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CHAPTER TWO
CURRENT DIRECTION
The particles that carry charge through wires in a circuit are mobile electrons. The electric field direction within a circuit is by definition the direction that positive test charges are pushed. Thus, these negatively charged electrons move in the direction opposite the electric field. But while electrons are the charge carriers in metal wires, the charge carriers in other circuits can be positive charges, negative charges or both. In fact, the charge carriers in semiconductors, street lamps and fluorescent lamps are simultaneously both positive and negative charges traveling in opposite directions. 
Ben Franklin, who conducted extensive scientific studies in both static and current electricity, envisioned positive charges as the carriers of charge. As such, an early convention for the direction of an electric current was established to be in the direction that positive charges would move. The convention has stuck and is still used today. 
[image: ]
The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery. Electrons would actually move through the wires in the opposite direction. Knowing that the actual charge carriers in wires are negatively charged electrons may make this convention seem a bit odd and outdated. 




DC CIRCUITS
KIRCHHOFF’S LAWS

Kirchhoff’s laws were first introduced in 1847 by the German physicist Gustav Robert Kirchhoff (1824–1887). These laws are formally known as Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).
Kirchhoff’s current law (KCL):  States that the algebraic sum of currents entering a node (or a closed boundary) is zero.
	Mathematically, KCL implies that
[image: ]
where N is the number of branches connected to the node and in is the nth current entering (or leaving) the node. By this law, currents entering a node may be regarded as positive, while currents leaving the node may be taken as negative or vice versa.

	Consider the node in Figure shown below. Applying KCL gives
[image: ]
since currents i1, i3, and i4 are entering the node, while currents i2 and i5 are leaving it. By rearranging the terms, we get 
i1 + i3 + i4 = i2 + i5-------------------------(1)
Equation (1) is an alternative form of KCL:
The sum of the currents entering a node is equal to the sum of the currents leaving the node.

	A simple application of KCL is combining current sources in parallel. The combined current is the algebraic sum of the current supplied by the individual sources. For example, the current sources shown in Figure 1 (a) can be combined as in Figure 1(b). The combined or equivalent current source can be found by applying KCL to node a.
IT + I2 = I1 + I3
IT = I1 − I2 + I3
[image: ]
Figure 1(a)
[image: ]
Figure 1(b)
A circuit cannot contain two different currents, I1 and I2, in series, unless I1 = I2; otherwise KCL will be violated.
Kirchhoff’s voltage law (KVL): States that the algebraic sum of all voltages around a closed path (or loop) is zero.
Expressed mathematically, KVL states that
[image: ]
Where M is the number of voltages in the loop (or the number of branches in the loop) and vm is the mth voltage.

Note: Kirchhoff’s second law is based on the principle of conservation of energy:
	To illustrate KVL, consider the circuit in Figure 2. The sign on each voltage is the polarity of the terminal encountered first as we travel around the loop. We can start with any branch and go around the loop either clockwise or counterclockwise. 
Suppose we start with the voltage source and go clockwise around the loop as shown; then voltages would be −v1,+v2,+v3,−v4, and +v5, in that order. For example, as we reach branch 3, the positive terminal is met first; hence we have+v3. 
For branch 4, we reach the negative terminal first; hence, −v4. Thus, KVL yields 
−v1 + v2 + v3 − v4 + v5 = 0-------------(2)
[image: ]
Figure 2: A single-loop circuit illustrating KVL.
which may be interpreted as
v2 + v3 + v5 = v1 + v4--------------------(3)
which may be interpreted as
sum of the voltage drops=sum of the voltage rises
	When voltage sources are connected in series, KVL can be applied to obtain the total voltage. The combined voltage is the algebraic sum of the voltages of the individual sources. For example, for the voltage sources shown in Figure 3(a), the combined or equivalent voltage source in Figure 3(b) is obtained by applying KVL.
−Vab + V1 + V2 − V3 = 0
(or)
Vab = V1 + V2 − V3-------------------------(4)

[image: ]
(a)                                (b)
Figure 3: Voltage sources in series: (a) original circuit, (b) equivalent circuit.

Example: 
For the circuit in Figure (a), find voltages v1 and v2.
[image: ]
Solution:
To find v1 and v2, we apply Ohm’s law and Kirchhoff’s voltage law. Assume that current i flows through the loop as shown in Fig. 2.21(b). From Ohm’s law,
v1 = 2i, v2 = −3i-----------(1)
Applying KVL around the loop gives
−20 + v1 − v2 = 0------------(2)
Substituting i in Eq. 1 finally gives
v1 = 8 V, v2 = −12 V

Exercise: Find v1 and v2 in the circuit of Figure shown below.
Answer: 12 V, −6 V.

