Chapter 1

The Characteristic equation of a matrix

1.1 Eigenvalues and eigenvectors

Definition 1.1.0.1. : An element X\ € F is an eigenvalue of a matriz A € F™" if there
exists a nonzero vector x € F™ such that Ax = Ax. The vector x is said to be an eigenvector
of A corresponding to the eigenvalue .

A nonzero row wvector y is a left eigenvector of A, corresponding to the eigenvalue X, if
yA = \y.

For A € F™", the characteristic polynomial of A is given by pa(x) = det(xl — A).
Figenvalues were initial used by Leonhard Fuler in 1743 in connection with the solution to
an order linear differential equation with constant coefficients.

Geometrically, the equation implies that the n-vectors Ax and x are parallel.

1.1.1 The characterstic polynomial

The polynomial det(A— A, «,,) is called the characteristic polynomial of A and is often denoted
by cha(A). The equation
det(A — M pyxn) =0

is called the characteristic equation of A. Hence the eigenvalues of A are the roots of the
characteristic polynomial of A.

o The algebraic multiplicity, a(\), of A\ € g(A) is the number of times the eigenvalue occurs
as a root in the characteristic polynomial of A.

o The spectrum of A € ™" ¢(A), is the multi-set of all eigenvalues of A, with eigenvalue A
appearing a(\) times in o(A).

o The spectral radius of A € F™" is
p(A) = maz{|\| : A € o(A)}.

Let p(z) = 2™ + ¢y 12" ' + ... + 2® + c17 + ¢y be a polynomial with coefficients in F .
Then p(A) = c, A" + ¢, 1A+ .+ A2 + i A+ ol .

o For A € F™" the minimal polynomial of A, ga(x), is the unique monic polynomial of least
degree for which ga(A) = 0.
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o The vector space ker(A — \I), for A € (A), is the eigenspace of A € F™" corresponding to
A, and is denoted by F)(A).

o The geometric multiplicity, v(X), of an eigenvalue A is the dimension of the eigenspace E\(A).
« An eigenvalue A is simple if a(\) = 1.
An eigenvalue A is semi-simple if a(A) = y(X).

Theorem 1.1.1.1. If A is an n X n matriz and X is a eigenvalue of A, then the set of all
cigenvectors of N\, together with the zero vector, forms a subspace of R™.

E(\) = {0} U{x : x 1is an eigenvector corresponding to \}.

(of all eigenvalues corresponding to A, together with 0) is a subspace of R™. This subspace E(X) is
called the eigenspace of \.

Proof:

Since 0 € E(X), we have E(X) is nonempty.

Next let us check E()N) is closed under addition and scalar multiplication or not.

Suppose x,y € E(X) and ¢ be a scalar. Then,

Ax = \x and Ay = \y.

So,
Alx+y) = Az + Ay = z + \y = ANz + v).

So, x4y is an eigenvector corresponding to A or zero. So, x+vy € E()\) and E()) is closed under
addition. Also,
Alcxr) = ¢(Ax) = c(Ax) = Nex).
So, cx € E(X\) and E(\) is closed under scalar multiplication.
Therefore, E(N) is a subspace of R™. The proof is complete.
Az = Az (Anxn
Ar—dx =0
(A=XI) =z = 0
\ L~~~

matriz ~ vector vector

Need (A — M) to not be invertible, because if it was, we would only have the trivial solution x = 0.

Set
= Set det(A— ) =0.

The roots of the characteristic equation are the eigenvalues .
For cach cigenvalue N, find its eigenvector by solving (Ax — X\ )x = 0.

Shortcut method to find the characteristic equation of a matrix

For 2 x 2,
A — (trace(A) A+ det(A) =0.
—_———
sum of diagonal entries
For 3 x 3,

)\3 - (t'race(A))\Q + (011 + CQQ + 033) A — det(A) = 0.

sum of the diagonal cofactors
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-1 1 0
Example 1.1.1.1. Find the eigenvalues and eigenvectors of | 1 2 1 |.

