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Chapter 1

Matrices and Determinants

Objective:

• By the end of this chapter, students are expected to:

– Define and identify different types of matrices
– Understand the arithmetic operations on matrices
– Reduce the given matrix to row reduced echelon form using elementary row opera-

tions
– Find the inverse of some matrices using elementary row operations
– Define system of linear equations in terms of matrices
– Apply Gaussian elimination method, Gaussian Jordan method, and matrix inversion

method to solve the given system of linear equations
– Define and compute eigenvalue and eigenvectors

1.1 Definition of matrix and basic operations
Definition 1.1

Matrix is a rectangular array or arrangement of numbers of the form

A =



a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
... ... ... . . . ...
am1 am2 am3 · · · amn


is called a matrix of size m by n (written as m× n).

Each number aij is called an element or entry of the matrix and it is an element appearing in
the ith row and jth column of a matrix. Elements in the horizontal line are said to form rows,
and elements in the vertical lines are said to form columns. Here we say A has m rows and n
columns. The ith row of matrix A is Ri =

[
ai1 ai2 ai3 · · · ain

]
1 ≤ i ≤ m
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The jth column of the matrix A is

cj =



a1j
a2j
a3j
...
amj

 1 ≤ j ≤ n.

The order of a matrix denotes the number of rows and columns in the matrix. Thus, a matrix
of order m× n has m rows and n columns. We often write the matrix A as A = [aij]m×n, 1 ≤
i ≤ m, 1 ≤ j ≤ n, i-denotes the row and j- denotes the column.
For example, in the matrix

A =

5 9 6 8
3 2 3 1
1 0 4 7


, there are 3 rows and 4 columns. Therefore, matrix A can be called a matrix of order or size
3× 4.
The rows are [

5 9 6 8
]
,
[
3 2 3 1

]
&
[
1 0 4 7

]
, and the columns 5

3
1

 ,
9

2
0

 ,
6

3
4

&

8
1
7

 .
Here a11 = 5, a12 = 9, a13 = 6, a14 = 8, a21 = 3, a22 = 2, a23 = 3, a24 = 1, etc. and A has 12
elements.

Definition 1.2

Two matrices A and B are said to be equal, written A = B, if they are of the same order
and if all corresponding entries are equal i.e. aij = bij.

For example, [
5 1 0
2 3 4

]
=
[
2 + 3 1 0

2 3 2× 2

]
but [

2
9

]
6=
[
2 9

]
. Why?

Example 1.1

Given the matrix equation [
x+ y 8
x− y 6

]
=
[
3 8
1 6

]
.

Find x and y.
Solution: By the definition of equality of matrices,
x+ y = 3 and x− y = 1 solving this system of equations gives x = 2 and y = 1.
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Exercise 1.1

1. Find the values of x, y, z and w which satisfy the matrix equation

(a)
[
x− y 2x+ z
2x− y 3z + w

]
=
[
−1 5
0 13

]
(b)

[
x+ 3 2y + x
z − 1 4w + 6

]
=
[
0 −7
3 2w

]

1.1.1 Types of Matrices
1. A matrix having exactly one row is called a row matrix.

Example 1.2 (
1 0 4 7

)
,
(
1 5

)
, are row matrices. A row matrix is often referred to as a row vector.

2. A matrix having exactly one column is called a column matrix

Example 1.3  4
3
−6


is a column matrix.

3. A zero matrix or null matrix is a matrix in which all of its elements are zero.

Example 1.4

The matrices, [
0 0
0 0

]
&

0 0
0 0
0 0


are the zero matrices

4. A matrix, in which the numbers of rows and the number of columns are equal, that is,
an n× n matrix, is called a square matrix of order n.

Example 1.5

[
3 1
4 0

]
,&

1 2 8
4 6 0
1 3 5


are square matrices.

If A = (aij)n×n is a square matrix the elements aii’s are called the diagonal elements.
The main diagonal or simply diagonal of A consists of the elements a11, a22, a33, · · · , ann.
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5. A square matrix in which all the non-diagonal elements are zero is called a diagonal matrix.

Example 1.6

[
3 0
0 2

]
,&

4 0 0
0 5 0
0 0 9


are diagonal matrices.

Note that the diagonal elements in a diagonal matrix may also be zero.

Example 1.7 [
0 0
0 2

]
,&

[
0 0
0 0

]
are also diagonal matrix.

6. A diagonal matrix whose diagonal elements are equal is called a scalar matrix

Example 1.8

[
3 0
0 3

]
,&

4 0 0
0 4 0
0 0 4

&
[
0 0
0 0

]

are scalar matrices

7. Diagonal matrix of order n in which every diagonal element is unity (one) is called the
identity matrix or unit matrix of order n . The identity matrix of order n is denoted by
In.

Example 1.9 [
1 0
0 1

]
is an identity matrix of order two.

8. A square matrix having only zeros below its diagonal is called upper triangular matrix.
A square matrix having only zeros above its diagonal is called lower triangular matrix. A
matrix that is either upper triangular or lower triangular is called triangular matrix.
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Example 1.10 1 0 0
2 0 0
0 4 3

 , &
[
3 0
6 4

]

are lower triangular matrices and 1 2 0
0 0 0
0 0 3

 ,& [
3 7
0 4

]

are upper triangular matrices.

