Chapter 4

Bilinear and quadratic forms

This chapter mainly focus on the following objectives:

°

define the concept of a bilinear form on a vector space.

°

explain the equivalence of bilinear forms with matrices.

represent a bilinear form on a vector space as a square matrix.

define the concept of a quadratic form on R™.

explain the notion of a Hermitian form on a vector space.

Introduction

Bilinear forms occupy a unique place in all of mathematics. The study of linear transformations
alone 1is incapable of handling the motions of orthogonality in geometry, optimization in many
variables, Fourier series and so on forth. in optimization theory, the relevance of quadratic forms
is all the more. The concept of dot product is a particular instance of a bilinear form. Quadratic
forms, in particular, play an all important role in deciding the minima and mazxima of functions of
several variables. Hermitian forms appear naturally in harmonic analysis, communication systems
and representation theory. The theory of quadratic forms derives much motivation from number
theory. in short, there are enough reasons to undertake a basic study of bilinear and quadratic
forms.
We first remark that in this lesson, we shall deal with the fields F = Q,R,C only. Now, let us
begin with definitions and examples.

4.1 Bilinear forms

4.1.1 Definition of a bilinear form on a vector space:

We know that a linear functional if a scalar-valued linear transformation on a vector space. In a
similar spirit, a bilinear form on a vector space is also a scalar-valued mapping of vector space.
The difference lies in the fact while a linear functional is a function of single variable, a bilinear
form is a function of two vector variables. In other words, while a linear functional on a linear
functional on a vector space V' has the domain set V', a bilinear form on V has the domain set the
Cartesian product V- x V. A bilinear form is linear in both the variables. hence, the name bears
the adjective ’bilinear’.
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4.1. BILINEAR FORMS September 14, 2019

Definition 4.1.1.1. : Let V' be a vector space over a field F. A bilinear form on 'V is a mapping
f:V xV — T such that it is linear in both coordinates. That is for all w,v,w €V and X € F, we

have,

1. flau+ v, w) = af(u, w) + \f(v, w)
2. f(u,av+ dw) = af(u,v) + A\ f(u, w)
3. f(u,av) = af(u,v)

4 f(a'u’7 ’U) = af(“’? U)

Thus, a bilinear form on a vector space V is a function on V x V' such that it is linear in both
coordinates.

Example 4.1.1.1. Fvery square matriz, having entries from a field F = R or C, gives rise to
a bilinear form. Let A be an n X n matriz over a field F. Then, the function f : F* x " — F
defined by f(x,y) = * Ay is a bilinear form, on the vector space V.= T" for every pair of vectors
z,yc F".

One can easily verify the bilinearity of the mapping f using simple properties of matriz addition,
matrix multiplication and matrixz transpose and demonstrates that every square matrix over a field
produces a bilinear form.

4.1.2 Special types of Bilinear forms

Bilinear forms of significant importance include: symmetric, skew-symmetric, and alternating bi-
linear forms. The forms are conceptually inter-linked. We begin with their definitions.

Definition 4.1.2.1. A bilinear form f:V xV — F is
1. symmetric if f(u,v) = f(v,u), Yu, veV;
2. Skew-symmetric if f(u,v) = —f(v,u),Vu,veV;
3. alternating if f(v,v) = 0,Yv €V and the vector v is called an isotrophic vector;
4. non-degenerate if Yv € V, there exist w € V, such that f(w,v) # 0;
5. positive definite if f(v,v)Vv €V and the equality hold if v=0.
Example 4.1.2.1. :
1. The usual dot product of vectors in R™ defines a symmetric bilinear form on R™. The mapping
FiR*"xR* 5 R

defined by
f(@y) =2y =191 + Tay2 + - + Ty
is a bilinear form on R™ for every vector © = (x1, 22, -+ ,x,) and y= (y1,Y2, - ,Yn) in R”

and satisfies the symmetry property f(x,y) = f(y, ), since he dot product is commutative.
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2. Let V =R? and its elements be viewed as a column vectors. Then, the determinant map

det : R>x R> - R

5. ] oy )

is a skew-symmetric and alternating bilinear form on R2. Skew-symmetric follows because
interchanging the columns of the matrix changes the sign of the determinant; and it is alter-
nating because whenever the two columns are identical, the deretminant is zero.

given by

3. The bilinear form f: Cx C — C given by f(z, w) = Im(zw),Vz, w € C is a skew-symmetric
bilinear form on C because ¥z, w € C, we have f(z, w) = Im(zw) = —Im(wz) = — f(w, 2).

