)
00001001 1001 x 2° 11111001 (=7) x 2° = (=7)
00010010 1001 x 2% 11110010 (-7) X 2 = (-14)
00011011 (27) 11101011 (-21)
(a) Unsigned integers (b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos
Complement Integers

344 CHAPTER 10 / COMPUTER ARITHMETIC

as the twos complement value —7, then each partial product must be a negative
twos complement number of 2z (8) bits, as shown in Figure 10.11b. Note that this is
accomplished by padding out each partial product to the left with binary 1s.

If the multiplier is negative, straightforward multiplication also will not work.
The reason is that the bits of the multiplier no longer correspond to the shifts or
multiplications that must take place. For example, the 4-bit decimal number —3 is
written 1101 in twos complement. If we simply took partial products based on each
bit position, we would have the following correspondence:

110l —(1X22+1x22+0x2+1x2%=—23+2>+29

In fact, what is desired is —(2' + 2°). So this multiplier cannot be used directly in
the manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert
both multiplier and multiplicand to positive numbers, perform the multiplication,
and then take the twos complement of the result if and only if the sign of the two
original numbers differed. Implementers have preferred to use techniques that
do not require this final transformation step. One of the most common of these is
Booth’s algorithm [BOOTS51]. This algorithm also has the benefit of speeding up
the multiplication process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 10.12 and can be described as follows.
As before, the multiplier and multiplicand are placed in the Q and M registers,

START

A—0,Q_1< 0
M « Multiplicand
Q < Multiplier
Count < n

A—A-M A—A+M

Arithmetic shift
Right: A’ Q’ Q—l
Count < Count — 1

Figure 10.12 Booth’s Algorithm for Twos
Complement Multiplication

10.3 / INTEGER ARITHMETIC 345

A 0 @1 M

0000 0011 0 0111 Initial values
1001 0011 0 0111 A—A-M First
1100 1001 1 0111 Shift cycle

. } Second
1110 0100 1 0111 Shift cycle
0101 0100 1 0111 A—A +M Third
0010 1010 0 0111 Shift cycle

. } Fourth
0001 0101 0 0111 Shift cycle

Figure 10.13 Example of Booth’s Algorithm (7 X 3)

respectively. There is also a 1-bit register placed logically to the right of the least
significant bit (Qg) of the Q register and designated Q_;; its use is explained shortly.
The results of the multiplication will appear in the A and Q registers. A and Q_;
are initialized to 0. As before, control logic scans the bits of the multiplier one at a
time. Now, as each bit is examined, the bit to its right is also examined. If the two
bits are the same (1-1 or 0-0), then all of the bits of the A, Q, and Q_; registers are
shifted to the right 1 bit. If the two bits differ, then the multiplicand is added to or
subtracted from the A register, depending on whether the two bits are 0-1 or 1-0.
Following the addition or subtraction, the right shift occurs. In either case, the right
shift is such that the leftmost bit of A, namely A, _{, not only is shifted into A, _,,
but also remains in A,,_;. This is required to preserve the sign of the number in A
and Q. It is known as an arithmetic shift, because it preserves the sign bit.

Figure 10.13 shows the sequence of events in Booth’s algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 10.14a.
The rest of Figure 10.14 gives other examples of the algorithm. As can be seen, it
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of 1s or Os are skipped over, with an average of only
one addition or subtraction per block.

0111 0111
X 0011 (0) X 1101 (0)
11111001 1-0 11111001 1-0
0000000 1-1 0000111 0-1
000111 0-1 111001 1-0
00010101 (21) 11101011 (=21)
(@ (7)) X (3) =2 (b) (7) X (=3) = (=2D
1001 1001
X 0011 (0) X 1101 (0)
00000111 1-0 00000111 1-0
0000000 1-1 1111001 0-1
111001 0-1 000111 1-0
11101011 (=21) 00010101 (21)
(©) (=7) X (3) = (2D (d) (=7) X (=3) = (21)

Figure 10.14 Examples Using Booth’s Algorithm

346 CHAPTER 10 / COMPUTER ARITHMETIC

Why does Booth’s algorithm work? Consider first the case of a positive multi-
plier. In particular, consider a positive multiplier consisting of one block of 1s sur-
rounded by Os (e.g., 00011110). As we know, multiplication can be achieved by
adding appropriately shifted copies of the multiplicand:

M X (00011110) = M x (2% + 23 + 22 + 21)

=Mx (16 + 8 + 4 + 2)
=M X 30

The number of such operations can be reduced to two if we observe that

20+ 20 2K = gl K (10.3)

M X (00011110) = M x (2° — 2}

=M X (32 -2)

=M X 30
So the product can be generated by one addition and one subtraction of the multi-
plicand. This scheme extends to any number of blocks of 1s in a multiplier, including
the case in which a single 1 is treated as a block.