Definition 1.3

A matrix obtained by deleting one or more rows and/or columns of A is called sub matrix
of A.

Example 1.11

If A =

4 6 1
3 8 2
2 0 3

, then
[
8 2
0 3

]
,
[
4 6
3 8

]
and

4 6
3 8
2 0

 are some of the sub matrices of A.

1.1.2 Operations on Matrices

Addition and Subtraction of matrices
Definition 1.4

If A and B are matrices of the same order, then sum of A and B , denoted by A + B,
is the new matrix of the same order obtained by adding the corresponding elements of A
and B. Similarly, the difference of A and B , denoted by A− B, is the matrix obtained
by subtracting the corresponding elements ofA and B.

Example 1.12

1. IfA =

1 2 8
4 6 0
1 3 5

 and B =

2 0 3
3 8 2
4 6 1

, then we have that

(a) A+B =

1 2 8
4 6 0
1 3 5

+

2 0 3
3 8 2
4 6 1

 =

1 + 2 2 + 0 8 + 3
4 + 3 6 + 8 0 + 2
1 + 4 3 + 6 5 + 1

 =

3 2 11
7 14 2
5 9 6



(b) A−B =

1 2 8
4 6 0
1 3 5

−
2 0 3

3 8 2
4 6 1

 =

1− 2 2− 0 8− 3
4− 3 6− 8 0− 2
1− 4 3− 6 5− 1

 =

−1 2 5
1 −2 −2
−3 −3 4

.
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1.1.3 Multiplication of Matrices by Scalar
Let A be any matrix and α be a scalar (real number), then αA is the matrix obtained from A
multiplying each element of A by α. This operation is called scalar multiplication.
In particular, −A is the matrix obtained from A by multiplying each element of A by −1 and
is called the additive inverse of A.

Example 1.13

If A =

1 2 6
5 0 4
3 1 2

 , then

3A = 3

1 2 6
5 0 4
3 1 2

 =

3(1) 3(2) 3(6)
3(5) 3(0) 3(4)
3(3) 3(1) 3(2)

 =

 3 6 18
15 0 12
9 3 6



Properties on Matrix addition and Scalar Multiplication
Let A,B and C be m× n matrices and 0 be a zero matrix of size m× n and α, β be scalars.
Then

1. A+B = B + A (Commutative law for addition)

2. (A+B) + C = A+ (B + C) (Associative law for addition)

3. A+ 0 = 0 + A = A ( 0 is called Additive identity )

4. For each matrix A , there exists a unique m × n matrix −A such that A + (−A) = 0 =
−A+ A

5. α(A+B) = αA+ αB

6. (αβ)A = α(βA) = β(αA)

7. (α + β)A = αA+ βA

From the above properties, the set of all matrices having the same order forms a vector space
with the operations addition and scalar multiplication.
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1.2 Product and Transpose of a matrix

Definition 1.5: ( Matrix Product)

Let A be an m × r matrix and B be an r × n. The (ij)th entry of C = AB is the dot
product of the ith row vector of A and the jth column vector of B:

cij =
[
ai1 ai2 ai3 · · · air

]
·



b1j
b2j
b3j
...
brj


= ai1b1j + ai2b2j + ai3b3j + · · ·+ airbrj

= Σr
k=1aikbkj

The product C has order m× n.

Example 1.14

1. If A =

1 1 3
1 0 5
3 2 1

 , B =

2 5
2 3
4 1

 then

AB =

1(2) + 1(2) + 3(4) 1(5) + 1(3) + 3(1)
1(2) + 0(2) + 5(4) 1(5) + 0(3) + 5(1)
3(2) + 2(2) + 1(4) 3(5) + 2(3) + 1(1)



=

2 + 2 + 12 5 + 3 + 3
2 + 0 + 20 5 + 0 + 5
6 + 4 + 4 15 + 6 + 1



=

14 11
22 10
14 22



2. A =
[
2 3
7 0

]
, B =

[
0 3
2 1

]
, then AB =

[
6 9
0 21

]
and BA =

[
21 0
11 6

]
. So, AB 6= BA

Note: In general matrix multiplication is not commutative.

Properties of Matrix Multiplication
Let A,B and C be three matrices of the appropriate sizes. Let α be a scalar. Then

1. A(BC) = (AB)C.

2. A(B + C) = AB + AC and (A+B)C = AC +BC.

3. α(AB) = (αA)B = A(αB)
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1.2.1 The Transpose of a Matrix
Definition 1.6

A matrix obtained from a given matrix A by interchanging the rows and columns is called
the transpose of A and it is denoted by At .That is, If A = (aij)m×n then At = (aji)n×m

Example 1.15

1. If A =

 2 5
−2 3
4 1

, then At =
[
2 −2 4
5 3 1

]

2. If B =

 4
3
−6

, then Bt =
[
4 3 −6

]

Let A = (aij)n×n be a square matrix. Then A is said to be
i) Symmetric matrix if At = A

ii) Skew symmetric if At = −A

Example 1.16

1. A =

2 3 4
3 0 −2
4 −2 1

 , At =

2 3 4
3 0 −2
4 −2 1

 ,
=⇒ At = A, therefore, A is symmetric.