4. The bilinear form f: Q3 x Q% — Q (in 1) given by f(z, y) = ur+ 3vt — wr + 2ut for all

u r
z=|v | €Q®andy=|s| € Q3 is neither symmetric nor alternating on Q3.
w t
1 0 2
5. A= 0 0 3|. Construct the corresponding R-bilinear form on R3.
-1 00
Solution:

The desired bilinear form f: R?® — R3 is

1

fxy)=x"Ay = (uvw)| 0
—1

= ur + 3vt — wr + 2ut;

oS O O
S W N
~

u .
forallx=|v|€R3andy = |s| € R
w t

Remarks

e In all characteristics, an alternating bilinear form is skew-symmetric. A bilinear form is
skew-symmetric if and only if it is alternating.

e In charactristic not 2, every bilinear form f(w, v) on V can be written uniquely as a sum of
a symmetric and an alternating bilinear form as for every u, v € V, we have

f(u,v)+f('v,'w+f(u,v)—f('v,w)
2 2 '

f(u7 'v) =

e In all characteristic not 2, every symmetric biinear form f(w, v) on an n—dimensional vector
space V' is completely determined by its values f(w, v) on the diagonal, as for every u,v € V,
we have using the symmetry of the bilinear form f,

Pt uto) = [ 0) 2 JO) _ L (fav) + flow) = flu )

This is called polarization identity.

f(u’ ’U) =
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Remark 4.1.1. A matriz A is symmetric iff

CAFAT A AT

A
2 9

4.1.3 Matrix representation of a Bilinear forms:

Let V.= ", then every n X n matriz A gives rise to a bilinear form by the formula fa(u,v) =
uAv that is if f:V x W — T is bilincar form over a field ¥, B = {v,vs,--- ,v,} and B =
{wy, we, -+ ,w,} being basis of vector space V- and W respectively. For any v € V, w € W can
be written as v = 3", (oyv;) and w = 3%, (Bv5). Therefore,

m m

Flow) = £ (), S (Bo,) = 3 (Flawws > (650,)))

=1 =1 =1 =1

o
EY

(Since f is bilinear map.)

=33 (8 n,)

( f is linear with the 2nd variable.)

We have m x n scalars. The mn scalars f(v;,v;) completely determines the values of f. Let
aij = f(vi,v;) consider the matric A = (aij)mxn = f(vi)f(v;), then f(x,y) = x'Ay where x =

(1,22, ..., Tm) and y = (Y1, Y2, -, Yn). A is called the matrix representation of the bilinear
form f:V xW —F.
Here

A= [aij]nxm Q5 = f(ei,ej), Vi,j=1:n.

Example 4.1.3.1. The bilinear form f(x, y) = x1y1 + 221y + 3T2y1 + 4x2ys has matrix (zl)’ i

with respect to standard basis; f((x1,x2), (y1,y2)) = (x1, x2) (;) Z) <zl>
2

Example 4.1.3.2. Take V = R%. The following matrices are bilinear forms ((1) (1)> , <(1) _01> , (

Example 4.1.3.3. If A = (1 2) then the corresponding bilinear form is

3 4

1 2\ [z
f((@1,29), (Y1, 92)) = (371 y1) (3 4> <y2> = 1122 + 221y + 3y172 + 4y1Yo.

2

zelalem.meseret@amu.edu.et 66




CHAPTER 4. BILINEAR AND QUADRATIC FORMS September 14, 2019

Example 4.1.3.4. Calculate the matriz of the bilinear form det on R? relative to the standard
basis for R2.
Solution The bilinear form f = det on R? is given by

06 -0 (0) - -

so that with respect to the standard basis B = {e; = (é) , €y = (?), we have,

11

10
ay = f(e1,ez) = det (0 0) =0; a1 = f(e1,eq) = det (() 1) =1

a9 = f(ez,el) = det (? é) = —1, 99 — f(ez,ez) = det (i) 1) = O,

and therefore, the matriz of this bilinear form det is A = (_01 (1)>
Exercise 4.1.3.1. :
Compute the matrixz of the

a. bilinear form [ : Q* — Q given by f(x, mathbfy) = x1ys+x3ys+x2y1, VX = (11, T2, 73), y =
(y1,y2,y3) € Q? relative to the basis for Q3.

b. f(x,mathbfy) = 2z1y1 — 3Toys + w3y, V(T1, 70, x3), (y1,Yy2,y3) € R3 relative to the ordered
basis B=(1,1,1), (=2,1,1), (2,1,0).