0 3 —1
Solution: det(A— ) =0

—1-X 1 0
= I 2-x 1 :(1—A)|<2_A ! )|+(—1)|<1 L )|
( 0 5 _1_A) 3 —1-2) 0 —1—2\

A= —1, Ay = =2, A3 =3 are the eigenvalues of A.

For A\ = —1,
01 0:0 131 :0 131 :0
(A-X)Z=0= (A+1)vi=0|1 3 1 : O|Ri < R [0 1 O : 0|R3«>R3—3R; |0 1 0 : 0
03 0:0 03 0:0 000 :0
o o —1
{x+3y—|—z-0=>a:— : z 1s free, let21:>171<0).
For Ao = =2,
(A= XNN)Z=0= (A+2[)v3=0
110 :0 110 :0 110 :0
=141 :0|R+< R |0 31 :0[R3<R3—R|0 3 1 :0
03 1:0 03 1:0 000 :0

which is the REF of the matrix.

x+y:0:>x=—y:>x=%z
y+z=0=>y=—32

1
Z is free. Let z = 3. and@:(—l).
3
For \3 = 3,
(A= M)x=0= (A—3I)v3 =0.
-4 1 0 :0 1 -1 1 :0 1 -1 1 :0
0 3 —4 :0 0 3 -4 :0 0 0 0 :0

{m—y+z:():>:v:y—z

3y+4z=0:>y:—‘—§z

1
z s free, let z = 3. v3 = (4) are eigenvectors of A.
3
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Properties of eigenvalues and eigenvectors Let A be an n x n invertible matriz. The fol-
lowing are true:

1. If A is triangular, then the diagonal elements of A are the eigenvalues of A.

2. If X is an eigenvalue of A with eigenvector T, then % is an eigenvalue of A~1 with eigenvector
T

3. If X is an eigenvalue of A then )\ is an eigenvalue of AT.
4. The sum of the eigenvalues of A is equal to tr(A), the trace of A.

5. The product of the eigenvalues of A is the equal to det(A), the determinant of A.

1.2 Similarity of matrices

Definition 1.2.0.1. : Let A and B be an n x n matrices. We say that A is similar to B and
write A «~ B if there is an invertible matriz S such that A = SBS™'. Similarity of matrices is an
cquivalence relation meaning that

1. A A because A =TAI!

2. If A« B, then B «~ A because A = SBS™ implies ST1AS = S7HSBS™)S = (S71S)B(S71S) =
IBI = B;

3. If A~ B and B « C, then A «~ C because A = SBS™! and B = TCT! implies A =
SBS—! = S(TCT-1)S~! = (ST)C(T-15-Y) = (ST)C(ST)~".

Thus, the word “similar” behaves as it does in its everyday use:
1. Any thing is similar to itself.
2. If one thing is similar to another thing, then the other thing is similar to the first thing.

3. If a thing is similar to a second thing and the second thing is similar to the third thing, then
the first thing is similar to the third thing.

Theorem 1.2.0.2. : Similar matrices have the same
1. determinant;
2. characteristic polynomial;
3. eigenvalue.
Proof. Suppose A and B are similar. Then A = SBS™! for some invertible matriz S.

1. Sincedet(S™1) = (detS)™!, we have det(A) = (detS)(det B)(detS™') = (detS)(det B)(detS)™ =
(detS)(detS™")(detB) = detB.
We used the fact that the determinant of a matriz is a number.

2. Since SIS =ti,A—tI = S(B—tl)s™'; i.e., A—tI and B —tI are similar. (2) now
follows from (1) because the characteristic polynomial of A is det(A — tI.
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3. The eigenvalues of a matriz are the roots of its characteristic polynomial. Since A and B
have the same characteristic polynomial they have the same eigenvalues.

Warning: Although they have the same eigenvalues similar matrices do not usually have the same
eigenvectors or eigenspaces. Nevertheless there is a precise relationship between the eigenspaces of
a stmilar matrices.

