Chapter 3

Canonical forms

A field \mathbb{F} is said to be algebraically closed if every polynomial o degree greater than zero with coefficients in \mathbb{F} has zero in \mathbb{F} .

3.1 Elementary row and column operations on matrices

Let K be a field and $\mathbb{F}[x]$ is the polynomial domain. We wish to study matrices over $\mathbb{F}[x]$, consider elementary operations in such matrices. That is The matrix operations of

- 1. Interchanging two rows or columns, $(R_i \leftrightarrow R_j)$.
- 2. Adding a multiple of one row or column to another, $(R_i \leftrightarrow R_i + kR_j, k \neq 0)$.
- 3. Multiplying any row or column by a nonzero element. $(R_i \leftrightarrow kR_j)$.

Each of the operations is called elementary operations.

Definition 3.1.0.1. A matrix obtained from the identity matrix I by applying an elementary operation is called **elementary matrix**.

Note: - Every elementary matrix is non-singular and its inverse is also elementary matrix.

3.2 Equivalence of matrices of polynomial

Definition 3.2.0.2. :- Let A and B be matrices over F(x). If B is obtained from A by performing any succession of F(x) elementary operations, A is said to F(x) equivalent to B. Notation: $A \equiv B$, B is obtained by $\mathbb{F}(x)$ elementary operations of A, and $A \equiv B$ iff B = PAQ where P, Q are products $\mathbb{F}(x)$ elementary matrix.

Example 3.2.0.2. Show that

$$A \stackrel{\mathbb{F}[x]}{\equiv} B;$$

where

a.
$$A(x) = \begin{pmatrix} x & x+1 \\ x^2 - x & x^2 - x \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

b.
$$A(x) = \begin{pmatrix} x^2 & x+1 \\ x-1 & x^2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & x^4 - x^2 + 1 \end{pmatrix}.$$

3.2.1 Determinantal divisors and related invariants

The K^{th} order minor

Definition 3.2.1.1. Let A be an $n \times n$ matrix over $\mathbb{F}(x)$, $A = (a_{ij})$, if A_{ij} is a matrix obtained by deleting the i^{th} and j^{th} column of A. The scalar $M_{ij} = \det(A_{ij})$ is defined as the $(i, j)^{th}$ minor of A. The $k \times k$ sub-matrix of A is formed by deleting n - k rows and n - k columns of A (that is obtained when the first k rows and columns of A are retained) is called the **principal sub matrix** and the determinant of principal sub matrix of A is called a **principal minor** of A. The **leading principal minor** of A of order k is the minor of order k obtained by deleting the last n - k rows and columns.

Example 3.2.1.1.
$$A = \begin{pmatrix} 1 & 2x & 3 \\ 0 & 4 & 5x \\ x & 2 & 1 \end{pmatrix}$$
. Find the 1st, 2nd and 3rd order minors of A.

 Solution:
 rows-columns
 1,2 (delete 3^{rd} column)
 1,3 (delete 2^{nd} column)
 2,3 (delete 1^{st} column)

 1,2 (delete 3^{nd} row)
 $\begin{pmatrix} 1 & 2x \\ 0 & 4 \end{pmatrix} = 4$ $\begin{pmatrix} 1 & 3 \\ 0 & 5x \end{pmatrix} = 5x$ $\begin{pmatrix} 2x & 3 \\ 4 & 5x \end{pmatrix} = 10x^2 - 12$

 1,3 (delete 2^{nd} row)
 $\begin{pmatrix} 1 & 2x \\ x & 2 \end{pmatrix} = 2 - 2x^2$ $\begin{pmatrix} 1 & 3 \\ x & 1 \end{pmatrix} = 1 - 3x$ $\begin{pmatrix} 2x & 3 \\ 2 & 1 \end{pmatrix} = 2x - 6$

 2,3 (delete 1^{st} row)
 $\begin{pmatrix} 0 & 4 \\ x & 2 \end{pmatrix} = -4x$ $\begin{pmatrix} 0 & 5x \\ x & 1 \end{pmatrix} = -5x^2$ $\begin{pmatrix} 1 & 3 \\ x & 1 \end{pmatrix} = 1 - 3x$

The 2^{nd} order principal minors are

$$\begin{vmatrix} \begin{pmatrix} 1 & 2x \\ 0 & 4 \end{pmatrix} \end{vmatrix} = 4, \ \begin{vmatrix} \begin{pmatrix} 1 & 3 \\ x & 1 \end{pmatrix} \end{vmatrix} = 1 - 3x, \ \begin{vmatrix} \begin{pmatrix} 1 & 3 \\ x & 1 \end{pmatrix} \end{vmatrix} = 1 - 3x.$$