4.2 Quadratic forms

In this section we will use matrix methods to study real-valued functions of several variables in
which each term is either the square of a wvariable or the product of two variables. Symmetric
bilinear forms give rise to what are known as quadratic forms. In optimization theory, machine
learning, applied probability, geometry, vibrations of mechanical systems, statistics, and electrical
engineering. and above all, in number theory, quadratic forms have deep and serious applications.
There are many open problems regarding quadratic forms.

Let V' be a finite dimensional vector space over a field .

A certain bilinear form is symmetric if it’s associated matriz is symmetric.

4.2.1 Quadrics

Let A denote an n x n symmetric matriz with real entries and x denote an n X 1 column vector.

Definition 4.2.1.1. Given a symmetric bilinear form f on V', the associated quadratic form is
the function q(v) = f(x,x) = x Ax. The quadratic form q has the property q(\x) = \?q(z).
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Note that

Q=xAx = (1, x9,..., xy) :2
ap1 -+ Gpn ,
_ (q‘ . . ) (2?21 aalixi>
IR D o e

2 2
= (a117] + a1271%2 + ... + a1 T1Ty) + ... F (A1 T + 22T, Ty + .o + AppT))

= Z Qi T2 .

i<j

Example 4.2.1.1. The corresponding quadratic form of the bilinear form f defined by (g g) is

o) = £ (o) = (o) (5 9) (1) = a2 450

Proposition 4.2.1.1. Let f be a bilinear form on'V and B be a basis for V. Then f is a symmetric
bilinear form iff the matrixz representation of f with respect to the basis B is a symmetric bilinear
form.

Theorem 4.2.1.1. (polarization theorem) If 1 +1 # 0 in F then for any quadratic form q the
underlying symmetric bilinear form is unique.

Proof. If u,v € V then
q(u+v)= fu+v,u+0v)
= f(u,u) + 2f(u,v) + f(v,v)
=q(u) +q(v) + 2f(u, v)
So, f(u,v) = %(q(u +v) — q(u) — q(v)). O
Remark 4.2.1. :

A bilinear form is symmetric if, and only if, its matriz relative to some basis is symmetric.
A bilinear form is alternating if, and only if, its matriz relative to some basis is skew-symmetric.

Example 4.2.1.2. : Consider A = it is a symmetric matrix.

2 1
10
Let f be the corresponding bilinear form. We have

Ty Y\ _ 2 1\ (xz2) _
/ ((Q) ’ <y2>> - (‘Tl yl) (1 0) <y2> = 20109 + T1Y2 + Ty,

q(x,y) = 22° + 2xy = f((x,y), (x,9)).

and

Letu = <$1> , V= (“)
hn Y2

Then

1(Q(u +v) —q(u) —q(v)) = %(2(351 + 22)? 4 2(x1 + 22) (1 + v2) — (21)% — 22101 — 2(22)” — 22112)

2
- e e =1((3). ()
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If A = (a;;) is a symmetric matriz,then the corresponding bilinear form is

flay) = (ay) (i) + Y (i) (xay; + 250:)

i 1<j

and the corresponding quadratic form is q(x) = 3 a;;(2:)*.

Definition 4.2.1.2. We say that a quadratic form f on a vector space dimension has signature
(a,b, c) if there exists a basis B such that [f]p = D(a,b,c).

1 2
=)
and the vector x, @ is given by

Q = x'Ax = (21 o) (é ?> (i;)

= (5171 + 2217221‘1 —+ CL’Q) ($1>

Example 4.2.1.3. Consider the matriz

T2
=22 4+2 2 2
=x] + 201209 + 22122 + X5

2 2
= x] +4x1709 + 75,

Definition 4.2.1.3. For any n x n symmetric real matriz A, a real row vector b and real number
v, the set v € R™ : a7 Az + bx + v = 0 is called quadric. If n = 2 is called a conic.