[image: ]
Problem: Determine vo and i in the circuit shown in below.
[image: ]
Solution:
[image: ]



We apply KVL around the loop as shown in Fig. 2.23(b). The result is
−12 + 4i + 2vo − 4 + 6i = 0 (1)
Applying Ohm’s law to the 6-_ resistor gives
vo = −6i (2)
Substituting Eq. (2) into Eq. (1) yields
−16 + 10i − 12i = 0 	⇒ i = −8 A
and vo = 48 V.
Exercise: Find vx and vo in the circuit of Figure shown below.
     
Answer: 10 V, −5 V.


[image: ]

Problem: Find current io and voltage vo in the circuit shown in Figure below.

[image: ]
Solution:
Applying KCL to node a, we obtain
3 + 0.5io = io 	⇒ io = 6 A
For the 4Ω resistor, Ohm’s law gives
vo = 4io = 24 V
Exercise: Find vo and io in the circuit of Figure shown in below.

Answer: 8 V, 4 A.
[image: ]
Problem: Find the currents and voltages in the circuit shown in Figure (a) below.
[image: ]
(a)



Solution:
[image: ]
We apply Ohm’s law and Kirchhoff’s laws. By Ohm’s law,
v1 = 8i1, v2 = 3i2, v3 = 6i3 (1)
Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are really looking for three things: (v1, v2, v3) or (i1, i2, i3). At node a, KCL gives
i1 − i2 − i3 = 0 (2)
Applying KVL to loop 1 as in Figure (b),
−30 + v1 + v2 = 0
We express this in terms of i1 and i2 as in Eq. (2.8.1) to obtain
−30 + 8i1 + 3i2 = 0
or
[image: ]      (3)
Applying KVL to loop 2,
−v2 + v3 = 0 	⇒ v3 = v2    (4)
as expected since the two resistors are in parallel. We express v1 and v2 in terms of i1 and i2 as in Eq. (1). Equation (4) becomes
6i3 = 3i2 	⇒ i3 = i2/2     (5)
Substituting Eqs. (3) and (5) into (2) gives
[image: ]
or 
i2 = 2 A. From the value of i2, we now use Eqs. (1) to (5) to obtain
i1 = 3 A, i3 = 1 A, v1 = 24 V, v2 = 6 V, v3 = 6 V.
Exercise: Find the currents and voltages in the circuit shown in Figure below.

Answer: v1 = 3 V, v2 = 2 V, v3 = 5 V, i1 = 1.5 A, i2 = 0.25 A,
i3 =1.25 A.
[image: ]
SERIES RESISTORS AND VOLTAGE DIVISION:

The need to combine resistors in series or in parallel occurs so frequently that it warrants special attention. The process of combining the resistors is facilitated by combining two of them at a time. With this in mind, consider the single-loop circuit of Figure 4. The two resistors are in series, since the same current i flows in both of them. Applying Ohm’s law to each of the resistors, we obtain
v1 = iR1, v2 = iR2 (1)
If we apply KVL to the loop (moving in the clockwise direction), we have
−v + v1 + v2 = 0 (2)
[image: ]
Figure 4: A single-loop circuit with two resistors in series.
Combining Eqs. (1) and (2), we get
v = v1 + v2 = i(R1 + R2)      (3)
or
[image: ]

Notice that Eq. (3) can be written as
v = iReq                 (4)
implying that the two resistors can be replaced by an equivalent resistor Req; that is,
Req = R1 + R2             (5)
[image: ] 
Figure: Equivalent circuit of the Figure 4 circuit.
Note: The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances.
For N resistors in series then,
[image: ]
To determine the voltage across each resistor in Figure 4.

[image: ]
Notice that the source voltage v is divided among the resistors in direct proportion to their resistances; the larger the resistance, the larger the voltage drop. This is called the principle of voltage division, and the circuit in Figure 4 is called a voltage divider.
In general, if a voltage divider hasN resistors (R1,R2, . . . , RN) in series with the source voltage v, the nth resistor (Rn) will have a voltage drop of
[image: ]
PARALLEL RESISTORS AND CURRENT DIVISION:
Consider the circuit in Figure 5, where two resistors are connected in parallel and therefore have the same voltage across them. From Ohm’s law,
v = i1R1 = i2R2
(or)
[image: ]        (1)
[image: ]
Figure 5: Two resistors in parallel.
Applying KCL at node a gives the total current i as
i = i1 + i2 (2.34) 
Substituting Eq. (2.33) into Eq. (2.34), we get
[image: ](2)
where Req is the equivalent resistance of the resistors in parallel:
[image: ]    (6)