M X (01111010) = M X (2° + 2° + 2* + 23 + 21)
=Mx (27 —22+22-21)

Booth’s algorithm conforms to this scheme by performing a subtraction when the
first 1 of the block is encountered (1-0) and an addition when the end of the block
is encountered (0-1).

To show that the same scheme works for a negative multiplier, we need to
observe the following. Let X be a negative number in twos complement notation:

Representation of X = {1x, »x,-3... X1xg}
Then the value of X can be expressed as follows:
X ==2""1 4 (0 X 27 + (x,03 X 2P 4+ -0 (xp X 2D + (% X 2°) (10.4)

The reader can verify this by applying the algorithm to the numbers in Table 10.2.
The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is
in the kth position. Thus, X is of the form

Representation of X = {111 ... 10x;_1x5—5... X1Xo} (10.5)

Then the value of X is
X==-2142m2 4 o0 42K (e X2 + o+ (o X 27 (10.6)
From Equation (10.3), we can say that

2n72 + 2n73 o+ 2k71 — 2n71 _ 2k71

10.3 / INTEGER ARITHMETIC 347

Rearranging
—on=lpogn=2 poon=3 L. gkl = ok (10.7)
Substituting Equation (10.7) into Equation (10.6), we have
X =214 (o X 2K + oo+ (x9 X 20) (10.8)

At last we can return to Booth’s algorithm. Remembering the representation
of X [Equation (10.5)], it is clear that all of the bits from x; up to the leftmost 0
are handled properly because they produce all of the terms in Equation (10.8) but
(— 2¥*1) and thus are in the proper form. As the algorithm scans over the leftmost
0 and encounters the next 1 (2¢™1), a 1-0 transition occurs and a subtraction takes
place (— 2%1). This is the remaining term in Equation (10.8).

As an example, consider the multiplication of some multiplicand by (—6). In twos
complement representation, using an 8-bit word, (—6) is represented as 11111010. By
Equation (10.4), we know that

—6=-2"+25+2 +2"+2° + 2t
which the reader can easily verify. Thus,
M X (11111010) = M X (=27 + 26 + 2° + 2% + 23 + 2})
Using Equation (10.7),
M X (11111010) = M X (=23 + 21)

which the reader can verify is still M X (—6). Finally, following our earlier line of
reasoning,

M X (11111010) = M x (=23 + 22 — 21)

We can see that Booth’s algorithm conforms to this scheme. It performs a sub-
traction when the first 1 is encountered (10), an addition when (01) is encountered,
and finally another subtraction when the first 1 of the next block of 1s is encoun-
tered. Thus, Booth’s algorithm performs fewer additions and subtractions than a
more straightforward algorithm.

Division
Division is somewhat more complex than multiplication but is based on the same
general principles. As before, the basis for the algorithm is the paper-and-pencil
approach, and the operation involves repetitive shifting and addition or subtraction.
Figure 10.15 shows an example of the long division of unsigned binary inte-
gers. It is instructive to describe the process in detail. First, the bits of the dividend
are examined from left to right, until the set of bits examined represents a number
greater than or equal to the divisor; this is referred to as the divisor being able to
divide the number. Until this event occurs, Os are placed in the quotient from left

to right. When the event occurs, a 1 is placed in the quotient and the divisor is sub-
tracted from the partial dividend. The result is referred to as a partial remainder.

