Chapter 3

Canonical forms

A field F is said to be algebraically closed if every polynomial o degree greater than zero with
coefficients in IF has zero in IF.

3.1 Elementary row and column operations on matrices
Let K be a field and F[x] is the polynomial domain. We wish to study matrices over F[z], consider
elementary operations in such matrices. That is The matriz operations of

1. Interchanging two rows or columns, (R; <> R;).
2. Adding a multiple of one row or column to another, (R; <> R; + kR;,k # 0).

3. Multiplying any row or column by a nonzero element. (R; <> kR;).
Fach of the operations is called elementary operations.

Definition 3.1.0.1. A matriz obtained from the identity matriz I by applying an elementary
operation is called elementary matrix.

Note: - Fvery clementary matrix is non-singular and its inverse is also elementary matric.

3.2 Equivalence of matrices of polynomial

Definition 3.2.0.2. :- Let A and B be matrices over F(x). If B is obtained from A by performing
any succession of F(x) elementary operations, A is said to F(x) equivalent to B. Notation: -
A = B, B is obtained by F(x) elementary operations of A,and A = B iff B = PAQ where P, Q
are products F(x) elementary matriz.

Example 3.2.0.2. Show that

where
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3.2.1 Determinantal divisors and related invariants

The K" order minor

Definition 3.2.1.1. Let A be an n x n matriz over F(x), A = (aq;), if Ai; is a matriz obtained by
deleting the i and j*™ column of A. The scalar M;; = det(A;;) is defined as the (i, )" minor of
A. The k x k sub-matriz of A is formed by deleting n — k rows and n — k columns of A (that is
obtained when the first k rows and columns of A are retained) is called the principal sub matrix
and the determinant of principal sub matriz of A is called a principal minor of A. The leading
principal minor of A of order k is the minor of order k obtained by deleting the last n — k rows

and columns.

1 2z 3
Example 3.2.1.1. A= |0 4 5a|. Find the 1°¢, 2" and 3" order minors of A.
r 2 1
Solution:
rows-columns 1,2 (delete 3™ column) | 1,8 (delete 2™ column) | 2,8 (delete 15% column)
1 2z 1 3 2v 3
and _ _ _ 2
1,2 (delete 3™ row) (0 4) =4 (0 535) = 5w (4 5:5) = 102* — 12
1 2z 1 3 2z 3
nd — 9 _ 2 — 1 _ — _
1,8 (delete 2™ row) (x 5 > =2—-2 (m 1) 1—3x ( 5 1) 20 —6
0 4 0 5z 1 3
st —_ — — 2 = —
2,3 (delete 1% row) (L 2> = —4z (L 1> Sx <l 1) 1—-3x

The 2" order principal minors are

3= 1

And the 2™ order leading principal minor is

=4,

1

definiteness and principal minors

2
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1 3>’=1—3x,
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>‘=1—3x.

Theorem 3.2.1.1. Let A be a symmetric n X n matriz. Then we have:

e A is positive definite ADy, > 0 for all principal minors.

o A is negative definite < (—1)*Dk > 0 for all leading principal minors

e A is positive semidefinite < A, > 0 for all principal minors Ayg.

o A is negative semidefinite (—1)¥A, > 0 for all principal minors.

Example 3.2.1.2. Determine the definiteness of the symmetric matriz A =

Solution:

1 4

D]:17D2:|(4 2

1 4
)|:—14, D3: 4 2
6 1

Let us compare with the criteria in the theorem: A is indefinile.
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3.3 Smith canonical forms and invariant factors

Let A and B be m x n matriz over F|x].

Lemma 3.3.0.1. Suppose B = PAQ where P is a product of F[z| elementary matrices,then every
k" order minor of B is a linear combination over F[z] of k™ order minor of A.

Theorem 3.3.0.2. Let A, B be m x n matrices over F[z], then every k' order minor of B is a
linear combination over F[z] of k™ order minor of A.

]Fﬁ]

Corollary 3.3.0.1. Let A, B be mxn matrices over F[x], then A = implies rank(A) = rank(B).

Corollary 3.3.0.2. Let A ]Fg], dy(z) = ged{all K™ order minors of A}, then
dip(z) = ged{all k™ order minors of B}.