And the 2^{nd} order leading principal minor is $\begin{vmatrix} 1 & 2x \\ 0 & 4 \end{vmatrix} = 4$.

definiteness and principal minors

Theorem 3.2.1.1. Let A be a symmetric $n \times n$ matrix. Then we have:

- A is positive definite $\Delta D_k > 0$ for all principal minors.
- A is negative definite $\Leftrightarrow (-1)^k Dk > 0$ for all leading principal minors
- A is positive semidefinite $\Leftrightarrow \Delta_k \geq 0$ for all principal minors Δ_k .
- A is negative semidefinite $(-1)^k \Delta_k \geq 0$ for all principal minors.

Example 3.2.1.2. Determine the definiteness of the symmetric matrix $A = \begin{pmatrix} 1 & 4 & 6 \\ 4 & 2 & 1 \\ 6 & 1 & 6 \end{pmatrix}$.

Solution:

$$D_1 = 1, D_2 = \begin{vmatrix} 1 & 4 \\ 4 & 2 \end{vmatrix} = -14, \ D_3 = \begin{vmatrix} 1 & 4 & 6 \\ 4 & 2 & 1 \\ 6 & 1 & 6 \end{vmatrix} = -109.$$

Let us compare with the criteria in the theorem: A is indefinite.

3.3 Smith canonical forms and invariant factors

Let A and B be $m \times n$ matrix over F[x].

<u>Lemma</u> 3.3.0.1. Suppose B = PAQ where P is a product of $\mathbb{F}[x]$ elementary matrices, then every k^{th} order minor of B is a linear combination over $\mathbb{F}[x]$ of k^{th} order minor of A.

Theorem 3.3.0.2. Let A, B be $m \times n$ matrices over $\mathbb{F}[x]$, then every k^{th} order minor of B is a linear combination over $\mathbb{F}[x]$ of k^{th} order minor of A.

Corollary 3.3.0.1. Let A, B be $m \times n$ matrices over $\mathbb{F}[x]$, then $A \stackrel{\mathbb{F}[x]}{=} implies \ rank(A) = rank(B)$.

Corollary 3.3.0.2. Let $A \stackrel{\mathbb{F}[x]}{=}$, $d_k(x) = \gcd\{all\ K^{th}\ order\ minors\ of\ A\}$, then

$$d_k(x) = \gcd\{all\ k^{th}\ order\ minors\ of\ B\}.$$

Lemma 3.3.0.2. Let A be a non-zero $m \times n$ matrix over $\mathbb{F}[x]$, then A is $\mathbb{F}[x]$ equivalent to $m \times n$ matrix over $\mathbb{F}[x]$ of the form: $\begin{pmatrix} f_1(x) & 0 \\ 0 & A_1 \end{pmatrix}$, where $f_1(x)$ is a monic polynomial of minimal degree among all non-zero elements of all matrices $\mathbb{F}[x]$ equivalent to A.

<u>Theorem</u> 3.3.0.3. Let A, B be equivalent matrices, B, $d_k(x) = gcd\{all\ k^{th}\ order\ minors\ of\ A\},\ then$

$$d_k = f_1(x).f_2(x)...f_k(x).$$

$$D = \begin{pmatrix} f_1(x) & 0 & 0 \\ 0 & f_2(x) & 0 \\ 0 & 0 & f_3(x) \end{pmatrix}.$$

$$D_1 = \gcd\{f_1(x), f_2(x), f_3(x)\} = f_1(x),$$

$$D_2 = \gcd\{f_1f_2, f_2f_3, f_1f_3\} = f_1f_2.$$

$$\vdots$$

<u>Theorem</u> 3.3.0.4. Let A, B be similar matrices. The polynomials $f_1(x)$, $f_2(x)$, ..., $f_k(x)$ are uniquely determined by the matrix A.

Definition 3.3.0.2. Let A and B be similar matrices. The polynomial $f_1(x)$, $f_2(x)$, ..., $f_k(x)$ are called the invariant factors of A.

The matrix B is called the smith canonical form of A and denoted by SCF(A).

Corollary 3.3.0.3. Let A_1 , A_2 be $m \times n$ matrices over $\mathbb{F}[x]$. $A_1 \stackrel{\mathbb{F}[x]}{=} A_2$ iff A_1 , A_2 have the same invariant factors.

Example 3.3.0.3. Find the invariant factors of $A = \begin{pmatrix} x & 1 & 0 \\ 0 & x & 1 \\ 2 & 3 & x-1 \end{pmatrix}$ and its smith canonical form.