Or
[image: ]
Or
[image: ]
The equivalent resistance of two parallel resistors is equal to the product of their resistances divided by their sum.
if N resisters are in parallel, the equivalent resistance is 
[image: ]
Given the total current i entering node a in Figure 5, how do we obtain current i1 and i2? We know that the equivalent resistor has the same voltage, or
[image: ]    (3)
Combining Eqs. (1) and (3) results in
[image: ]
which shows that the total current i is shared by the resistors in inverse proportion to their resistances. This is known as the principle of current division, and the circuit in Figure 5, is known as a current divider. Notice that the larger current flows through the smaller resistance.
[image: ]
Figure 6: Equivalent circuit to figure 5.
Problem: Find Req for the circuit shown in Figure.
[image: ]
Solution: To get Req, we combine resistors in series and in parallel. The 6Ω and 3 Ω resistors are in parallel, so their equivalent resistance is
[image: ]
(The symbol “║” is used to indicate a parallel combination.) Also, the 1Ω and 5Ω resistors are in series; hence their equivalent resistance is
1Ω + 5 Ω = 6 Ω
Thus the circuit shown above is reduced to that in Figure (a).
[image: ]

In Figure (a), we notice that the two 2Ω resistors are in series, so the equivalent resistance is
2Ω + 2Ω = 4Ω
This 4Ω resistor is now in parallel with the 6Ω resistor in Figure (a); their equivalent resistance is

[image: ]
The circuit in Figure (a) is now replaced with that in Figure (b). In Figure (b), the three resistors are in series. Hence, the equivalent resistance for the circuit is

[image: ]
[image: ]


Exercise: By combining the resistors in Figure shown below, find Req.

[image: ]
Answer: 6Ω	
Problem: Calculate the equivalent resistance Rab in the circuit in Figure (a) below.
[image: ]
Figure (a)
Solution: 
The 3Ω and 6Ω resistors are in parallel because they are connected to the same two nodes c and b. Their combined resistance is
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Similarly, the 12 Ω and 4 Ω resistors are in parallel since they are connected to the same two nodes d and b. Hence
[image: ]
Also the 1 Ω and 5Ω resistors are in series; hence, their equivalent resistance is 
[image: ]
With these three combinations, we can replace the circuit in Figure (a) with that in Figure (b).  
[image: ]
Figure (b)
In figure (b) 3 Ω in parallel with 6 Ω gives 2 Ω.  This 2 Ω equivalent resistance is now in series with the 1 Ω resistance to give a combined resistance of 1 Ω +2 Ω = 3 Ω. Thus, we replace the circuit in Figure (b) with that in Figure (c). 
[image: ]
Figure (c)
In Figure (c), we combine the 2 Ω and 3 Ω resistors in parallel to get
[image: ]
This 1.2 Ω resistor is in series with the 10 Ω resistor, so that

[image: ]
NODAL ANALYSIS:
Nodal analysis provides a general procedure for analyzing circuits using node voltages as the circuit variables. Choosing node voltages instead of element voltages as circuit variables is convenient and reduces the number of equations one must solve simultaneously.
	In nodal analysis, we are interested in finding the node voltages. Given a circuit with n nodes without voltage sources, the nodal analysis of the circuit involves taking the following three steps.
Steps to Determine Node Voltages:
1. Select a node as the reference node. Assign voltages v1, v2, . . . , vn−1 to the remaining n − 1 nodes. The voltages are referenced with respect to the reference node.
2. Apply KCL to each of the n − 1 non-reference nodes. Use Ohm’s law to express the branch currents in terms of node voltages.
3. Solve the resulting simultaneous equations to obtain the unknown node voltages.
We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as the reference or datum node. The reference node is commonly called the ground since it is assumed to have zero potential. A reference node is indicated by any of the three symbols in Figure 7. The type of ground in Figure 7(b) is called a chassis ground and is used in devices where the case, enclosure, or chassis acts as a reference point for all circuits. When the potential of the earth is used as reference, we use the earth ground in Figure 7(a) or (c). We shall always use the symbol in Figure 7(b).
[image: ]
Figure 7: Common symbols for indicating a reference node.
[image: ]
Figure 7(a)
[image: ]
Figure 7(b)
Figure 7 (a) & (b) Typical circuit for nodal analysis.