2. A =
[
0 −1
1 0

]
, At =

[
0 1
−1 0

]
, therefore, A is skew-symmetric.

Properties of Transpose of Matrix

Let A and B be matrices such that addition and multiplication is defined. Then
1. (At)t = A

2. (A+B)t = At +Bt And (AB)t = BtAt

3. (αA)t = αAt, α − is a scalar

4. A =
1
2(A+ At)︸ ︷︷ ︸+ 1

2(A− At)︸ ︷︷ ︸
symmetric skew

1.2.2 Trace of a Matrix
Definition 1.7

let A = (aij)n×n, be a square matrix of order n .Then trace of A is defined to be the sum
of the diagonal elements of A. That is trace(A) = ∑n

i=1 aii.

Notation: The trace of a matrix A is also commonly denoted as trace(A) or tr(A).
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Properties of trace of a matrix
If A and B are square matrices, then

• trace(A+B) = trace(A) + trace(B)

• trace(A) + trace(At)

• trace(cA) = c(trace(A))

• trace(AB) = trace(BA)

Example 1.17

Find the trace of A =

15 6 7
2 −4 2
3 2 6


Solution: tr(A) = ∑3

i=1 aii = 15 +−4 + 6 = 17

1.3 Elementary Row Operations and its properties

Definition 1.8: (Elementary row operation)

Given any matrix Aof order m× n. Any one of the following operations on the matrix is
called elementary row operation.

1. Interchanging any two rows of A Ri ⇔ Rj (Interchange the ith and jth row)

2. Multiplying a row of A by a nonzero constant k Ri =⇒ kRi (Multiply the ith row by
scalar k)

3. Adding a multiple of one row of A to another row of A . Rj =⇒ Rj + kRi (add k
times ith row to jth row).
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Example 1.18

1. Give a matrix A =

0 0 1 2
2 3 0 −2
3 3 6 −9


(a) Interchange rows 1 and 3 of A

=⇒

3 3 6 −9
2 3 0 −2
0 0 1 2


(b) Multiply the third row of A by 1/3

=⇒

0 0 1 2
2 3 0 −2
1 1 2 −3


(c) Multiply the second row of A by −2, then add to the third row of A

=⇒

 0 0 1 2
2 3 0 −2
−1 −3 6 −5



Definition 1.9

Two matrices A and B are called row equivalent or simply (equivalent matrices) if one
matrix can be obtained from the other matrix by applying finite number of elementary
operations. In this case we write A ∼ B.

Example 1.19

As we observe from the above example,3 3 6 −9
2 3 0 −2
0 0 1 2

 ∼

 3 3 6 −9
2/3 1 0 −2/3
0 0 1 2


and 3 3 6 −9

2 3 0 −2
0 0 1 2

 ∼

 0 0 1 2
2 3 0 −2
−1 −3 6 −5



Definition 1.10: (Matrix in reduced row echelon form):

A matrix in reduced row echelon form has the following properties:

1. All rows consisting entirely of 0 are at the bottom of the matrix.

2. For each nonzero row, the first entry is 1. The first entry is called a leading 1.

3. For two successive non zero rows, the leading 1 in the higher row appears farther
to the left than the leading 1 in the lower row.

4. If a column contains a leading 1, then all other entries in that column are 0.

Note: A matrix is in row echelon form as the matrix has the first 3 properties.
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Example 1.20

A =


1 2 0 0 2
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 and B =


1 0 0 3 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


are the matrices in reduced row echelon form. Where as the matrix.


1 0 3 4
0 1 −2 5
0 0 1 2
0 0 0 0



is not in reduced row echelon form but it is row echelon form since the matrix has the first
3 properties and all the other entries above the leading 1 in the third column are not 0. The
matrix 

1 0 3 4
0 1 −2 5
0 1 2 2
0 0 0 0


is not in row echelon form (also not in reduced row echelon form) since the leading 1 in the
second row is not in the left of the leading 1 in the third row and all the other entries above
the leading 1 in the third column are not 0.

Definition 1.11: (Rank of a matrix)

The rank of a matrix A , denoted by rank(A), is the number of nonzero rows remaining
after it has been changed into row echelon or reduced row echelon form.

Remark: If A is zero matrix then rank(A) is 0.
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Example 1.21

Determine the rank of the following matrices.

A =


1 0 0 1
3 1 2 6
−1 2 5 −4
2 3 7 2

 and B =

1 2 3 −1
3 6 9 −3
2 4 6 −2


Solution:

A =


1 0 0 1
3 1 2 6
−1 2 5 −4
2 3 7 2


R2 → R2 − 3R1
R3 → R3 +R1
R4 → R4 − 2R1


1 0 0 1
0 1 2 3
0 2 5 −3
0 3 7 0

R3 → R3 − 2R2
R4 → R4 − 3R2


1 0 0 1
0 1 2 3
0 0 1 −9
0 0 1 −9



R4 → R4 −R3


1 0 0 1
0 1 2 3
0 0 1 −9
0 0 0 0

R2 → R2 − 2R3


1 0 0 1
0 1 0 21
0 0 1 −9
0 0 0 0


Hence, rank(A) = 3 by using elementary row operations.