Proposition 1.2.0.1. : Suppose A= SBS™!. Let E\(A) be the A— eigenspace for A and E\(B)
the A— eigenspace for B. Then EX(B) = ST'E\(A), i.e., ExX(B) ={S7'X : X € E\(A)}
In particular, the dimension of the A — eigenspaces for A and B are the same.
Proof. If X € Ey(A), then AX = AX = SBS X so BS'X =S5 1]\X = \(S'X);ie, S'X is
a A\ — eigenvector for B or, equivalently, S™'E\(A) C E\(B).
Starting from the fact that B = S™'AS, the same sort of argument shows that SE\(B) C
E\(A).
Therefore
E)\(B) = [E)\(B) = S_ISE)\(B) - S_l.E)\(A) - E)\(B)
In particular, E\(B) € S™1.E\(A) C E\(B) so these three sets are equal, i.e., E\(B) =C
S_l.EA(A) = {S_lX X € E)\(A)}
That dimFE\(A) = dimE\(B) is proved. O
If A and B are similar and A" =0 and B" = 0.
Corollary 1.2.0.1. : Similar matrices have the same rank and nullity.

Proof. Suppose A and B are similar matrices. By definition, the nullity of A is the dimension of its
null space. But N(A) = Ey(A), the 0-eigenspace of A. By the above proposition Ey(A) and Ey(B)
have the same dimension. Hence A and B have the same nullity.

Since rank+nullity= n, A and B also have the same rank. O

Example 1.2.0.2. Show that the matrices B = (g i) and A = (2 :g) are similar.

Solution

Take S — (é f) then SBS ! — ((1) f) <§ i) ((é %))—1 _ (g 141) (é ?) = @ 13) _

A. Therefore A -~ B.

1.3 The spectral radius of a matrix

Definition 1.3.0.2. : For an n X n matriz A define
1. 0(A) = {\: Az = Az has a solution for a nonzero vectorx}. o(A) is called the spectrum of A.

2. p(A) = max{|\| : A € a(A)}. p(A) is called the spectral radius of A.

Example 1.3.0.3. : Let A = (? ;) Then N\ = 1 is an eigenvalue of A with eigenvector
T = _11 . Also A = 3 is an eigenvalue of A with eigenvector & = G) The spectrum of A is

o(A) ={1,3} and the spectral radius of A is p(A) = 3.
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-3 0 6
Example 1.3.0.4. : The 3 X 3 matrir B = | —12 9 26 | has eigenvalues: —1,—3,1. Per-
4 -4 -9
3 1 3
taining to the eigenvalues are the eigenvectors {| 1 |} < 1, {[ 1|} + =3, {| 2|} « -1
1 0 2

For an n x n matriz A, || A ||= max{|A;;]: 1 <1i,j <n}.

lim || A" ||=

n—inf

{0 if p(A) <1,

1.4 Diagonilization

Recall, a matriz, D, is diagonal if it is square and the only non-zero entries are on the diagonal.
This is equivalent to Dé; = \;e; where here €; are the standard vector and the \; are the diagonal
entries.

And Square matrices A and M are similar if there is an invertible matriz P such that P~'AP = M.
A linear transformation, T : R™ — R"™, is diagonalizable if there is a basis B of R™ so that [Tp is
diagonal. This means [T] is similar to the diagonal matriz [T|g. Similarly, a matric A € R™™ is
diagonalizable if it is similar to some diagonal matriz D.

Steps of Diagonalizing an n x n matrix and/or Linear mapping:

1. Compute the matrixz representation of the linear map with respect the bases of the vector
spaces for which the map is defined say A.

2. Compute det(A — \I).
3. Find all the eigenvalues of A.

4. Find n linearly independent eigenvectors py, pa, ..., pn for A with corresponding eigenvalues
A1, Aoy ey M. If noindependent eigenvectors do not exists, then A is not diagonalizable.