As the second step: we apply KCL to each non-reference node in the circuit. To avoid putting too much information on the same circuit, the circuit in Figure 7(a) is redrawn in Figure 7(b), where we now add i1, i2, and i3 as the currents through resistors R1, R2, and R3, respectively. 
At node 1, applying KCL gives
I1 = I2 + i1 + i2        (1)
At node 2,
I2 + i2 = i3               (2)
We now apply Ohm’s law to express the unknown currents i1, i2, and i3 in terms of node voltages. The key idea to bear in mind is that, since resistance is a passive element, by the passive sign convention, current must always flow from a higher potential to a lower potential.
	We now apply Ohm’s law to express the unknown currents i1, i2, and i3 in terms of node voltages.
We can express this principle as
[image: ](3)   
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[image: ]      (4)
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Substituting Eq. (4) in Eqs. (1) and (2) results, respectively, in
[image: ]     (5)
[image: ]       (6)
As the third step: to obtain the node voltages v1 and v2 using any standard method, such as the substitution method, the elimination method, Cramer’s rule, or matrix inversion. To use either of the last two methods.  From eq (5) and (6), we can write as matrix form
[image: ]
Problem 1: Calculate the node voltages in the circuit shown in Fig. 3.3(a).
[image: ]


Solution: 
[image: ]
Figure: circuit for analysis
Notice how the currents are selected in the above diagram for the application of KCL. Except for the branches with current sources, the labeling of the currents is arbitrary but consistent. (By consistent, we mean that if, for example, we assume that i2 enters the 4_resistor from the left-hand side, i2 must leave the resistor from the right-hand side.) The reference node is selected, and the node voltages v1 and v2 are now to be determined.
At node 1, applying KCL and Ohm’s law gives
[image: ]
Multiplying each term in the last equation by 4, we obtain
20 = v1 − v2 + 2v1
or
3v1 − v2 = 20     (1)
At node 2, we do the same thing and get
[image: ]
Multiplying each term by 12 results in
3v1 − 3v2 + 120 = 60 + 2v2
or
−3v1 + 5v2 = 60               (2)
Now we have two simultaneous Eqs. (1) and (2). We can solve the equations using any method and obtain the values of v1 and v2.
Method 1:
Using the elimination technique, we add Eqs. (1) and (2).
4v2 = 80 _⇒ v2 = 20 V
Substituting v2 = 20 in Eq. (1) gives
3v1 − 20 = 20 _⇒ v1 =40/3 = 13.33 V.
Method 2:
To use Cramer’s rule, we need to put Eqs. (1) and (2) in matrix form as
[image: ]
The determinant of the matrix is
[image: ]
We now obtain v1 and v2 as
[image: ]
If we need the currents, we can easily calculate them from the values of the nodal voltages.

[image: ]








Problem 2: Determine the voltages at the nodes in Figure(a).
[image: ]
Figure (a): original circuit
Solution:
[image: ]
Figure (b): circuit for analysis
The circuit in this example has three non-reference nodes, unlike the previous example which has two non-reference nodes. We assign voltages to the three nodes as shown in Figure (b) and label the currents.
At node 1,
[image: ]
Multiplying by 4 and rearranging terms, we get
3v1 − 2v2 − v3 = 12      (1)
At node 2,