Lemma 3.3.0.2. Let A be a non-zero m x n matriz over Flz|, then A is F|z| equivalent to m x n

fl(()iﬂ) j ), where fi(x) is a monic polynomial of minimal degree
1

among all non-zero elements of all matrices F|x] equivalent to A.

matriz over F|x] of the form:

Theorem 3.3.0.3. Let A, B be equivalent matrices, B, dy(x) = ged{all k" order minors of A},
then

dp = f1(z).f2()... fi().

(fl(.’l;) 0 0 )
D= 0 falz) 0 [.
0 0 fi(x)

Dy = ged{ fi(x), fa2(), f3(2)} = fi(x),
Dy = ged{ fifs, fof3, fifs} = fife

Theorem 3.3.0.4. Let A, B be similar matrices. The polynomials fi(x), fo(z), ..., fe(x) are
uniquely determined by the matrix A.

Definition 3.3.0.2. Let A and B be similar matrices. The polynomial fi(x), fa(x), ..., fu(x) are
called the invariant factors of A.
The matriz B is called the smith canonical form of A and denoted by SCF(A).
Flx

Corollary 3.3.0.3. Let Ay, Ay be m x n matrices over Flx]. Ay [E] Ay iff Ay, Ay have the same
invariant factors.

1 0
Example 3.3.0.3. Find the invariant factors of A = x 1 and its smith canonical form.

3

N O R

r—1
Solution:
The 15 order minors A are 0, 1, x, 2, 3, x — 1.

di(z) = fi(z) = gcd{0,1,2,3, 2,2 — 1} = 1.

2" order minors are
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rows-columns 1,2 (delete 3" column) | 1,3 (delete 2™ column) | 2,3 (delete 15¢ column)

1,2 (delete 2™ row) (g i) — 22 (3 (1)) — (i (1)) _

st €T ]_ . _ X 0 2 1 O — _
1,3 (delete 1°" row) (2 3> =3z -2 <2 r—1) =% -7 (3 r—1) =" !

0 0 1 x 1 A
5 st — _ 9, — 2 — 2 e
2,3 (delete 1% row) (2 3> = -2z (2 3> S (3 . 1) P —x—3

The 3" order minor is |A| = x* — 2® — 51 + 2,

d3(z) = ged{x® —2* =5z +2} =2 —2* =52+ 2, f3(v) = = =ds(v) =2° — 2% — 5xr + 2.

The similarity invariants of A are fi(z) =1, folz) =1, f3(x) =2° — 2> — 5z + 2.
The smith canonical form of A is

10 0
D=0 1 0 .
0 0 22—a2—3x+2

Exercise 3.3.0.5. Find the smith canonical form and invariant factors of the following matrices.

x x x 2’ r x+1
A_<ZL‘2+£E :B) b'B_<$3 1‘5) C'C_<:E+2 3:+3>

3.3.1 Similarity of matrices and invariant factors

Theorem 3.3.1.1. Let A be a matriz over Fx] is a product of F[x] elementary matriz iff det(A) #
0.

Theorem 3.3.1.2. Let A be a square matriz over Fx]. A has an inverse over F[z| iff A is a
product of Flx| elementary matriz.

Example 3.3.1.1. Determine whether or not the following matrices over F|x| are non-singular

T r+1 1 €T
ornot(F—R).A—<x+2 x+3> b'B_<x x2+1>

Solution: det(A) = —2 # 0. Hence A is invertible.

Theorem 3.3.1.3. Let A be an nxn matriz over Fx], Xa(x) = the characterstics of A. Then
X a(x) is the product of the invariant factors of (xI—A). (i.e.If fi(x), fo(x), ..., fu(x) are invariant

factors of (xI — A), Xa(z) = fi(x).fo(x)....fu(x).
Proof:

Definition 3.3.1.1. Let A be an nzn matrixz over the field F, then the invariant factors of (x1— A)
is called stmilarity invariant of A.

Theorem 3.3.1.4. Let A be an naxn matriz over Flx], My(x) = the minimal polynomial of A,
then Ma(x) = fu(x),where f,(x) if the similarity invariant of a of highest degree of A.
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3.4 The rational canonical forms

Consider the monic polynomial of degree ‘n’.