348 CHAPTER 10 / COMPUTER ARITHMETIC

00001101 <—— Quotient

Divisor ———- 1011/10010011 <—— Dividend
1011Y
001110

T
Partial QUL

remainders LI
100 <—— Remainder

Figure 10.15 Example of Division of Unsigned
Binary Integers

From this point on, the division follows a cyclic pattern. At each cycle, additional
bits from the dividend are appended to the partial remainder until the result is
greater than or equal to the divisor. As before, the divisor is subtracted from this
number to produce a new partial remainder. The process continues until all the bits
of the dividend are exhausted.

Figure 10.16 shows a machine algorithm that corresponds to the long division
process. The divisor is placed in the M register, the dividend in the Q register. At

START

A0
M < Divisor

Q < Dividend
Count < n

Shift left
A Q

Count < Count — 1

Quotient in Q
Remainder in A

Figure 10.16 Flowchart for Unsigned Binary Division

10.3 / INTEGER ARITHMETIC 349

A Q
0000 0111 Initial value
0000 1110 Shift
1101 Use twos complement of 0011 for subtraction
1101 Subtract
0000 1110 Restore, set Qy =0
0001 1100 Shift
1101
1110 Subtract
0001 1100 Restore, set Qy =0
0011 1000 Shift
1101
0000 1001 Subtract, set Q) =1
0001 0010 Shift
1101
1110 Subtract
0001 0010 Restore, set Qy=0

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

each step, the A and Q registers together are shifted to the left 1 bit. M is subtracted
from A to determine whether A divides the partial remainder.’ If it does, then Q,
gets a 1 bit. Otherwise, Qg gets a 0 bit and M must be added back to A to restore the
previous value. The count is then decremented, and the process continues for 7 steps.
At the end, the quotient is in the Q register and the remainder is in the A register.

This process can, with some difficulty, be extended to negative numbers. We
give here one approach for twos complement numbers. An example of this approach
is shown in Figure 10.17.

The algorithm assumes that the divisor V and the dividend D are positive
and that |V| < |D|. If |V| = | D|, then the quotient Q = 1 and the remainder
R =0.1f |V| > |D|, then Q = 0 and R = D. The algorithm can be summarized
as follows:

1. Load the twos complement of the divisor into the M register; that is, the M
register contains the negative of the divisor. Load the dividend into the A, Q
registers. The dividend must be expressed as a 2n-bit positive number. Thus,
for example, the 4-bit 0111 becomes 00000111.

2. Shift A, Q left 1 bit position.

3. Perform A <= A — M. This operation subtracts the divisor from the contents
of A.

4. a. Ifthe result is nonnegative (most significant bit of A = 0), then set Qg < 1.
b. If the result is negative (most significant bit of A = 1), then set Q, <— 0. and
restore the previous value of A.

5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
6. The remainder is in A and the quotient is in Q.

3This is subtraction of unsigned integers. A result that requires a borrow out of the most significant bit is
a negative result.

350 CHAPTER 10 / COMPUTER ARITHMETIC

To deal with negative numbers, we recognize that the remainder is defined by
D=QXV+R

That is, the remainder is the value of R needed for the preceding equation to
be valid. Consider the following examples of integer division with all possible com-
binations of signs of D and V:

D=7 V=3 = Q=2 R=1
D=7 V=-3 = Q=-2 R=1
D=-7 V=3 = (Q=-2 R=-1

D=-7 V=-3 = Q=2 R=-1

The reader will note from Figure 10.17 that (—7)/(3) and (7)/(—3) produce
different remainders. We see that the magnitudes of Q and R are unaffected by the
input signs and that the signs of Q and R are easily derivable from the signs of D and
V. Specifically, sign(R) = sign(D) and sign(Q) = sign(D) X sign(V). Hence, one
way to do twos complement division is to convert the operands into unsigned values
and, at the end, to account for the signs by complementation where needed. This is
the method of choice for the restoring division algorithm [PARH10].

10.4 FLOATING-POINT REPRESENTATION

Principles

With a fixed-point notation (e.g., twos complement) it is possible to represent a
range of positive and negative integers centered on or near 0. By assuming a fixed
binary or radix point, this format allows the representation of numbers with a frac-
tional component as well.

This approach has limitations. Very large numbers cannot be represented, nor
can very small fractions. Furthermore, the fractional part of the quotient in a div-
ision of two large numbers could be lost.