5. If A has n linearly independent eigenvectors as above, write
P=p1 p2 ... pnl
and

6. Then D = P~'AP is a diagonal matriz with diagonal elements are eigenvalues of A/[T].

That s
AN O o 0
0 Xy -+ O
0 0 - M\,
Theorem 1.4.0.3. An nxn matriz A is diagonalizable if and only if it has n linearly independent
etgenvectors.
Proof:

zelalem.meseret@amu.edu.et 8




CHAPTER 1. THE CHARACTERISTIC EQUATION OF A MATRIX September 14, 2019
(By induction). The statement is trivially true if n = 1.

Suppose it is true forn = 1,2,--- .k — 1; i.e. if A\, -+, g1 are distinct and vy, --- ,vp_1 are
corresponding eigenvectors, then they are LI.
Suppose A\ is an eigenvalue distinct from Ay, -+, Ag_1 and vy is a corresponding eigenvector. For

some scalars cy, ..., ¢, suppose that
v+ ... + v = 0.

So, A(cyvq + ... + cpog) = A0 =0 .
By linearity of A we get -

ClA’Ul + ...+ CkA’Uk =0= Cl>\11)1 + ...+ Ck)\kl)k =0.

= Cl()\l — )\k)vl + ...+ Ck—l()\k—l — )\k)vk_l = 0.

By LI of
{v1, .oy 01},

ci()\i—/\k)=0, Vi=1:k—1.
Since \i # A\, ¢; =0, Vi =1:k, we get ¢, =0 also, so that {vy,..,v;} are LI

Theorem 1.4.0.4. An n x n matrix A is diagonalizable if and only if there is a basis of R™
consisting only of eigenvectors of A.

Geometrical Interpretation Applications

~ )

e Let’s look at A as the matriz representing a linear transformation T = T A in standard
coordinates, ie, T'(v) = Ax.

e let’s assume A has a set of linearly independent vectors B = {vy, v, ,u,} corre-
sponding to the eigenvalues A, Aa, -+ , A\n, then B is a basis of R™.

o what is the matriz representing T wrt the basis B?
A[B,B] =S P_IAP
where P = [v1 vy ... Uy]

e hence, the matrices A and A(p, p) are similar, they represent the same linear transfor-
mation:

e A in the standard basis
e Aip p in the basis B of eigenvectors of A

« Ap.p = [[T(0)ls [T(2)]5 --- [T(vn)]s]

for those vectors in particular T'(v;) = Av; = A\yv; hence diagonal matriz Ajg g = D.
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-3 -1 =2
Example 1.4.0.5. A= 1 -1 1
1 1 0
Figenvalue A\ = —1 has multiplicity 2; \y = —2.
-2 -1 =2 101
A+D=|1 o 1 |<LE5 (o 1 0
1 1 1 0 00

The rank is 2.

The null space (A+ 1) therefore has dimension 1 (rank-nullity theorem). We find only one linearly
independent vector: x = [—1,0,1]T .

Hence the matriz A cannot be diagonalized.

(multiplicity)

Definition 1.4.0.3. An eigenvalue \g of a matriz A has

algebraic multiplicity k if k is the largest integer such that (A — Xo)* is a factor of the
characteristic polynomial.

geometric multiplicity k if k is the dimension of the eigenspace of Mo, ie, dim(N(A — X\oI)).

Theorem 1.4.0.5. For any eigenvalue of a square matriz, the geometric multiplicity is no more
than the algebraic multiplicity.

Theorem 1.4.0.6. A matriz is diagonalizable if and only if all its eigenvalues are real numbers
and, for each eigenvalue, its geometric multiplicity equals the algebraic multiplicity.

Complete Set of FEigenvectors

A complete set of eigenvectors for an matrix A is a set of n linearly independent set of
eigenvectors for A.

A matriz that does not have a complete set of eigenvectors is said to be deficient.
Summary:

n distinct eigenvalues — complete set — diagonalizability.

Orthogonal Matrix:

Definition 1.4.0.4. A square matriz () is said to be an orthogonal matrix if
QAT =Q"Q=1.
If Q is nonsingular, then we have a wonderful simplicity for the inverse of the matrix Q, in fact,
QQT = I implies Q = QL.