Solution: The 1st order minors A are 0, 1, x, 2, 3, x-1.

$$d_1(x) = f_1(x) = \gcd\{0, 1, 2, 3, x, x - 1\} = 1.$$

 2^{nd} order minors are

rows-columns	$1.2 (delete 3^{rd} column)$	$1,3$ (delete 2^{nd} column)	$2,3 \ (delete \ 1^{st} \ column)$
$1,2 (delete 2^{nd} row)$	$ \left \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix} \right = x^2 $	$\begin{vmatrix} x & 0 \\ 0 & 1 \end{vmatrix} = x$	$\begin{vmatrix} 1 & 0 \\ x & 1 \end{vmatrix} = 1$
$1,3 \ (delete \ 1^{st} \ row)$	$ \begin{vmatrix} \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix} \end{vmatrix} = 3x - 2 $	$ \begin{vmatrix} x & 0 \\ 2 & x - 1 \end{vmatrix} = x^2 - x $	$ \begin{vmatrix} 1 & 0 \\ 3 & x - 1 \end{vmatrix} = x - 1 $
2,3 (delete 1 st row)	$ \begin{vmatrix} 0 & x \\ 2 & 3 \end{vmatrix} = -2x $	$ \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = -5x^2 $	$ \begin{vmatrix} x & 1 \\ 3 & x - 1 \end{vmatrix} = x^2 - x - 3 $

The 3^{rd} order minor is $|A| = x^3 - x^2 - 5x + 2$,

$$d_3(x) = \gcd\{x^3 - x^2 - 5x + 2\} = x^3 - x^2 - 5x + 2, \ f_3(x) = \frac{d_3(x)}{d_2(x)} = d_3(x) = x^3 - x^2 - 5x + 2.$$

The similarity invariants of A are $f_1(x) = 1$, $f_2(x) = 1$, $f_3(x) = x^3 - x^2 - 5x + 2$. The smith canonical form of A is

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & x^3 - x^2 - 3x + 2 \end{pmatrix}.$$

Exercise 3.3.0.5. Find the smith canonical form and invariant factors of the following matrices.
a.

$$A = \begin{pmatrix} x & x \\ x^2 + x & x \end{pmatrix} \qquad b.B = \begin{pmatrix} x & x^2 \\ x^3 & x^5 \end{pmatrix} \qquad c.C = \begin{pmatrix} x & x+1 \\ x+2 & x+3 \end{pmatrix}$$

3.3.1 Similarity of matrices and invariant factors

<u>Theorem</u> 3.3.1.1. Let A be a matrix over $\mathbb{F}[x]$ is a product of F[x] elementary matrix iff $det(A) \neq 0$.

<u>Theorem</u> 3.3.1.2. Let A be a square matrix over F[x]. A has an inverse over F[x] iff A is a product of F[x] elementary matrix.

Example 3.3.1.1. Determine whether or not the following matrices over F[x] are non-singular or not $(\mathbb{F} = \mathbb{R})$. $A = \begin{pmatrix} x & x+1 \\ x+2 & x+3 \end{pmatrix}$ b. $B = \begin{pmatrix} 1 & x \\ x & x^2+1 \end{pmatrix}$ Solution: $det(A) = -2 \neq 0$. Hence A is invertible.

<u>Theorem</u> 3.3.1.3. Let A be an nxn matrix over $\mathbb{F}[x]$, $X_A(x) =$ the characteristics of A. Then $X_A(x)$ is the product of the invariant factors of (xI - A). (i.e.If $f_1(x), f_2(x), ..., f_n(x)$ are invariant factors of $(xI - A), X_A(x) = f_1(x).f_2(x)....f_n(x)$. **Proof**:

Definition 3.3.1.1. Let A be an nxn matrix over the field \mathbb{F} , then the invariant factors of (xI - A) is called **similarity invariant** of A.

Theorem 3.3.1.4. Let A be an nxn matrix over $\mathbb{F}[x]$, $M_A(x) =$ the minimal polynomial of A, then $M_A(x) = f_n(x)$, where $f_n(x)$ if the similarity invariant of a of highest degree of A.

3.4 The rational canonical forms

Consider the monic polynomial of degree 'n'.

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = x^{n} - (-a_{1}x^{n-1} - \dots - a_{n-1}x - a_{n})$$

associate with f(x) is the $n \times n$ matrix. The companion matrix is given by

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_2 & -a_1 \end{pmatrix}.$$

It is denoted by C(f).

Note:-

If n=1, n= degree of polynomial $f(x)=x-a_0$ the companion matrix $C(f)=(a_0)$.