[image: ]
Multiplying by 8 and rearranging terms, we get
−4v1 + 7v2 − v3 = 0         (2)
At node 3,
[image: ]
Multiplying by 8, rearranging terms, and dividing by 3, we get
2v1 − 3v2 + v3 = 0       (3)
We have three simultaneous equations to solve to get the node voltages v1, v2, and v3. We shall solve the equations in two ways.
Method 1:
Using the elimination technique, we add Eqs. (1) and (3).
5v1 − 5v2 = 12
[image: ]         (4)
Adding Eqs. (2) and (3) gives
−2v1 + 4v2 = 0 _⇒ v1 = 2v2       (5)
Substituting Eq. (5) into Eq. (4) yields
2v2 − v2 = 2.4 _⇒ v2 = 2.4, v1 = 2v2 = 4.8 V
From Eq. (3), we get
v3 = 3v2 − 2v1 = 3v2 − 4v2 = −v2 = −2.4 V
Thus,
v1 = 4.8 V, v2 = 2.4 V, v3 = −2.4 V
Method 2: To use Cramer’s rule, we put Eqs. (1) to (3) in matrix form.
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From this, we obtain
[image: ]
where ∆, ∆1, ∆2, and ∆3 are the determinants to be calculated as follows. As explained in Appendix A, to calculate the determinant of a 3 by 3 matrix, we repeat the first two rows and cross multiply.
[image: ]
= 21 − 12 + 4 + 14 − 9 − 8 = 10
Similarly, we obtain
[image: ]
[image: ]
[image: ]
Thus, we find
[image: ]
[image: ]
[image: ]
Exercise: Find the voltages at the three non-reference nodes in the circuit shown below.
Answer: v1 = 80 V, v2 = −64 V, v3 = 156 V.
[image: ]
Exercise: Obtain the node voltages in the circuit shown in.
Answer: v1 = −2 V, v2 = −14 V.
[image: ]
NODAL ANALYSIS WITH VOLTAGE SOURCES
We now consider how voltage sources affect nodal analysis. We use the circuit in Figure shown below for illustration. Consider the following two possibilities.
[image: ]
CASE 1:1 If a voltage source is connected between the reference node and a non-reference node, we simply set the voltage at the non-reference node equal to the voltage of the voltage source. In Figure above, for example,
v1 = 10 V           (1)
Thus our analysis is somewhat simplified by this knowledge of the voltage at this node.
CASE 2: If the voltage source (dependent or independent) is connected between two non-reference nodes, the two non-reference nodes form a generalized node or supernode; we apply both KCL and KVL to determine the node voltages.
A supernode is formed by enclosing a (dependent or independent) voltage source connected between two non-reference nodes and any elements connected in parallel with it.
In the above circuit, nodes 2 and 3 form a supernode. We analyze a circuit with supernodes using the same three steps mentioned in the previous section except that the supernodes are treated differently. Why? Because an essential component of nodal analysis is applying KCL, which requires knowing the current through each element. There is no way of knowing the current through a voltage source in advance. However, KCL must be satisfied at a supernode like any other node. Hence, at the supernode in the above circuit,
i1 + i4 = i2 + i3            (2)
or
[image: ]
To apply Kirchhoff’s voltage law to the supernode in above circuit, we redraw the circuit as shown in Fig. 8. Going around the loop in the clockwise direction gives
−v2 + 5 + v3 = 0 _⇒ v2 − v3 = 5 (3)
From Eqs. (1), (2), and (3), we obtain the node voltages.
[image: ]
Figure 8: applying KVL to a supernode

Problem: For the circuit shown in Figure shown below, find the node voltages.
[image: ]
Solution:
The supernode contains the 2-V source, nodes 1 and 2, and the 10Ω resistor. Applying KCL to the supernode as shown in Fig. 9 (a) gives
2 = i1 + i2 + 7
Expressing i1 and i2 in terms of the node voltages
[image: ]
or
v2 = −20 − 2v1                   (1)
To get the relationship between v1 and v2, we apply KVL to the circuit in Fig. 9(b). Going around the loop, we obtain
[image: ]         (2)
From Eqs. (1) and (2), we write
v2 = v1 + 2 = −20 − 2v1
or
3v1 = −22 _⇒ v1 = −7.333 V
and v2 = v1 +2 = −5.333 V. Note that the 10Ω resistor does not make any difference because it is connected across the supernode.
[image: ]
Figure 9: Applying: (a) KCL to the supernode, (b) KVL to the loop.
Exercise: Find v and i in the circuit shown below.
Answer: −0.2 V, 1.4 A.
[image: ]





Problem: Find the node voltages in the circuit.
[image: ]
Solution:
Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL to the two supernodes as in Fig. 10(a). At supernode 1-2,
i3 + 10 = i1 + i2
Expressing this in terms of the node voltages,
[image: ]
or
5v1 + v2 − v3 − 2v4 = 60            (1)
At supernode 3-4,
[image: ]
or
4v1 + 2v2 − 5v3 − 16v4 = 0             (2)
[image: ]
Figure 10: Applying: (a) KCL to the two supernodes, (b) KVL to the loops.
We now apply KVL to the branches involving the voltage sources as shown in Fig. 10(b). For loop 1,
[image: ]                 (3)
For loop 2,
−v3 + 3vx + v4 = 0
But                   vx = v1 − v4 so that
3v1 − v3 − 2v4 = 0                     (4)
For loop 3,
vx − 3vx + 6i3 − 20 = 0
But       6i3 = v3 − v2 and vx = v1 − v4. Hence
−2v1 − v2 + v3 + 2v4 = 20                (5) 
6v1 − v3 − 2v4 = 80                           (6)
and
6v1 − 5v3 − 16v4 = 40                           (7)
Equations (4), (6), and (7) can be cast in matrix form as
[image: ]
[image: ]
[image: ]
and v2 = v1−20 = 6.667 V. We have not used Eq. (5); it can be used to cross check results.
MESH ANALYSIS
A mesh is a loop which does not contain any other loops within it.
Mesh analysis provides another general procedure for analyzing circuits, using mesh currents as the circuit variables. Using mesh currents instead of element currents as circuit variables is convenient and reduces the number of equations that must be solved simultaneously.
Steps to determine Mesh Currents:
1. Assign mesh currents i1, i2, . . . , in to the n meshes.
2. Apply KVL to each of the n meshes. Use Ohm’s law to express the voltages in terms of the mesh currents.
3. Solve the resulting n simultaneous equations to get the mesh currents.