For decimal numbers, we get around this limitation by using scientific
notation. Thus, 976,000,000,000,000 can be represented as 9.76 X 10", and
0.0000000000000976 can be represented as 9.76 X 107, What we have done, in
effect, is dynamically to slide the decimal point to a convenient location and use the
exponent of 10 to keep track of that decimal point. This allows a range of very large
and very small numbers to be represented with only a few digits.

This same approach can be taken with binary numbers. We can represent a
number in the form

+S x B*E
This number can be stored in a binary word with three fields:

= Sign: plus or minus
m Significand S
= Exponent E

10.4 / FLOATING-POINT REPRESENTATION 351

Sign of
significand 8 bits 23 bits
[* | Biased exponent Significand
(a) Format
1.1010001 x 2% = 0 10010011 10100010000000000000000 = 1.6328125 x 22°
-1.1010001 x 2199 =1 10010011 10100010000000000000000 = -1.6328125 x 22%°
1.1010001 x 279199 = 0 01101011 10100010000000000000000 = 1.6328125 x 272°
-1.1010001 x 271919 =1 01101011 10100010000000000000000 = -1.6328125 x 2°2°

(b) Examples
Figure 10.18 Typical 32-Bit Floating-Point Format

The base B is implicit and need not be stored because it is the same for all numbers.
Typically, it is assumed that the radix point is to the right of the leftmost, or most
significant, bit of the significand. That is, there is one bit to the left of the radix point.

The principles used in representing binary floating-point numbers are best
explained with an example. Figure 10.18a shows a typical 32-bit floating-point for-
mat. The leftmost bit stores the sign of the number (0 = positive, 1 = negative).
The exponent value is stored in the next 8 bits. The representation used is known as
a biased representation. A fixed value, called the bias, is subtracted from the field
to get the true exponent value. Typically, the bias equals (2¢~! — 1), where k is the
number of bits in the binary exponent. In this case, the 8-bit field yields the numbers
0 through 255. With a bias of 127 (27 — 1), the true exponent values are in the range
—127 to +128. In this example, the base is assumed to be 2.

Table 10.2 shows the biased representation for 4-bit integers. Note that when
the bits of a biased representation are treated as unsigned integers, the relative mag-
nitudes of the numbers do not change. For example, in both biased and unsigned
representations, the largest number is 1111 and the smallest number is 0000. This is
not true of sign-magnitude or twos complement representation. An advantage of
biased representation is that nonnegative floating-point numbers can be treated as
integers for comparison purposes.

The final portion of the word (23 bits in this case) is the significand.4

Any floating-point number can be expressed in many ways.

The following are equivalent, where the significand is expressed in binary form:

0.110 x 2°
110 x 22
0.0110 x 2°

To simplify operations on floating-point numbers, it is typically required that they
be normalized. A normal number is one in which the most significant digit of the

“The term mantissa, sometimes used instead of significand, is considered obsolete. Mantissa also means
“the fractional part of a logarithm,” so is best avoided in this context.

352 CHAPTER 10 / COMPUTER ARITHMETIC

significand is nonzero. For base 2 representation, a normal number is therefore one
in which the most significant bit of the significand is one. As was mentioned, the
typical convention is that there is one bit to the left of the radix point. Thus, a nor-
mal nonzero number is one in the form

+1bbb... b x 2*E

where b is either binary digit (0 or 1). Because the most significant bit is always one,
it is unnecessary to store this bit; rather, it is implicit. Thus, the 23-bit field is used to
store a 24-bit significand with a value in the half open interval [1, 2). Given a num-
ber that is not normal, the number may be normalized by shifting the radix point to
the right of the leftmost 1 bit and adjusting the exponent accordingly.

Figure 10.18b gives some examples of numbers stored in this format. For each
example, on the left is the binary number; in the center is the corresponding bit pat-
tern; on the right is the decimal value. Note the following features:

m The sign is stored in the first bit of the word.

m The first bit of the true significand is always 1 and need not be stored in the
significand field.

m The value 127 is added to the true exponent to be stored in the exponent field.
m The base is 2.