Note: QQT = I if and only if the columns of Q are such that:

N 1, if i=j
q(l)Tq] = 045 1= .f . ]
0, if © # .
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1.5 Block Decomposable Matrices

Definition 1.5.0.5. : A partitioned matriz also called a block matriz is a partition of a matrix into
rectangular smaller matrices called blocks. Equivalently, using a system of horizontal and vertical
(dashed) lines, we can partition a matriz A into sub-matrices called blocks (cells) of A. Clearly
a given matrix may be divided into blocks in different ways. The convenience of the partition of
matrices, say A and B, into blocks is that the result of operations on A and B can be obtained
by carrying out the computation with the blocks, just as if they were the actual elements of the
matrices. This is illustrated below, where the notation A = (A;;) will be used for a block matriz A
with blocks A;;.

Suppose that A = (Ai;) and B = (Bj;) are block matrices with the same numbers of row
and column blocks and suppose that corresponding blocks have the same size. Then adding the
corresponding blocks of A and B also adds corresponding elements of A and B, and multiplying
each block of A by a scalar k multiplies each element of A by k.

An+Bn  Ap+DByp - A+ B,
Ao+ B Ao + B coo Aoy + Bay
Thus, A+ B=| = 0 TFUTE T (Ay) + (B
Am,1+Bm,1 Am2+Bm2 Am,n,+an,
Example 1.5.0.6. P can be partitioned into 4 2 x 2 blocks
11 2 2
11 2 2
P=13 344
3 3 4 4
2 2 3 3 4 4
Pll_[l 1 7P12= 2 2 7P21= 3 3 7P22:[4 4]

Then we can write the partitioned matrixz like this

Piy | Py
P = Ppartitioned = ( P21 P22

Note:

When we are partitioning any matriz, the diagonal blocks must be square matrix.

1.6 Cayley-Hamilton theorem and Minimal polynomial

Note: The minimum polynomial is often also called the “minimal polynomial”.

Definition 1.6.0.6. Let T : V — V be a linear transformation of a finite-dimensional vector space
over the field F. The minimum polynomial my(x) is the monic polynomial over F of smallest degree
such that mp(T) = 0.

To say that a polynomial is monic is to say that its leading coefficient is 1. Our definition of the
characteristic polynomial ensures that cp(x) is also always a monic polynomial.

The definition of the minimum polynomial (in particular, the assumption that it is monic) ensures
that it is unique.

Theorem 1.6.0.7. (Cayley—Hamilton Theorem) Let T :V — V be a linear transformation
of a finite-dimensional vector space V. If ep(x) is the characteristic polynomial of T, then cp(T) =
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0.
It is tempting to give the following “proof”:

Py(A) = det(A— AlI) = det0 = 0.

This is wrong. In the first place, notice that the output of determinant is a scalar, while P5(A) is
a matriz-indeed, writing Pa(t) = ag + a1t + ... + A1 1" 4+ t", we have

PA(A) = apl + CZQAQ + ...+ an_lAn_l 4+ A"

This is an n X n matriz, not a determinant of anything.
We first observe that if A happens to be diagonallizable (in particular, if A has n distinct eigen-
values), then writing any v € C" as a linear combination of eigenvectors vy, vs, ..., v, we get

Ps(A)v = P4(A Z cjv; = Z c;Pa(A Z ciPa(A =0,
showing that P4(A) = 0. However, if A is diagonalizable then we need to use a different argument.