B =

1 2 3 −1
3 6 9 −3
2 4 6 −2

 R2 → R2 − 3R1
R3 → R3 − 2R1

1 2 3 −1
0 0 0 0
0 0 0 0

 .
Therefore, rank(B) = 1

Exercise 1.2

1. Transform the following matrix in to reduced row echelon form and determine the
rank of the following matrices.

(a) A =

10 −8 0
1 3 −5
7 0 9

 , B =


2 1 −1 3
1 −1 2 1
−4 6 −7 1
2 0 1 3



(b) C =


2 6 7 9
3 4 5 −1
1 2 3 1
2 5 8 4
−1 2 2 10

 , D =


2 1 −1 3
1 −1 2 1
−4 6 −7 1
2 8 0 3



1.4 Inverse of a matrix and its properties
Suppose A and B are square matrices of size n such that AB = In and BA = In. Then A is
invertible or non-singular and B is the inverse of A. In this situation, we write B = A−1.
Notice that if B is the inverse of A, then we can just as easily say A is the inverse of B, or A
and B are inverses of each other.
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Example 1.22

Show that B =
[
1 1
1 2

]
is an inverse for the matrix A =

[
2 −1
−1 1

]
:

Solution:-By the definition there are two multiplications to confirm. (We will show later
that this isn’t necessary, but right now we are working strictly from the definition.) We
have

AB =
[

2 −1
−1 1

] [
1 1
1 2

]

=
[
2(2) + (−1)1 2(1) + (−1)2
(−1)1 + 1(1) −1(1) + 1(2)

]

=
[
1 0
0 1

]
= I2

and similarly

BA =
[
1 1
1 2

] [
2 −1
−1 1

]

=
[
1(2) + 1(−1) 1(−1) + 1(1)
1(2) + 2(1) 1(−1) + 2(2)

]

=
[
1 0
0 1

]
= I2

Therefore the definition for inverse is satisfied, so that A and B work as inverses to each
other.

Example 1.23

Matrix A =
[
1 1
1 1

]
cannot have an inverse.

Theorem 1.1

Suppose that A is invertible and that both B and C are inverses of A. Then B =C and
we will denote the inverse as A−1 .

Computing the Inverse of a Non Singular Matrix
Suppose A is a non singular square matrix of size n. Create the n×n matrix M by placing the
n×n identity matrix in to the right of the matrix A. Let N be a matrix that is row-equivalent
to M and in reduced row-echelon form then the first n columns of N is In and the last n
columns of N is A−1.
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Example 1.24

Computing a Matrix Inverse of B =

−7 6 12
5 5 7
1 0 4


Solution:The augmented matrix is

[B | I] =

−7 −6 −12 1 0 0
5 5 7 0 1 0
1 0 4 0 0 1


by applying elementary row operation the equivalent reduced row echelon form is1 0 0 −10 −12 9

0 1 0 13/2 8 11/2
0 0 1 5/2 3 5/2


So

B−1 =

−10 −12 9
13/2 8 11/2
5/2 3 5/2



Properties of inverse matrix
Let A, B, C be matrices of the appropriate sizes so that the following multiplications make
sense, I a suitably sized identity matrix, and α a nonzero scalar. Then

1. (Uniqueness) The matrix A has at most one inverse, henceforth denoted as A−1, provided
A is invertible.

2. (Double Inverse) If A is invertible, then (A−1)−1 = A:

3. (2=3 Rule) If any two of the three matrices A, B and AB are invertible, then so is the
third, and moreover (AB)−1 = B−1A−1:

4. An is invertible and (An)−1 = (A−1)n.

5. If A is invertible, then (αA)−1 = ( 1
α

)A−1:

6. (Inverse/Transpose) If A is invertible, then (At)−1 = (A−1)t.

7. (Cancellation) Suppose A is invertible. If AB = AC or BA = CA, then B = C:

15



1.5 Determinant of a matrix and its properties

Definition 1.12: (Determinant of a matrix)

Let A be an n × n matrix. Then the determinant of A denoted as det(A) or | A | is
defined recursively by:
If A = [a] is a 1 × 1 matrix, then det(A) = a. If A is a matrix of size n within ,n > 2
then

det(A) = A11det(A11)− A12 det(A12) + A13 det(A13)− · · · + (−1)n+1A1n det(A1n)

where A1j a sub matrix of A obtaining by deleting the fist row and the jth column.

So to compute the determinant of a 5 × 5 matrix we must build 5 sub matrices, each of size
4. To compute the determinants of each the 4 × 4 matrices we need to create 4 sub matrices
each, these now of size 3 and so on. To compute the determinant of a 10 × 10 matrix would
require computing the determinant of 10! = 10× 9× 8× 7× 6× 5× 4× 3× 2 = 3, 628, 800 1× 1
matrices. Fortunately there are better ways. However this does suggest an excellent computer
programming exercise to write a recursive procedure to compute a determinant.
Lets compute the determinant of a reasonable sized matrix by hand.