For comparison, Figure 10.19 indicates the range of numbers that can be rep-
resented in a 32-bit word. Using twos complement integer representation, all of the
integers from —23! to 23! —1 can be represented, for a total of 23 different num-
bers. With the example floating-point format of Figure 10.18, the following ranges
of numbers are possible:

= Negative numbers between —(2 — 272%) X 212 and —271%

® Positive numbers between 27?7 and (2 — 272%) x 2128

Expressible integers

A

| | | Number

3 0 231 _ 1 line
(a) Twos complement integers
Negative Positive
underflow underflow
Negative Expressible negative Expressible positive Positive
overflow numbers numbers overflow

(\—A/ﬂ Zero

V | | V Number

—(2—27B)x 2128 _p-127 0 9127 (2 —275) x 2128 line
(b) Floating-point numbers

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats

10.4 / FLOATING-POINT REPRESENTATION 353

Five regions on the number line are not included in these ranges:

= Negative numbers less than — (2 — 2723) x 2! called negative overflow

127

m Negative numbers greater than 27/, called negative underflow

m Zero

2—127

m Positive numbers less than , called positive underflow

= Positive numbers greater than (2 — 272%) X 2!28 called positive overflow

The representation as presented will not accommodate a value of 0. How-
ever, as we shall see, actual floating-point representations include a special bit
pattern to designate zero. Overflow occurs when an arithmetic operation results
in an absolute value greater than can be expressed with an exponent of 128
(e.g., 220 x 2100 = 2220y Underflow occurs when the fractional magnitude is too
small (e.g., 27120 x 27190 = 27220 Underflow is a less serious problem because the
result can generally be satisfactorily approximated by 0.

It is important to note that we are not representing more individual values
with floating-point notation. The maximum number of different values that can be
represented with 32 bits is still 2°2. What we have done is to spread those numbers
out in two ranges, one positive and one negative. In practice, most floating-point
numbers that one would wish to represent are represented only approximately.
However, for moderate sized integers, the representation is exact.

Also, note that the numbers represented in floating-point notation are not
spaced evenly along the number line, as are fixed-point numbers. The possible val-
ues get closer together near the origin and farther apart as you move away, as shown
in Figure 10.20. This is one of the trade-offs of floating-point math: Many calcula-
tions produce results that are not exact and have to be rounded to the nearest value
that the notation can represent.

In the type of format depicted in Figure 10.18, there is a trade-off between
range and precision. The example shows 8 bits devoted to the exponent and 23 to
the significand. If we increase the number of bits in the exponent, we expand the
range of expressible numbers. But because only a fixed number of different values
can be expressed, we have reduced the density of those numbers and therefore the
precision. The only way to increase both range and precision is to use more bits.
Thus, most computers offer, at least, single-precision numbers and doublepreci-
sion numbers. For example, a processor could support a single-precision format of
64 bits, and a double-precision format of 128 bits.

So there is a trade-off between the number of bits in the exponent and the
number of bits in the significand. But it is even more complicated than that. The
implied base of the exponent need not be 2. The IBM S/390 architecture, for
example, uses a base of 16 [ANDEG67b]. The format consists of a 7-bit exponent and
a 24-bit significand.

B e

-n 0 n 2n 4n

Figure 10.20 Density of Floating-Point Numbers

354 CHAPTER 10 / COMPUTER ARITHMETIC

In the IBM base-16 format,
0.11010001 x 210100 — (11010001 X 16'™

and the exponent is stored to represent 5 rather than 20.

The advantage of using a larger exponent is that a greater range can be
achieved for the same number of exponent bits. But remember, we have not
increased the number of different values that can be represented. Thus, for a fixed
format, a larger exponent base gives a greater range at the expense of less precision.

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754,
adopted in 1985 and revised in 2008. This standard was developed to facilitate the
portability of programs from one processor to another and to encourage the devel-
opment of sophisticated, numerically oriented programs. The standard has been
widely adopted and is used on virtually all contemporary processors and arithmetic
coprocessors. IEEE 754-2008 covers both binary and decimal floating-point repre-
sentations. In this chapter, we deal only with binary representations.

IEEE 754-2008 defines the following different types of floating-point formats:

= Arithmetic format: All the mandatory operations defined by the standard are
supported by the format. The format may be used to represent floating-point
operands or results for the operations described in the standard.

= Basic format: This format covers five floating-point representations, three
binary and two decimal, whose encodings are specified by the standard, and
which can be used for arithmetic. At least one of the basic formats is imple-
mented in any conforming implementation.