Example 4.2.1.4. The set (z,y,2) € R3 : 22 —y*> — 2+ 1 = 0: Consider a quadric V = {x € R" :
2l Az + bx +~v=0}. We have A= QT DQ for an orthogonal Q and a diagonal matriz D.

Classification of the quadratic form
Q = x Ax; A quadratic form is said to be:

a: negative definite: (Q < 0 when x # 0.
b:  negative semidefinite: () < 0 for all x and Q) =0 for some x # 0.
c: positive definite: Q > 0 when x # 0
d: Positive semidefinte: (Q > 0 for all x and Q) = 0 for some x # 0.
e: indefinite: QQ > 0 for some x and QQ < 0 for some other x.

Example 4.2.1.5. The quadratic forms QQ = x3+2x3+4x3 and Q = 3z,+3z3 are positive definite.
as shown below

Example 4.2.1.6. classification of conics: p = 2 : a123 + asx = 7 for a1, as > 0 empty if v < 0,
the point (0,0) if v =0, an ellipse with axis \/azl and \/I if v> 0.

az’

Example 4.2.1.7. The dot product u.v on R" is symmetric bilinear form.
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Matrix representation of quadratic forms Let () be a quadratic form. The matriz repre-
sentation of Q) is A for which its diagonal entries are the coefficient of the squared terms, and
off-diagonals are half of the coefficients of the cross product terms. Here it’s associated matriz is
always symmetric.

Example 4.2.1.8. Find the associated matriz of the quadratic forms

a. 2x% + 6xy — 5y? b. %+ yxi + dry79 — 20173 + 8973

4.2.2 Conic Sections

Recall that a conic section or conic is a curve that results by cutting a double-napped cone with
a plane.

The most important conic sections are ellipses, hyperbolas, and parabolas, which result when the
cutting plane does not pass through the vertex.

Circles are special cases of ellipses that result when the cutting plane is perpendicular to the axis of
symmetry of the cone. If the cutting plane passes through the vertex, then the resulting intersection
is called a degenerate conic. The possibilities are a point, a pair of intersecting lines, or a single
line.

Quadratic forms in R? arise naturally in the study of conic sections. For example, it is shown in
analytic geometry that an equation of the form

ar® + 2bxy + ey’ +de+ey+ f=0

in which a, b, and ¢ are not all zero, represents a conic section.
If d = e =0 in, then there are no linear terms, so the equation becomes

az® 4+ 2bxy +cy’ + f =0 (4.1)

and is said to represent a central conic. These include circles, ellipses, and hyperbolas,
but not parabolas. Furthermore, if b = 0, then there is no cross product term (i.e., term involving
xy), and the equation

ar2+cy2+ f=0 (4.2)
is said to represent a central conic in standard position.
Theorem 4.2.2.1. If A is a symmetric matriz, then:
(a) xT Ax is positive definite if and only if all eigenvalues of A are positive.
(b) xT Ax is negative definite if and only if all eigenvalues of A are negative.

(c) xT Ax is indefinite if and only if A has at least one positive eigenvalue and at least one
negative eigenvalue.

Classification of Conic sections
x!"Bx = k is the equation of a conic, and if k # 0, then we can divide through by k and rewrite
the equation in the form

xTAx =1
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where A = %B. If we now rotate the coordinate azes to eliminate the cross product term(if any)
in this equation, then the equation of the conic in the new coordinate system will be of the form

Mt + A + .+ A =1 (4.3)

in which \/'s are eigenvalues of A. The particular type of conic represented by this equation will
depend on the signs of the eigenvalues \;'s.

xT Ax = 1 represents an ellipse if all eigenvalues are positive.

xTAx =1 has no graph if all eigenvalues are negative.

xT Ax = 1 represents a hyperbola if the sign of the eigenvalues are opposite.

Theorem 4.2.2.2. If A is a symmetric matriz, then:
(a) A is positive definite if and only if the determinant of every principal submatriz is positive.

(b) A is negative definite if and only if the determinants of the principal submatrices alternate
between negative and positive values starting with a negative value for the determinant of the
first principal submatriz.

(c) A is indefinite if and only if it is neither positive definite nor negative definite and at least one
principal submatriz has a positive determinant and at least one has a negative determinant.