Suppose that we have the 3× 3 matrix A =

 3 2 −1
4 1 6
−3 −1 2

 then

det(A) =| A |

=

∣∣∣∣∣∣∣
3 2 −1
4 1 6
−3 −1 2

∣∣∣∣∣∣∣
= 3

∣∣∣∣∣ 1 6
−1 2

∣∣∣∣∣− 2
∣∣∣∣∣ 4 6
−3 2

∣∣∣∣∣− 1
∣∣∣∣∣ 4 1
−3 −1

∣∣∣∣∣
= 3(1

∣∣∣2∣∣∣− 6
∣∣∣−1

∣∣∣)− 2(4
∣∣∣2∣∣∣− 6

∣∣∣−3
∣∣∣)− (4

∣∣∣−1
∣∣∣− ∣∣∣−3

∣∣∣)
= 3(1(2)− 6(−1))− 2(4(2)− 6(−3))− (4(−1)− (−3))
= 24− 52 + 1
= −27

Theorem 1.2: (Exchanging Columns Changes the Sign of a Determinant).

If the matrix A′ is obtained from A by interchanging any two columns, and their deter-
minants exist, then |A′| = −|A|.

The rule of Sarrus is a mnemonic for the 3 × 3 matrix determinant: the sum of the
products of three diagonal north-west to south-east lines of matrix elements, minus the sum of
the products of three diagonal south-west to north-east lines of elements, when the copies of
the first two columns of the matrix are written beside it as in the illustration. This scheme for
calculating the determinant of a 3× 3 matrix does not carry over into higher dimensions.
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Properties of determinants of matrix
1. If A is a triangular matrix, then the determinant of A is the product of all the diagonal

elements of A.

2. If B is obtained from A by multiplying one row of A by the scalar α, then det(B) =
α(det(A)).

3. If B is obtained from A by adding a multiple of one row of A to another row of A, then
det(B) = det(A).

4. The matrix A is invertible if and only if det(A) 6= 0 and det(A−1) = 1
det(A) .

5. The determinant of a product of two matrices is the product of their determinants. That
is,

det(AB) = det(A) det(B) =⇒ det(An) = (det(A))n

6. If B is the transpose of a matrix A, then det(B) = det(A)

Minor In a Matrix
Suppose A is an n× n matrix and Aij is the (n− 1)× (n− 1) sub matrix formed by removing
row i and column j. Then the minor for A at location i j is the determinant of the sub matrix,
Mij(A) = det(Aij).

Co factor In a Matrix
Suppose A is an n× n matrix and Aij is the (n− 1)× (n− 1) sub matrix formed by removing
row i and column j. Then the Co factor for A at location ij is the determinant of the sub
matrix, Cij(A) = (−1)i+jdet(Aij) .

Definition 1.13: (Adjoint)

If A = (aij) is an n × n matrix, the adjoint of A, denoted by adj A, is the transpose of
the matrix of cofactors.

Hence

adjA =



c11 c21 c31 · · · cn1
c12 c22 c32 · · · cn2
c13 c23 c33 · · · cn3
... ... ... . . . ...
c1n c2n c3n · · · cnn
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Theorem 1.3

Let A be an n× n matrix. Then

A(adj A) = (det A)In = (adj A)A.

Note If the det(A) 6= 0, then A−1 = 1
det(A)adj(A)

Example 1.25

Let

2 3 −1
0 −4 2
1 −1 5

.

1. Determine

(a) The minors of all elements A.
(b) The co factors of all elements of A.

(c) The adj(A).
(d) The inverse of A.

Solution: Exercise

1.6 Solving system of linear equations
Definition 1.14

A linear equation in the variables x1, x2, · · · , xn is an equation of the form a1x1 +
a2x2 + · · · +anxn = b where the coefficients a1, a2, · · · , an and right hand side constant
term b are given constants.

Definition 1.15

A general system of m linear equations with n unknowns can be written as

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... ... ... ...

am1x1 + am2x2 + · · ·+ amnxn = bm.

(1.1)

Here x1, x2, . . . , xn, are the unknowns, a11, a12, . . . , amn are the coefficients of the system,
and b1, b2, . . . , bm are the constant terms.

A solution of a linear equation is any n-tuple of values (s1, s2, ...., sn) which satisfies the
linear equation. For example, (−1,−1) is a solution of the linear equation x+ 3y = −4
since−1 + (3×−1) = −1 + (−3) = −4 , but (1, 5) is not.

Similarly, a solution to a linear system is any n-tuple of values (s1, s2, ...., sn) which simulta-
neously satisfies all the linear equations given in the system.
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For example,
3x + 2y − z = 1
2x − 2y + 4z = −2
−x + 1

2y − z = 0
has as its solution (1,−2,−2) . This can also be written as:

x = 1
y =−2
z =−2

We also refer to the collection of all possible solutions as the solution set.

In general, for any linear system of equations there are three possibilities regarding solutions:

1. A unique solution In this case only one specific solution set exists. Geometrically this
implies the n-planes specified by each equation of the linear system all intersect at a
unique point in the space that is specified by the variables of the system.

2. No solution: The equations are termed inconsistent and specify n-planes in space which
do not intersect or overlap. It is not possible to specify a solution set that satisfies all
equations of the system.