= Interchange format: A fully specified, fixed-length binary encoding that allows
data interchange between different platforms and that can be used for storage.

The three basic binary formats have bit lengths of 32, 64, and 128 bits, with
exponents of 8, 11, and 15 bits, respectively (Figure 10.21). Table 10.3 summarizes
the characteristics of the three formats. The two basic decimal formats have bit
lengths of 64 and 128 bits. All of the basic formats are also arithmetic format types
(can be used for arithmetic operations) and interchange format types (platform
independent).

Several other formats are specified in the standard. The binaryl6 format is
only an interchange format and is intended for storage of values when higher pre-
cision is not required. The binary{k} format and the decimal{k} format are inter-
change formats with total length k bits and with defined lengths for the significand
and exponent. The format must be a multiple of 32 bits; thus formats are defined for
k = 160, 192, and so on. These two families of formats are also arithmetic formats.

In addition, the standard defines extended precision formats, which
extend a supported basic format by providing additional bits in the exponent
(extended range) and in the significand (extended precision). The exact format

10.4 / FLOATING-POINT REPRESENTATION 355

Sign Biased
bit , exponent
L4

Trailing
significand field

8 bits 23 bits
(a) Binary32 format

Sign Biased
bit ,exponent
I

Trailing significand field

11 bits 52 bits
(b) Binary64 format

Sign
bit
Biased Trailing significand field
exponent
15 bits 112 bits

(c) Binary128 format
Figure 10.21 IEEE 754 Formats

is implementation dependent, but the standard places certain constraints on the
length of the exponent and significand. These formats are arithmetic format types
but not interchange format types. The extended formats are to be used for inter-
mediate calculations. With their greater precision, the extended formats lessen the

Table 10.3 IEEE 754 Format Parameters

Format
Parameter

Binary32 Binary64 Binary128
Storage width (bits) 32 64 128
Exponent width (bits) 8 11 15
Exponent bias 127 1023 16383
Maximum exponent 127 1023 16383
Minimum exponent —126 —1022 —16382
Approx normal number range 10738, 10*38 107308, 1(+308 1074932, 14932
(base 10)
Trailing significand width (bits)* 23 52 112
Number of exponents 254 2046 32766
Number of fractions 223 252 pl12
Number of values 1.98 x 2% 1.99 x 2% 1.99 x 2!%
Smallest positive normal number 2126 p—1022 016362
Largest positive normal number 2128 _ o104 21024 _ 5971 216384 _ 516271
Smallest subnormal magnitude 2149 p~1074 216494

Note: * Not including implied bit and not including sign bit.

356 CHAPTER 10 / COMPUTER ARITHMETIC

chance of a final result that has been contaminated by excessive roundoff error;
with their greater range, they also lessen the chance of an intermediate overflow
aborting a computation whose final result would have been representable in a basic
format. An additional motivation for the extended format is that it affords some
of the benefits of a larger basic format without incurring the time penalty usually
associated with higher precision.

Finally, IEEE 754-2008 defines an extendable precision format as a format
with a precision and range that are defined under user control. Again, these formats
may be used for intermediate calculations, but the standard places no constraint or
format or length.

Table 10.4 shows the relationship between defined formats and format types.

Not all bit patterns in the IEEE formats are interpreted in the usual way;
instead, some bit patterns are used to represent special values. Table 10.5 indicates
the values assigned to various bit patterns. The exponent values of all zeros (0 bits)
and all ones (1 bits) define special values. The following classes of numbers are
represented:

m For exponent values in the range of 1 through 254 for 32-bit format, 1 through
2046 for 64-bit format, and 1 through 16382, normal nonzero floating-point
numbers are represented. The exponent is biased, so that the range of expo-
nents is — 126 through +127 for 32-bit format, and so on. A normal number
requires a 1 bit to the left of the binary point; this bit is implied, giving an effec-
tive 24-bit, 53-bit, or 113-bit significand. Because one of the bits is implied, the
corresponding field in the binary format is referred to as the trailing signifi-
cand field.

= An exponent of zero together with a fraction of zero represents positive or
negative zero, depending on the sign bit. As was mentioned, it is useful to have
an exact value of 0 represented.