4.3 Application of Bilinear and quadratic forms

4.3.1 Optimization Using Quadratic Forms

Our first goal in this section is to consider the problem of finding the maximum and minimum
values of a quadratic form xT Ax subject to the constraint ||x|| = 1. Problems of this type arise in
a wide variety of applications.

To visualize this problem geometrically in the case where X' AX is a quadratic form on R?, view
2 = xTAx as the equation of some surface in a rectangular xyz—-coordinate system and view
l|z|| = 1 as the unit circle centered at the origin of the xy—plane. Geometrically, the problem of
finding the mazimum and minimum values of xT Ax subject to the requirement ||x|| = 1 amounts
to finding the highest and lowest points on the intersection of the surface with the right circular
cylinder determined by the circle

Theorem 4.3.1.1. Constrained Extremum Theorem:
Let A be a symmetric n X n matrix whose eigenvalues in order of decreasing size are

AL > A > >
Then:

(a) The quadratic form xT Ax attains a maximum value and a minimum value on the set of
vectors for which ||x|| = 1.

(b) The mazimum value attained in part (a) occurs at a vector corresponding to the eigenvalue
AL

(¢c) The minimum value attained in part (a) occurs at a vector corresponding to the eigenvalue
)\’IL
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The condition ||x|| = 1 in this theorem is called a constraint, and the mazimum or minimum
value of xT Ax subject to the constraint is called a constrained extremum. This constraint can also
be expressed as x'x =1 or as ¥? + 13 + ... + 22 = 1, when convenient.

Example 4.3.1.1. Finding Constrained Ezztrema
Find the mazimum and minimum values of the quadratic form

2z = 5x® + 5y* + 4wy

subject to the constraint 22 4 y? = 1.
Solution:
The quadratic form can be expressed in matriz notation as

_ =2 2 CoT pe 5 2| |x
z=2030r"+5y +4dry =x Ax—[rzf y] [2 51 M

We leave it for you to show that the cigenvalues of A are Ay = 7 and Ny = 3 and that corresponding

62:9671’0662507"8 are
1 —1
v [ [

Normalizing these eigenvectors yields

A B _ 9. |=L 1
M=T: 7 v =3 |3 K (4.4)
Thus, the constrained extrema are
Constrained mazimum: z =7 at (v,y) = (\%)

constrained minumu: z = 3 at (\%) . Since the negatives of the eigenvectors above are also unit
cigenvectors, they too produce the maximum and minimum values of z; that is, the constrained
mazximum z =T also occurs at the point (x,y) = (\_/—%, \_/—%) and the constrained minimum z = 3 at

4.3.2 Constrained Extrema and Level Curves

A useful way of visualizing the behavior of a function f(x,y) of two variables is to consider the
curves in the xy—plane along which f(x,y) is constant. These curves have equations of the form

flz,y) =k

and are called the level curves of f. In particular, the level curves of a quadratic form xT Ax on
R? have equations of the form

x'Ax =k (4.5)

so the maximum and minimum values of xT Ax subject to the constraint ||x|| = 1 are the largest and
smallest values of k for which the graph of the above equation intersects the unit circle. Typically,
such values of k produce level curves that just touch the unit circle and the coordinates of the points
where the level curves just touch produce the vectors that mazimize or minimize X' Ax subject to
the constraint ||x|| = 1.
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4.3.3 Relative Extrema of Function of Two Variables using Quadratic

forms

We will conclude this section by showing how quadratic forms can be used to study characteristics
of real-valued functions of two variables. Recall that if a function f(x,y) has first-order partial
derivatives, then its relative mazima and minima, if any, occur at points where the condition

fz(z,y) = 0 and fy(z,y) =0

are both true. These are called critical points of f. The specific behavior of f at a critical point
(x0,Y0) 1s determined by the sign of

D(x,y) = f(z,y) — f(z0,%0) (4.6)
at points (x,y) that are close to, but different from, (zo,yo):

e If D(x,y) > 0 at points (x,y) that are sufficiently close to, but different from, (xo,v0), then
f(xo,v0) < f(z,y) at such points and f is said to have a relative minimum at (o, yo).

e If D(x,y) < 0 at points (x,y) that are sufficiently close to, but different from, (xo,vo), then
f(xo,y0) > f(x,y) at such points and f is said to have a relative maximum at (o, yo).