3. An infinite range of solutions: The equations specify n-planes whose intersection is
an m-plane where m ≤ n. This being the case, it is possible to show that an infinite set
of solutions within a specific range exists that satisfy the set of linear equations.

Example 1.26

Given the system of linear equations,

x1 + 2x2 + x4 = 7
x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

we have n = 4 variables and m = 3 equations. Also,

a11 = 1a12 = 2 a13 = 0a14 = 1 b1 = 7
a21 = 1a22 = 1 a23 = 1a24 = −1 b2 = 3
a31 = 3a32 = 1 a33 = 5a34 = −7 b3 = 1

Additionally, convince yourself that x1 = −2, x2 = 4, x3 = 2, x4 = 1 is one solution
(but it is not the only one!).

Note that the above system can be written concisely as
a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm
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we may write the above simultaneous equations as

AX = b

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

 , X =


x1
x2
...
xm

 and b =


b1
b2
...
bm


A matrix A is called the coefficient matrix of the system, while the matrix


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... . . . ... ...
am1 am2 · · · amn bm


obtained by adjoining b to A is called the augmented matrix of the system.
Remark: If bi = 0, ∀i = 1, 2, · · · , m then the linear system is called Homogenous otherwise,
non Homogenous.

Theorem 1.4

If[A|b] and [C|d] are row equivalent, then the systems AX = b and CX = d have exactly
the same solutions.

Remark: If A is an m by n matrix then the linear system AX = 0 has trivial solution
X = 0.

Theorem 1.5

If A is an m by n matrix then the equation AX = 0 has non trivial solution only, when
Rank(A) < n otherwise if Rank(A) = n then the trivial solution is unique.

The system of equation AX = b can be directly solved in the following cases.

1. If A = D, the equation (1.1) become

a11x1 = b1
a22x2 = b2

. . . ...
annxn = bn

The solution is given by xi = bi
aii
, aii 6= 0

2. If A = L, the equation (1.1) become

a11x1 = b1
a21x1 +a22x2 = b2

. . . ...
an1x1 +an2 + · · ·+ annxn = bn
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Solving the first equation and then successively solving the 2nd, 3rd and so on.
We obtain x1 = b1

a11
, x2 = b2 − a21x1

a22
, · · · , xn = b2 − (an1x1 + an2 + · · ·+ an(n−1)xn)

ann
,

where aii 6= 0, i = 1, 2, · · · , n
This method of solving equation is called forward substitution method.

3. If A = U , the equation (1.1) become

a11x1 +a12x2 +a13x3 + · · · +a1nxn = b1
a22x2 +a23x3 + · · · +a2nxn = b2

. . . ...
annxn = bn

Solving for the unknowns in the in the order xn, xn−1, · · · , x1, we get

xn = bn
ann

, xn−1 = bn−1 − a(n−1)nxn

a(n−1)(n−1)
, · · · , x1 = b1 − (a12x2 + a13x3 + · · · + a1nxn)

a11

This method of solving equation is called backward substitution method. Therefore,
matrix A is solvable if it can be transformed in to any one of the forms D, U, L.

Theorem 1.6

Consider an m equations with n variables AX = b then

a) If rank(A|b) = rank(A) = n then the system has unique solution

b) If rank(A|b) = rank(A) < n then the system has infinitely many solutions.

c) If rank(A|b) > n then the system has no solution.

To solve a linear system , we have the following Methods;

1.6.1 Cramer’s rule
If AX = b is a linear system of n equations in n unknowns, and if detA 6= 0, then the system
has unique solution which can be determined by. xi = | Ai |

| A |
, i = 1, 2, · · · , n

Where Ai is the matrix obtained from A when ith column of A is replaced by b.
Consider the linear system {

a1x+ b1y = c1
a2x+ b2y = c2

which in matrix format is [
a1 b1
a2 b2

][
x
y

]
=
[
c1
c2

]
.

Assume a1b2 − b1a2 nonzero. Then, with help of determinants x and y can be found with
Cramer’s rule as

x =

∣∣∣∣∣c1 b1
c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= c1b2 − b1c2

a1b2 − b1a2
, y =

∣∣∣∣∣a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= a1c2 − c1a2

a1b2 − b1a2
.
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The rules for 3× 3 matrices are similar. Given
a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

which in matrix format is a1 b1 c1
a2 b2 c2
a3 b3 c3


xy
z

 =

d1
d2
d3

.
Then the values of x, y and z can be found as follows:

x =

∣∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
, y =

∣∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
, and z =

∣∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
.

Example 1.27

Solve the following system by cramer’s rule.

2x1 + 3x2 + 4x3 = 19
x1 + 2x2 + x3 = 4
3x1 − x2 + x3 = 9

Solution: The coefficient matrix is

A =

2 3 4
1 2 1
3 −1 1


and column matrix

b =

19
4
9


, then

det(A) =

∣∣∣∣∣∣∣
2 3 4
1 2 1
3 −1 1

∣∣∣∣∣∣∣ = 4 + 9− 4− 24− 3 + 2 = −16 6= 0

then the system has unique solution.
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Example: Cont.