Facts about polynomials
Let TF be a field and recall F[x] denotes the set of polynomials with coefficients from F:

f() = apa" + ap_12™ 4 . A a4 ag

(where a; € F).
Then Flx] is an example of what is known as a Euclidean domain. A summary of its main properties
are:

e We can add, multiply and subtract polynomials;

e FEuclidean Algorithm: if we attempt to divide f(x) by g(x) (where g(x) # 0), we obtain
f(x) = g(x)q(x) + ()

where either r(x) = 0 or the degree of r(x) satisfies deg r(x) < degg(x) (i.e., we can perform
long-division with polynomials).

e When the remainder is 0, that is, when f(z) = g(z)q(x) for some polynomial q(x), we say
that g(x) divides f(x).

e If f(x) and g(x) are non-zero polynomials, their greatest common divisor is the polynomial
d(x) of largest degree dividing them both. It is uniquely determined up to multiplying by a
scalar and can be expressed as

d(w) = a(x)f(x) + b(x)g(x)

for some polynomials a(x), b(x).
Those familiar with divisibility in the integers Z will recognize these facts as being standard
properties of 7.

Proposition 1.6.0.2. Let V be a finite-dimensional vector space over a field F and letT : V — V
be a linear transformation. If f(x) is any polynomial (over F) such that f(T) = 0, then the
minimum polynomial my(x) divides f(x).
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Corollary 1.6.0.2. Suppose that T : 'V — V s a linear transformation of a finite-dimensional
vector space V. Then the minimum polynomial my(x) divides the characteristic poly- nomial
cr(z).

Theorem 1.6.0.8. Let V' be a finite-dimensional vector space over a field F and let T :V — V
be a linear transformation of V. Then the roots of the minimum polynomial mr(x) and the roots
of the characteristic polynomial cy(x) coincide.

Theorem 1.6.0.9. Let V' be a finite-dimensional vector space over the field ¥ and let'T .V — V
be a linear transformation. Then T is diagonalisable if and only if the minimum polynomial mr(x)
is a product of distinct linear factors.

Lemma 1.6.0.1. Let T : V. — V be a linear transformation of a vector space over the field F and
let f(x) and g(z) be coprime polynomials over F. Then

ker f(T)g(T) = ker f(T) @ kerg(T).

1.7 Application of eigenvalues and eigenvectors

1. Communication systems:
Figenvalues were used by Claude Shannon to determine the theoretical limit to how much
information can be transmitted through a communication medium like your telephone line
or through the air. This is done by calculating the eigenvectors and eigenvalues of the com-
munication channel (expressed a matriz), and then waterfilling on the eigenvalues. The
eigenvalues are then, in essence, the gains of the fundamental modes of the channel, which
themselves are captured by the eigenvectors.

2. Designing bridges:
The natural frequency of the bridge is the eigenvalue of smallest magnitude of a system
that models the bridge. The engineers exploit this knowledge to ensure the stability of their
constructions. [Watch the video on the collapse of the Tacoma Narrow Bridge which was
built in 1940]

3. Designing car stereo system:
Figenvalue analysis is also used in the design of the car stereo systems, where it helps to
reproduce the vibration of the car due to the music.

4. Electrical Engineering:
The application of eigenvalues and eigenvectors is useful for decoupling three-phase systems
through symmetrical component transformation.

5. Mechanical Engineering:

FEigenvalues and eigenvectors allow us to "reduce” a linear operation to separate, simpler,
problems. For example, if a stress is applied to a “plastic” solid, the deformation can be
dissected into "principle directions”- those directions in which the deformation is greatest.
Vectors in the principle directions are the eigenvectors and the percentage deformation in
each principle direction is the corresponding eigenvalue.

Oil companies frequently use eigenvalue analysis to explore land for oil. Oil, dirt, and other
substances all give rise to linear systems which have different eigenvalues, so eigenvalue
analysis can give a good indication of where oil reserves are located. Oil companies place
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probes around a site to pick up the waves that result from a huge truck used to vibrate the
ground. The waves are changed as they pass through the different substances in the ground.
The analysis of these waves directs the oil companies to possible drilling sites.

Exercise 1.1. :

1. Find the eigenvalues, eigenvectors, spectral radius and minimal polynomial of the following

matric.
16 0 0o -2 -1
a 0 21 b. 11 5 3
011 -1 -2 0
-1 2 -1
2. Determine whether the matriz | —4 5 —2| is diagonalizable or not.
-4 3 0
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