Table 10.4 IEEE Formats

Format Type
Format
Arithmetic Format Basic Format Interchange Format

binary16 X
binary32 X X X
binary64 X X X
binary128 X X X
binary{k} X X
(k=nX32forn>4)

decimal64 X X X
decimal128 X X X
decimal{k} X X
(k=nX32forn>4)

extended precision X

extendable precision X

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers

10.4 / FLOATING-POINT REPRESENTATION 357

(a) binary32 format
Sign Biased Exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 =
plus infinity 0 all 1s 0 o
minus infinity 1 all 1s 0 —®
quiet NaN Oor1l all 1s # 0; first bit = 1 gNaN
signaling NaN Oor1l all 1s # 0; first bit = 0 sNaN
positive normal nonzero 0 0<e<225 f 2¢7127(1.£)
negative normal nonzero 1 0<e<225 f —2¢7127(1.f)
positive subnormal 0 0 f#0 2¢7126(0.£)
negative subnormal 1 0 f#0 _2e*126(0.f)
(b) binary64 format
Sign Biased Exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 =)
plus infinity 0 all 1s 0 ©
minus infinity 1 all 1s 0 —o
quiet NaN Oor1l all 1s # 0; first bit = 1 gNaN
signaling NaN Oorl all 1s # 0; first bit = 0 sNaN
positive normal nonzero 0 0 <e <2047 f 22~ W))
negative normal nonzero 1 0 < e <2047 f —2e71023(7)
positive subnormal 0 0 f#0 2¢71022(() f)
negative subnormal 1 0 f#0 —2¢71022(() £
(c) binary128 format
Sign Biased Exponent Fraction Value
positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 %
minus infinity 1 all 1s 0 —®©
quiet NaN Oorl all 1s # 0; first bit = 1 qNaN
signaling NaN Oorl all 1s # 0; first bit = 0 sNaN
positive normal nonzero 0 all 1s f 2= W] {7)
negative normal nonzero 1 all 1s f —2¢710383(1 £)
positive subnormal 0 0 f#0 2¢716383(())
negative subnormal 1 0 f+#0 —2¢710383(().£)

358 CHAPTER 10 / COMPUTER ARITHMETIC

= An exponent of all ones together with a fraction of zero represents positive or
negative infinity, depending on the sign bit. It is also useful to have a represen-
tation of infinity. This leaves it up to the user to decide whether to treat over-
flow as an error condition or to carry the value o and proceed with whatever
program is being executed.

= An exponent of zero together with a nonzero fraction represents a subnormal
number. In this case, the bit to the left of the binary point is zero and the true
exponentis —126 or —1022. The number is positive or negative depending on
the sign bit.

= An exponent of all ones together with a nonzero fraction is given the value
NaN, which means Not a Number, and is used to signal various exception
conditions.

The significance of subnormal numbers and NaNss is discussed in Section 10.5.

10.5 FLOATING-POINT ARITHMETIC

Table 10.6 summarizes the basic operations for floating-point arithmetic. For addi-
tion and subtraction, it is necessary to ensure that both operands have the same
exponent value. This may require shifting the radix point on one of the operands to
achieve alignment. Multiplication and division are more straightforward.

A floating-point operation may produce one of these conditions:

= Exponent overflow: A positive exponent exceeds the maximum possible expo-
nent value. In some systems, this may be designated as +% or —o.

= Exponent underflow: A negative exponent is less than the minimum possible
exponent value (e.g., —200 is less than —127). This means that the number is
too small to be represented, and it may be reported as 0.

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating-Point Numbers Arithmetic Operations
X = X X BXe X+ Y= (Xg X BX Ve 4+ Yg) X B e
Y=YS><BYE X*Y=(XSXBX57Y57YS)XBYE E=TE

X XY= (Xg X Yg) X BXetYe

{ = (&) X BXe=Ye
Y Y

Examples:

X =03 X 10> =30

Y =02 % 10° = 200

X+ Y =(03X10*3+02) X 10° = 023 x 10°> = 230
X-Y=(03%x103-02)x10>=(- 0.17) X 10° = =170
X XY =(03X%X02)x 10> = 0.06 x 10° = 6000
X+Y=(03+02)x10>3=15%x10"=0.15

10.5 / FLOATING-POINT ARITHMETIC 359

= Significand underflow: In the process of aligning significands, digits may flow
off the right end of the significand. As we will discuss, some form of rounding
is required.