A1 =

19 3 4
4 2 1
9 −1 1

& det(A1) =

∣∣∣∣∣∣∣
19 3 4
4 2 1
9 −1 1

∣∣∣∣∣∣∣ = 38 + 27− 16− 72− 12 + 19 = −16

A2 =

2 19 4
1 4 1
3 9 1

& det(A2 =

∣∣∣∣∣∣∣
2 19 4
1 4 1
3 9 1

∣∣∣∣∣∣∣ = 8 + 57 + 36− 48− 19− 18 = 16

A3 =

2 3 19
1 2 4
3 −1 9

& det(A3) =

∣∣∣∣∣∣∣
2 3 19
1 2 4
3 −1 9

∣∣∣∣∣∣∣ = 36 + 36− 19− 114− 27 + 8 = −80

∴ x1 = det(A1)
det(A) = −16

−16 = 1

x2 = det(A2)
det(A) = 16

−16 = −1

x3 = det(A3)
det(A) = −80

−16 = 5.

This is the solution of the system.

1. Problem 1: Use Cramer’s Rule to solve each for each of the variables.
x − y = 4
−x + 2y = −7
−2x + y = −2
x − 2y = −2

2. Problem 2: Use Cramer’s Rule to solve this system for z.

2x + y + z = 1
3x + z = 4
x − y − z = 2

1.6.2 Gaussian elimination method
Gauss elimination method is used to solve system of linear equations. In this method the linear
system of equation is reduced to an upper triangular system by using successive elementary
row operations. Finally we solve the value variables by using back ward substitution method.
This method will be fail if any of the pivot element aii, i = 1, 2, · · · , n becomes zero. In
such case we re-write equation in such manner so that pivots are non zero. This procedure is
called pivoting.
Consider system AX = b

Step 1: Form the augmented matrix [A|b]

Step 2: Transform [A|b] to row echelon form [U |d] using row operations.

Step 3: Solve the system UX = d by back substitution.
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Example 1.28

Solve the following system using Gauss elimination method.

2x1 − 3x2 + x3 = 5
4x1 + 14x2 + 12x3 = 10

6x1 + x2 + 5x3 = 9

Solution: The augmented matrix of the system is2 −3 1 5
4 14 12 10
6 1 5 9


Applying, elementary row operations on this matrix to change into its echelon form.2 −3 1 5

4 14 12 10
6 1 5 9

 R2 −→ R2 − 2R1
R3 −→ R3 − 3R1

2 −3 1 5
0 20 10 0
0 10 2 −6



R3 −→ R3 − 1/2R2

2 −3 1 5
0 20 10 0
0 0 −3 −6


Since rank(A)

¯
= rank(A) = 3 = n the solution exists and is unique.

2x1 −3x2 +x3 = 5
20x2 +10x3 = 0

−3x3 = −6

From this we get x3 = 2. And using back substitution we have x2 = −1 and x1 = 0
Hence (0,−1, 2) is the solution of the system.

1.6.3 Inverse matrix method
Let AX = b is a system of n linear equations with n unknowns and A is invertible, then the
system has unique solution given by inversion method X = A−1b.
Note:- When A is not square or is singular, the system may not have a solution or may have
more than one solution.
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Example 1.29

Use the inverse of the coefficient matrix to solve the following system

3x1 + x2 = 6
−x1 + 2x2 + 2x3 = −7

5x1 − x3 = 10

Solution: Okay, let’s first write down the matrix form of this system. 3 9 0
−1 2 2
5 0 −1


x1
x2
x3

 =

 6
−7
10


Now, we found the inverse of the coefficient matrix by using methods of finding Inverses
and is the following;

A =

 3 1 0
−1 2 2
5 0 −1



=⇒ CA =

−2 9 −10
1 3 5
2 −6 7



=⇒ adj(A) =

 2 −1 2
9 −3 −6
−10 5 7


and det(A) = 3(−2) + 1(9) + 0(−10) = −6 + 9 = 3, then

A−1 = 1/3

 2 −1 2
9 −3 −6
−10 5 7

 =

 2/3 −1/3 2/3
3 −1 −2

−10/3 5/3 7/3



∴

x1
x2
x3

 =

 2/3 −1/3 2/3
3 −1 −2

−10/3 5/3 7/3


 6
−7
10

 =

 1/3
5

−25/3


Now each of the entries of X are x1 = 1/3, x2 = 5 and x3 = −25/3
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Exercise 1.3

1. Solve the following linear system of equation by using Cramer’s rule, Gaussian
elimination method, and inverse method.

(a)
2x1 + 5x2 + 3x3 = 9
3x1 + x2 + 2x3 = 3
x1 + 2x2 − x3 = 6

(b)
x+ z = 1

2x+ y + z = 0
x+ y + 2z = 1

(c)
x+ 2y + z = 3

2x+ 5y − z = −4
3x− 2y − z = 5

2. Use rank of matrix to determine the values of a, b and c so that the following system
has:

(a) no solution (b) more than one solu-
tion

(c) a unique solution and
solve it.

i)
1x+ y − bz = 1

2x+ 3y + az = 3
x+ ay + 3z = 2

ii)
x+ 2y − 3z = a

2x+ 6y − 11z = b
x− 2y + 7z = c

iii)
x− 2y + bz = 3
ax+ 2z = 2
5x+ 2y = 2

1.7 Eigenvalues and Eigenvectors

Definition 1.16: (Eigenvalue, eigenvector)

Let A be a square matrix. Then if λA, is a real number and X a non zero column vector
satisfying AX = λX, we call X an eigenvector of A, while λ is called an eigenvalue of A.
We also say that X is an eigenvector corresponding to the eigenvalue λ.