NOTE: Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh analysis applies KVLto find unknown currents.
Problems: For the circuit in below, find the branch currents I1, I2, and I3 using mesh analysis.

[image: ]
Solution:
We first obtain the mesh currents using KVL. For mesh 1,
−15 + 5i1 + 10(i1 − i2) + 10 = 0
or
3i1 − 2i2 = 1                       (1)
For mesh 2,
6i2 + 4i2 + 10(i2 − i1) − 10 = 0
or
i1 = 2i2 – 1                          (2)

METHOD 1: Using the substitution method, we substitute Eq. (2) into Eq. (1), and write
6i2 − 3 − 2i2 = 1 _⇒ i2 = 1 A
From Eq. (2), i1 = 2i2 − 1 = 2 − 1 = 1 A. Thus,
I1 = i1 = 1 A, I2 = i2 = 1 A, I3 = i1 − i2 = 0
METHOD 2: To use Cramer’s rule, we cast Eqs. (1) and (2) in matrix form as

[image: ]
We obtain the determinants
[image: ]
[image: ]
[image: ]
Thus,
[image: ]
[image: ]





Exercise: Calculate the mesh currents i1 and i2 in the circuit of shown below.
Answer: i1 = 23 A, i2 = 0 A.
[image: ]
Problem: Use mesh analysis to find the current io in the circuit below.
[image: ]
Solution:
We apply KVL to the three meshes in turn. For mesh 1,
−24 + 10(i1 − i2) + 12(i1 − i3) = 0
or
11i1 − 5i2 − 6i3 = 12          (1)
For mesh 2,
24i2 + 4(i2 − i3) + 10(i2 − i1) = 0
or
−5i1 + 19i2 − 2i3 = 0           (2)
For mesh 3,
4io + 12(i3 − i1) + 4(i3 − i2) = 0
But at node A, io = i1 − i2, so that
4(i1 − i2) + 12(i3 − i1) + 4(i3 − i2) = 0
or
−i1 − i2 + 2i3 = 0               (3)
In matrix form, Eqs. (1) to (3) become
[image: ]
We obtain the determinants as
[image: ]
= 418 − 0 − 0 − 114 − 22 − 0 = 192
[image: ]
[image: ]
We calculate the mesh currents using Cramer’s rule as
[image: ]
Thus, io = i1 − i2 = 1.5 A.
Exercise: Using mesh analysis, find io in the circuit shown below.
Answer: −5 A.
[image: ]
MESH ANALYSIS WITH CURRENT SOURCES
Applying mesh analysis to circuits containing current sources (dependent or independent) may appear complicated. But it is actually much easier than what we encountered in the previous section, because the presence of the current sources reduces the number of equations. Consider the following two possible cases.
CASE 1: 1 When a current source exists only in one mesh: Consider the circuit in Fig. 11, for example. We set i2 = −5 A and write a mesh equation for the other mesh in the usual way, that is,
−10 + 4i1 + 6(i1 − i2) = 0 _⇒ i1 = −2 A           (1)
[image: ]
Figure 11.
Figure: a circuit with current source
CASE 2:2 When a current source exists between two meshes: Consider the circuit in Fig. 11(a), for example. We create a supermesh by excluding the current source and any elements connected in series with it, as shown in Fig. 11(b). Thus,
A supermesh results when two meshes have a (dependent or independent) current source in common.
[image: ]
[image: ]
Figure 11: (a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current source.