= Significand overflow: The addition of two significands of the same sign may
result in a carry out of the most significant bit. This can be fixed by realign-
ment, as we will explain.

Addition and Subtraction

In floating-point arithmetic, addition and subtraction are more complex than multi-
plication and division. This is because of the need for alignment. There are four basic
phases of the algorithm for addition and subtraction:

1. Check for zeros.

)

. Align the significands.

w9

. Add or subtract the significands.

F N

. Normalize the result.

A typical flowchart is shown in Figure 10.22. A step-by-step narrative high-
lights the main functions required for floating-point addition and subtraction. We
assume a format similar to those of Figure 10.21. For the addition or subtraction
operation, the two operands must be transferred to registers that will be used by the
ALU. If the floating-point format includes an implicit significand bit, that bit must
be made explicit for the operation.

Phase 1. Zero check: Because addition and subtraction are identical except
for a sign change, the process begins by changing the sign of the subtrahend if
it is a subtract operation. Next, if either operand is 0, the other is reported as
the result.

Phase 2. Significand alignment: The next phase is to manipulate the numbers
so that the two exponents are equal.

To see the need for aligning exponents, consider the following decimal addition:
(123 x 10°) + (456 X 1072)

Clearly, we cannot just add the significands. The digits must first be set into equivalent
positions, that is, the 4 of the second number must be aligned with the 3 of the first. Under
these conditions, the two exponents will be equal, which is the mathematical condition
under which two numbers in this form can be added. Thus,

(123 X 10°%) + (456 x 1072) = (123 X 10%) + (4.56 x 10°) = 127.56 X 10°

Alignment may be achieved by shifting either the smaller number to the right
(increasing its exponent) or shifting the larger number to the left. Because either
operation may result in the loss of digits, it is the smaller number that is shifted;
any digits that are lost are therefore of relatively small significance. The alignment

09¢

Yes

Exponents

Change
sign of Y
No
No
X =0? =0?
Yes Yes

Figure 10.22 Floating-Point Addition and Subtraction (Z< X £ Y)

equal?

Nol

Increment
smaller
exponent

Shift
significand

right

——<_Significand

=0?

Yes

Put other
number in Z

Add
signed
significands

Significand

Significand
overflow?

Shift
significand
left

Decrement
exponent

Shift
significand
right

Exponent
underflow?

Increment
exponent

Report
underflow

Report
overflow

Exponent
overflow?

Round
result

10.5 / FLOATING-POINT ARITHMETIC 361

is achieved by repeatedly shifting the magnitude portion of the significand right
1 digit and incrementing the exponent until the two exponents are equal. (Note
that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If this process
results in a 0 value for the significand, then the other number is reported as the
result. Thus, if two numbers have exponents that differ significantly, the lesser
number is lost.

Phase 3. Addition: Next, the two significands are added together, taking into
account their signs. Because the signs may differ, the result may be 0. There
is also the possibility of significand overflow by 1 digit. If so, the significand
of the result is shifted right and the exponent is incremented. An exponent
overflow could occur as a result; this would be reported and the operation
halted.

Phase 4. Normalization: The final phase normalizes the result. Normalization
consists of shifting significand digits left until the most significant digit (bit, or
4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the
exponent and thus could cause an exponent underflow. Finally, the result must
be rounded off and then reported. We defer a discussion of rounding until after
a discussion of multiplication and division.

Multiplication and Division

Floating-point multiplication and division are much simpler processes than addition
and subtraction, as the following discussion indicates.

We first consider multiplication, illustrated in Figure 10.23. First, if either
operand is 0, 0 is reported as the result. The next step is to add the exponents. If
the exponents are stored in biased form, the exponent sum would have doubled
the bias. Thus, the bias value must be subtracted from the sum. The result could
be either an exponent overflow or underflow, which would be reported, ending the
algorithm.

If the exponent of the product is within the proper range, the next step is to
multiply the significands, taking into account their signs. The multiplication is per-
formed in the same way as for integers. In this case, we are dealing with a sign-
magnitude representation, but the details are similar to those for twos complement
representation. The product will be double the l