Example 1.30

Let A =

 3 −2 0
−2 3 0
0 0 5

, then show that X =

1
1
0

 is eigenvector of A with λ = 1.

If λ is an eigenvalue of an n×n matrix A, with corresponding eigenvector X, then (A−λIn)X =
0, with X 6= 0, so det(A− λIn) = 0 and there are at most n distinct eigenvalues of A.
Conversely if det(A− λIn) = 0, then (A− λIn)X = 0 has a nontrivial solution X.

The equation det(A−λIn) = 0 is called the characteristic equation of A, while the polynomial
det(A− λIn) is called the characteristic polynomial of A. The characteristic polynomial of
A is often denoted by chA(λ).
Hence the eigenvalues of A are the roots of the characteristic polynomial of A.

Example 1.31

Find the eigenvalues for the matrix

A =


a11 a12 a13 a14

0 a22 a23 a24
0 0 a33 a34
0 0 0 a44
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Theorem 1.7

if A is an n× n triangular matrix (upper triangular, lower triangular, or diagonal), then
the eigenvalues of A are the entries on the main diagonal of A.

Example 1.32

Find the eigenvalues of A =
[
2 1
1 2

]
and find all eigenvectors.

Solution: The characteristic equation of A is λ2 − 4λ+ 3 = 0, or (λ− 1)(λ− 3) = 0
Hence λ = 1 or λ = 3. The eigenvector equation (A− In)X = 0 reduces to[

2− λ 1
1 2− λ

] [
x
y

]
=
[
0
0

]

or

(2− λ)x+ y = 0
x+ (2− λ)y = 0

Taking λ = 1 gives

x+ y = 0
x+ y = 0.

which has solution x = −y, and let y = t is arbitrary non zero. Consequently the
eigenvectors corresponding to λ = 1 are the vectors[

−t
t

]
= t

[
−1
1

]

with t 6= 0 which is the scalar multiple of
[
−1
1

]
.

Taking λ = 3 gives

−x+ y = 0
x− y = 0.

which has solution x = y, and let y = t is arbitrary non zero. Consequently the eigen-
vectors corresponding to λ = 3 are the vectors[

t
t

]
= t

[
1
1

]

with t 6= 0 hence the scalar multiple of
[
1
1

]
.

Therefore λ1 = 1 and λ2 = 3 are the eigenvalues of
[
2 1
1 2

]
and the corresponding eigen-

vector are X1 =
[
−1
1

]
and X2 =

[
1
1

]
respectively.
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Theorem 1.8

If A is an n× n matrix, the following statements are equivalent.

(a) λ is an eigenvalue of A.

(b) The system of equations (A− λI)x = 0 has nontrivial solutions.

(c) There is a nonzero vector x such that Ax = λx.

(d) λ is a solution of the characteristic equation det(A− λI) = 0.

1.7.1 Diagonalization
Problem 1 Given an n× n matrix A, does there exist an invertible matrix P such that

P−1AP

is diagonal?

Problem 2 Given an n× n matrix A, does A have n linearly independent eigenvectors?

Theorem 1.9

Let A be an n× n matrix having distinct eigenvalues λ1, λ2, · · · , λn and corresponding
eigenvectors X1, X2, · · · Xn respectively. Let P be the matrix whose columns are
respectively X1, X2, · · · , Xn. Then P is non singular and

P−1AP =



λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
... ... ... . . . ...
0 0 0 · · · λn


Definition 1.17

If A and B are square matrices, then we say that B is similar to A if there is an invertible
matrix P such that

B = P−1AP.

Definition 1.18

A square matrix A is said to be diagonalizable if it is similar to some diagonal matrix.
In other words, A is diagonalizable if there exists an invertible matrix P such that P−1AP
is diagonal. In this case the matrix P is said to diagonalize A.

Theorem 1.10

If A is an n× n matrix, the following statements are equivalent.

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.
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Procedure for Diagonalizing a Matrix
1. Confirm that the matrix is actually diagonalizable by finding n linearly independent

eigenvectors. One way to do this is by finding a basis for each eigenspace and merging
these basis vectors into a single set S. If this set has fewer than n vectors, then the matrix
is not diagonalizable.

2. Form the matrix
P = [p1 p2 · · · pn]

that has the vectors in S as its column vectors.

3. The matrix P−1AP will be diagonal and have the eigenvalues

λ1, λ2 · · · , λn

corresponding to the eigenvectors

p1, p2, · · · ,pn

as its successive diagonal entries.

Example 1.33

In each of the following, determine if the the matrix is diagonalizable

A =
[
2 0
1 2

]
A =

3 0 0
0 2 0
0 1 2

 A =

−1 4 −2
−3 4 0
−3 1 3
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