1

f@)y=a"+ax" '+ . Fapr+a, =2" — (—a 2" — = AT — ay)

associate with f(x) is the n x n matriz. The companion matriz is given by

0 1 0 0 0
0 0 1 0 0
A= z
0 0 0 0 1
—Qnp —0p—1 —Ap-2 - - —Q@y —a1

It is denoted by C(f).
Note:-
If n=1,n=degree of polynomial f(x) = x — ag the companion matriz C(f) = (ao).
If n=2 and f(x) = 2% — (@17 + as), then C(f) = (c? a1>
2
If n=4, f(z) = 2* — (32% + 22® — 5z + 2), then companion matriz

w = o o

Theorem 3.4.0.5. Let f(x) = 2"+ a2 ' + ...+ an_17 +a,, then the characteristic and minimal
polynomial of the C(f) are both equal to f(x).

Theorem 3.4.0.6. Let f(x) = 2" + a12™ ' + ... + ap_12 + a, be monic polynomial of degree n.
Then

el — C(F)] 2 diag(1,1, .., f(x)).

Theorem 3.4.0.7. Let fi(x).fo(x).....fr(x) be non constant monic polynomials over F such that
filfii +1) fori=1:r—1, the campanion matriz Ci = C(f;),i = 1,2,...,v. Then the matriz

B = diag(C, Cy, ..., C})

has
fi(z). fo(x)..... fr (@)

its non-trivial similarity invariants.

Theorem 3.4.0.8. every non-singular matriz A over a field F is similar to a diagonal block
matriz, where each diagonal block is the companion matriz of the non-trivial similarity invariant

of A.

Definition 3.4.0.2. A diagonal block matriz diag(Cy,Cs, ..., C;) of the above theorem is called
rational canonical form for the matriz similar to A.
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6 2 -2
Example 3.4.0.2. Let A= | —=2 2 2 |. Find the rational canonical form of matrices which
2 2 2
are similar to A.
Solution:
similarity invariants are obtained from the matriz similar to A which is (xI — A).
100 6 2 -2 r—6 =2 2
(el —A)=2]|0 1 0] —-]-2 2 2 |= 2 r—2 =2
0 0 1 2 2 2 -2 -2 -2
Now,

di(x) = the gcd{of 1°*" order minor of (xI — A)}
=gcd{r —6, =2, 2, z -2} =1= fi(x),
do(z) = ged{of all 2" order minors of (xI—A)} = ged{x*—4x, 208, —22+8, 2°—8x+16} = 2—4.
) _(@—4)
P = 4w =

ds(z) = det(x] — A) = 2° — 102° + 327 + 32 = (v — 4)*(z — 2),
Cdw) -2

M) =G = @
fi(@), fo(z), f3(x)

are similarity invariants of a matriz similar to A. But they are non trivial.
The companion matriz for fo(x) is C(f2) = (4), and the companion matriz for f3(x) is C(fs) =
0 1

=z —4,

=(r—4)(x —2)=2" — 62 +8.

-8 6)°
Therefore, the rational canonical form of the matrices similar to A is
4 0 0
c(fy=10 0 1
0 —8 6

The minimal polynomial Ma(x) of A is Ma(x) = 22 — 6 + 8.

3.4.1 Elementary divisors

Let Xa(x) and fi(z).fao(x).....fr(x) be the characteristic polynomial and the similarity invariants
of an n X n matriz A over a field F.

Suppose that the Xa(x) = pi'ps...pft, where py, pa, ...,pr are distinct monic polynomials which
are irreducible over F and each e; is positive integer and the non-trivial similarity invariant of A
s given by

€i2

fi= pi11p2 ”.pl‘;it'

Since fil fiv1, €ip1, > €ij.

Definition 3.4.1.1. The polynomial p; which appears in similarity invariants of A with non-zero
cxponents e;; are called the elementary divisors of A over the field F. Remark:

p;(z) is a monic polynomial. p;(x) is a power of irreducible polynomial (one cannot be factored).
The characteristic polynomial of A is a product elementary divisors.