As shown in Fig. 11(b), we create a supermesh as the periphery of the two meshes and treat it differently. (If a circuit has two or more supermeshes that intersect, they should be combined to form a larger supermesh.) Why treat the supermesh differently? Because mesh analysis applies KVL—which requires that we know the voltage across each branch—and we do not know the voltage across a current source in advance. However, a supermesh must satisfy KVL like any other mesh. Therefore, applying KVL to the supermesh in Fig. 11(b) gives
−20 + 6i1 + 10i2 + 4i2 = 0
or
6i1 + 14i2 = 20          (2)
We apply KCL to a node in the branch where the two meshes intersect. Applying KCL to node 0 in Fig. 11(a) gives
i2 = i1 + 6              (3)
Solving Eqs. (2) and (3), we get
i1 = −3.2 A, i2 = 2.8 A            (4)
Note the following properties of a supermesh:
1. The current source in the supermesh is not completely ignored; it provides the constraint equation necessary to solve for the mesh currents.
2. A supermesh has no current of its own.
3. A supermesh requires the application of both KVL and KCL.

Problem: For the circuit below, find i1 to i4 using mesh analysis.
[image: ]

Solution:
Note that meshes 1 and 2 form a supermesh since they have an independent current source in common. Also, meshes 2 and 3 form another supermesh because they have a dependent current source in common. The two supermeshes intersect and form a larger supermesh as shown. Applying KVL to the larger supermesh,
2i1 + 4i3 + 8(i3 − i4) + 6i2 = 0
or
i1 + 3i2 + 6i3 − 4i4 = 0                    (1)
For the independent current source, we apply KCL to node P:
i2 = i1 + 5                                          (2)
For the dependent current source, we apply KCL to node Q:
i2 = i3 + 3io
But io = −i4, hence,
i2 = i3 − 3i4                                        (3)
Applying KVL in mesh 4,
2i4 + 8(i4 − i3) + 10 = 0
or
5i4 − 4i3 = −5                                    (4)
From Eqs. (1) to (4),
i1 = −7.5 A, i2 = −2.5 A, i3 = 3.93 A, i4 = 2.143 A
Exercise: Use mesh analysis to determine i1, i2, and i3 in Figure shown below.
Answer: i1 = 3.474 A, i2 = 0.4737 A, i3 = 1.1052 A.
[image: ]

DC CIRCUIT THEOREMS 

 A linear circuit is one whose output is linearly related (or directly proportional) to its input.
[image: ]
Figure: Alinear circuit with input vs and output i.

NORTON’S THEOREM:
states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source IN in parallel with a resistor RN, where IN is the short-circuit current through the terminals and RN is the input or equivalent resistance at the terminals when the independent sources are turned off.

[image: ]
Figure 11: (a) Original circuit, (b) Norton equivalent circuit.

Thus, the circuit in Fig. 11(a) can be replaced by the one in Fig. 11(b).
The proof of Norton’s theorem will be given in the next section. For now, we are mainly concerned with how to get RN and IN. We find RN in the same way we find RTh. In fact, from what we know about source transformation, the Thevenin and Norton resistances are equal; that is, 
RN = RTh  
To find the Norton current IN, we determine the short-circuit current flowing from terminal a to b in both circuits in Fig. 11. It is evident that the short-circuit current in Fig. 11(b) is IN. This must be the same short-circuit current from terminal a to b in Fig. 11(a), since the two circuits are equivalent. Thus,
IN = isc 
Steps to determine Norton’s Theorem:
1. Identify and remove the Load.
2. Short the load terminals and calculate Isc. (IN).
3. Remove all sources by replacing
i) Voltage sources with a short
ii) Current sources with an open.
iii) If the source has an internal resistance, keep resistance in the circuit.
4. Look in the load terminals and calculate RN
5. Create a parallel circuit consisting of IN and RN and load
6. Calculate the load current or voltage as desired.
Problem: Find the Norton equivalent circuit of the circuit in Figure below
[image: ]
Solution:
[image: ]
figure 12: finding: (a) RN, (b) IN = isc,
 
We find RN in the same way we find RTh in the Thevenin equivalent circuit. Set the independent sources equal to zero. This leads to the circuit in Figure 12(a), from which we find RN. Thus,
.[image: ]
To find IN, we short-circuit terminals a and b, as shown in Fig. 12(b). We ignore the 5Ω resistor because it has been short-circuited. Applying mesh analysis, we obtain
[image: ]
From these equations, we obtain
i2 = 1 A = isc = IN
[image: ]
Figure: Norton equivalent of the circuit for the given circuit.

Exercise: Find the Norton equivalent circuit for the circuit shown below.
Answer: RN = 3 Ω, IN = 4.5 A.
[image: ]

 THEVENIN’S THEOREM
states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source VTh in series with a resistor RTh, where VTh is the open-circuit voltage at the terminals and RTh is the input or equivalent resistance at the terminals when the independent sources are turned off.