e If D(x,y) has both positive and negative values inside every circle centered at (zo,vo), then
there are points (x,y) that are arbitrarily close to (xq,yo) at which f(xo,v0) < f(x,y) and
points (x,y) that are arbitrarily close to (xo,yo) at which f(xo,v0) > f(x,y). In this case we
say that f has a saddle point at (zo,yo)

Theorem 4.3.3.1. (Second Derivative Test):
Suppose that (zo,yo) s a critical point of f(x,y) and that f has continuous second order partial
derivatives in some circular region centered at (xo,yo). Then:

(a) [ has a relative minimum at (xo,yo) if
Jea (0, 40) Fyy (20, Y0) — [, (x0,50) > 0 and fra(wo, o) > 0.
(b) f has a relative mazimum at (xo,yo) if
Joa (@0, Y0) fyy (0, Yo) — f2,(x0,y0) > 0 and foz(z0, y0) < 0.
(c) f has a saddle point at (xq,yo) if
faa (20, Y0) fyy (20, Y0) — fg?y(iﬂo,yo) < 0.
(d) The test is inconclusive if
fxx(flfo,yo)fyy(ﬂfo,yo) - f:?y(-To, Yo) = 0.

Our interest here is in showing how to reformulate this theorem using properties of symmetric
matrices. For this purpose we consider the symmetric matrix

_ faz(T,y) fxy($7y)
H(z,y) = foy(@,y)  fyy(2,9)
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which is called the Hessian or Hessian matriz of f in honor of the German mathematician and
scientist Ludwig Otto Hesse (1811-1874). The notationH (x,y) emphasizes that the entries in the
matriz depend on x and y. The Hessian is of interest because

det[H (zo,y0)] = ;Zg: Z; ;zzg: leg

is the expression that appears in above Theorem. We can now reformulate the second derivative
test as follows.

Theorem 4.3.3.2. (Hessian Form of the Second Derivative Test):

Suppose that (xo,yo) s a critical point of f(x,y) and that f has continuous second order partial
derivatives in some circular region centered at (vo,vo). If H(xo,yo) is the Hessian of f at (zo,yo),
then:

(a) f has a relative minimum at (xo,yo) if H(xo,y0) is positive definite.
(b) f has a relative maximum at (xo,y0) if H(xo,yo) is negative definite.
(c) f has a saddle point at (zo,vo) if H(xo,y0) s indefinite.

(d) The test is inconclusive otherwise.

Example 4.3.3.1. Using the Hessian to Classify Relative Extrema
Find the critical points of the function

1
flz,y) = gsc?’ + ay® — 8xy + 3

and use the eigenvalues of the Hessian matriz at those points to determine which of them, if any,
are relative maxima, relative minima, or saddle points.

Solution:

To find both the critical points and the Hessian matriz we will need to calculate the first and second
partial derivatives of f. These derivatives are

foly) =2 + 4% — 8y, fy(w,y) = 20y — 8x, foy(2,y) = 2y — 8fualw,y) = 22, fyy(x,y) = 2u.

Thus, the Hessian matriz is

_ faz(7,y) fxy(a:»y) _ 2z 2y -8
H(z,y) = Jay(7,9) fyy(xay] B [21/_8 2x ]

To find the critical points we set f, and f, equal to zero. This yields the equations

fo(z,y) = 2> + 97 — 8y =0 and f,(z,y) = 20y — 8z = 2x(y —4) =0
Solving the second equation yields x = 0 or y = 4. Substituting x = 0 in the first equation and
solving for y yields y = 0 or y = 8; and substituting y = 4 into the first equation and solving for x
yields © = 4 or x = —4. Thus, we have four critical points:

(0,0), (0,8), (4,4), (—4,4).
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Evaluating the Hessian matriz at these points yields

H(0,0) = [_08 _08] H(0,8) = [g ﬂ H(4,4) = B g} H(—4,4) = [_08 g}

We leave it for you to find the eigenvalues of these matrices and deduce the following classifications

Critical point (xo,Yo) | M1 | Az Classification

(0,0) 8| -8 saddle point

of the stationary points: (0,8) 8| -8 saddle point
(4,4) 8 | 8 | Relative minimum
(-4,4) -8 | -8 | Relative mazimum
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