Hence the minimal polynomial is the least common multiple of all elementary divisors.
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Example 3.4.1.1. Let fi(z) = (x — 1)(z + 1), fo(z) = (2 = 1)(z + 1)(2? + 2), fi3(x) = (z —
1)%(z — 1)%(x? + 2) be similarity invariants of A, then the elementary divisors of A are

(x—D(x+1), (z—-12 2+1, 22 +2, (z—1)% (@ +1)?2 2°+2.

Example 3.4.1.2. Suppose x, x, 2°, x+1, (x —1)% (x—1)% z—1, (x—1)3 are the elements
of the elementary divisors of A, then the non trivial similarity invariants of are

file) =2, folz) = 2(z - 1)(x +1), fs(z) = (2)*(x - 1)*(z - 1)*).

Theorem 3.4.1.1. Let A and B be an n X n matriz over a field F. A ~ B if and only if A and
B have the same elementary divisor.

3.5 The normal and Jordan canonical forms

3.5.1 Normal canonical forms

Let f(x) = 2" + a1a™ ' + ...+ ap_1x + a,. We can write f(x) = p{'p5?...p7t ,where p; are distinct
monic, irreducible polynomials over Flz] and e;s are positive integers .

Lemma 3.5.1.1. let C = C(f).Then C ~ diag(Cy, Cy, ...,Cy) where C; = f(p5*).

Lemma 3.5.1.2. Let A be n X n matriz over a field F, g1, ga, ..., gn be the elementary divisors of
A, C; = f(gi) fori=1,2,...,r. Then A ~ daiag(Cy, Cs, ..., C}).

Definition 3.5.1.1. Let C, Cy, ..., C,. be the matriz diag(Cy, Cs, ..., C,) is called normal canon-
tcal form for the matriz similar to A.

Example 3.5.1.1. Find the normal canonical form of a matriz similar to

6 2 2
A=|[-2 2 0
0 0 2
Solution:
— — —2
Step1:- find elementary divisor of (xI — A) 2 x-— 0
( 0 0 r—2
The 15 order minors of (¢l — A) are & — 6, —2, —2, —2, 2, 0, x — 2.

di(z) = ged{0,—2,2,x — 6,2 — 2} =1 = fi(x).
The 2™ order minors of (xI — A) are
v —8x+16,2% — 4w +4, —(x — 2),4,2(x — 2),2* — 8z + 10,z — 4

do(7) = gedr® — 8x 4+ 16,2° — 4o + 4, —(x — 2),4,2(x — 2), 2> = 8x + 10,z —4 =1,
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The 3" order minor of (xI — A) is (x — 2)(z — 4)? = d3(x).

The elementary divisors of A are (x — 2) and (x — 4)?.
Step 2:- compute the companion matriz for the elementary divisors of (xI—A). Let C; = C(x—2) =

(2), Co=C((z -4 =Ca*~8r+16)= (0 116 8).
Step 3:-

2 0 0
A~ diag(Cl,C’g) =10 0 1
0 —16 8

which is the normal canonical form of any matriz similar to A.

3.5.2 Jordan Canonical Form

Suppose the elementary divisors pj“ of an n x n matriz A are of the form (x — \;)%. We define
the Jordan block corresponding to the elementary divisor pj“ = (x — X;)% to be the e;; X e;; of
matriz J;, given by

A 10 .. 0
0 Ao 1 .. 0
el I
0 0 0 .. Ay

Theorem 3.5.2.1. Let F be algebraically closed field. If the nxn matriz A over F has r elementary
divisors with associated Jordan Jy, Jo, -+ | Jp, then A ~ diag(Jr, Jo, ..., J;).

Definition 3.5.2.1. If A ~ diag(J1, Ja, ..., J;.) is called the Jordan canonical form of A.

6 2 2
Example 3.5.2.1. Let A = (2 2 0). Find the jordan canonical form of the matrix similar
0 0 2

to A.

Solution: From previous example we have seen (x —2) and (x — 4)
Let Jy be the jordan canonical form of (x — 2), J; = (2).

Let Jy be the jordan canonical form of

) 41

Hence the Jordan canonical form of the matrices similar to A is given by

) |

2 are elementary divisors of A.

o O N
O =~ O
= = O

diag(Jl, Jz) = (
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