[image: ]
Figure 13: Replacing a linear two-terminal circuit by its Thevenin equivalent: (a) original circuit, (b) the Thevenin equivalent circuit.

Steps to determine Thevenin’s Theorem:
7. Identify and remove the Load.
8. [bookmark: _GoBack]Open the load terminals and calculate VTh
9. Remove all sources by replacing
iv) Voltage sources with a short
v) Current sources with an open.
vi) If the source has an internal resistance, keep resistance in the circuit.
10. Look in the load terminals and calculate RTh
11. Create a series circuit consisting of VTh and RTh and load
12. Calculate the load current or voltage as desired.
[image: ]
[image: ]
[image: ]
Problem: Find the Thevenin equivalent circuit of the circuit shown below, to the left of the terminals a-b. Then find the current through RL = 6, 16,and 36Ω.
[image: ]
Solution:
We find RTh by turning off the 32-V voltage source (replacing it with a short circuit) and the 2-A current source (replacing it with an open circuit). The circuit becomes what is shown in Fig.13(a). Thus,
[image: ]
Figure 13: For Example13: (a) finding RTh, (b) finding VTh. To find VTh, consider the circuit in Fig. 13(b). 

To find VTh, consider the circuit in Fig.13(b). Applying mesh analysis to the two loops, we obtain
−32 + 4i1 + 12(i1 − i2) = 0, i2 = −2 A
Solving for i1, we get i1 = 0.5 A. Thus,
VTh = 12(i1 − i2) = 12(0.5 + 2.0) = 30 V
Alternatively, it is even easier to use nodal analysis. We ignore the 1Ω resistor since no current flows through it. At the top node, KCL gives
[image: ]
or
[image: ]
as obtained before. We could also use source transformation to find VTh. The Thevenin equivalent circuit is shown in below circuit. The current through RL is

[image: ]
[image: ]
[image: ]

Exercise: Using Thevenin’s theorem, find the equivalent circuit to the left of the terminals in the circuits hown below.  Then find i.
[image: ]
Answer: VTh = 6 V, RTh = 3 Ω, i = 1.5 A.

SUPERPOSITION THEOREM
The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents
through) that element due to each independent source acting alone.
The principle of superposition helps us to analyze a linear circuit with more than one independent source by calculating the contribution of each independent source separately. However, to apply the superposition principle,
we must keep two things in mind:
1. We consider one independent source at a time while all other independent sources are turned off. This implies that we replace every voltage source by 0 V (or a short circuit), and every current source by 0 A (or an open circuit). This way we obtain a simpler and more manageable circuit.
2. Dependent sources are left intact because they are controlled by circuit variables.

Steps to apply superposition principle:
1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or
mesh analysis.
2. Repeat step 1 for each of the other independent sources.
3. Find the total contribution by adding algebraically all the contributions due to the independent sources.

Problem: Use the superposition theorem to find v in the circuit given below.
[image: ]
Solution:
[image: ]
Figure 14: For Example 4.3: (a) calculating v1, (b) calculating v2.

Since there are two sources, let
v = v1 + v2
where v1 and v2 are the contributions due to the 6-V voltage source and the 3-A current source, respectively. To obtain v1, we set the current source to zero, as shown in Fig. 14(a). Applying KVL to the loop in Fig. 14(a) gives

[image: ]
Thus,
v1 = 4i1 = 2 V
We may also use voltage division to get v1 by writing
[image: ]
To get v2, we set the voltage source to zero, as in Fig. 14(b). Using current division,
[image: ]
Hence,
v2 = 4i3 = 8 V
And we find
v = v1 + v2 = 2 + 8 = 10 V

problem: For the circuit given below, use the superposition theorem to find i.
[image: ]






Solution:
[image: ]
In this case, we have three sources.
 Let
i = i1 + i2 + i3
where i1, i2, and i3 are due to the 12-V, 24-V, and 3-A sources respectively. To get i1, consider the circuit in Fig. (a). Combining 4_(on the right hand side) in series with 8 Ω gives 12 Ω. The 12 Ω in parallel with 4 Ω
gives 12 × 4/16 = 3 Ω .Thus,
[image: ]
To get i2, consider the circuit in Fig. (b). Applying mesh analysis,
[image: ]      (1)[image: ]                                 (2)
Substituting Eq. (2) into Eq. (1) gives
i2 = ib = −1

To get i3, consider the circuit in Fig. (c). Using nodal analysis,
[image: ]                       (3)
[image: ]                             (4) Substituting Eq. (4) into Eq. (3) leads to v1 = 3 and
[image: ]
Thus,
[image: ]
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