If
$$n=2$$
 and $f(x) = x^2 - (a_1x + a_2)$, then $C(f) = \begin{pmatrix} 0 & 1 \\ a_2 & a_1 \end{pmatrix}$.

If n=4, $f(x) = x^4 - (3x^3 + 2x^2 - 5x + 2)$, then companion matrix

$$C(f) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & -5 & 2 & 3 \end{pmatrix}.$$

Theorem 3.4.0.5. Let $f(x) = x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, then the characteristic and minimal polynomial of the C(f) are both equal to f(x).

<u>Theorem</u> 3.4.0.6. Let $f(x) = x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ be monic polynomial of degree n.

$$[xI - C(f)] \stackrel{\mathbb{F}[x]}{\equiv} diag(1, 1, ..., f(x)).$$

Theorem 3.4.0.7. Let $f_1(x).f_2(x).....f_r(x)$ be non constant monic polynomials over \mathbb{F} such that $f_i|f_i(i+1)$ for i=1:r-1, the campanion matrix $Ci=C(f_i), i=1,2,...,r$. Then the matrix

$$B = diag(C_1, C_2, ..., C_r)$$

has

$$f_1(x).f_2(x)....f_r(x)$$

its non-trivial similarity invariants.

<u>Theorem</u> 3.4.0.8. every non-singular matrix A over a field \mathbb{F} is similar to a diagonal block matrix, where each diagonal block is the companion matrix of the non-trivial similarity invariant of A.

Definition 3.4.0.2. A diagonal block matrix $diag(C_1, C_2, ..., C_r)$ of the above theorem is called **rational canonical form** for the matrix similar to A.

Example 3.4.0.2. Let $A = \begin{pmatrix} 6 & 2 & -2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$. Find the rational canonical form of matrices which

are similar to A.

Solution:

similarity invariants are obtained from the matrix similar to A which is (xI - A).

$$(xI - A) = x \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 6 & 2 & -2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} x - 6 & -2 & 2 \\ 2 & x - 2 & -2 \\ -2 & -2 & x - 2 \end{pmatrix}.$$

Now,

$$d_1(x) = the \ gcd\{of \ 1^{st} \ order \ minor \ of \ (xI - A)\}\$$

= $gcd\{x - 6, -2, 2, x - 2\} = 1 = f_1(x),$

 $d_2(x) = \gcd\{\text{ of all } 2^{nd} \text{ order minors of } (xI - A)\} = \gcd\{x^2 - 4x, \ 2x - 8, \ -2x + 8, \ x^2 - 8x + 16\} = x - 4.$

$$f_2(x) = \frac{d_2(x)}{d_1(x)} = \frac{(x-4)}{1} = x - 4,$$

$$d_3(x) = \det(xI - A) = x^3 - 10x^2 + 32x + 32 = (x-4)^4(x-2),$$

$$f_3(x) = \frac{d_3(x)}{d_2(x)} = \frac{(x-4)^4(x-2)}{(x-4)} = (x-4)(x-2) = x^2 - 6x + 8.$$

$$f_1(x), f_2(x), f_3(x)$$

are similarity invariants of a matrix similar to A. But they are non trivial.

The companion matrix for $f_2(x)$ is $C(f_2) = (4)$, and the companion matrix for $f_3(x)$ is $C(f_3) = \begin{pmatrix} 0 & 1 \\ -8 & 6 \end{pmatrix}$.

Therefore, the rational canonical form of the matrices similar to A is

$$C(f) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -8 & 6 \end{pmatrix}.$$

The minimal polynomial $\mathcal{M}_A(x)$ of A is $\mathcal{M}_A(x) = x^2 - 6x + 8$.

3.4.1 Elementary divisors

Let $\mathcal{X}_A(x)$ and $f_1(x).f_2(x)....f_r(x)$ be the characteristic polynomial and the similarity invariants of an $n \times n$ matrix A over a field \mathbb{F} .

Suppose that the $\mathcal{X}_A(x) = p_1^{e_1} p_2^{e_2} ... p_t^{e_t}$, where $p_1, p_2, ..., p_t$ are distinct monic polynomials which are irreducible over \mathbb{F} and each e_i is positive integer and the non-trivial similarity invariant of A is given by

$$f_i = p_1^{e_{i1}} p_2^{e_{i2}} ... p_t^{e_{it}}.$$

Since $f_i|f_{i+1}, e_{i+1,j} \ge e_{ij}$.

Definition 3.4.1.1. The polynomial p_j which appears in similarity invariants of A with non-zero exponents e_{ij} are called the elementary divisors of A over the field \mathbb{F} . Remark:

 $p_j(x)$ is a monic polynomial. $p_j(x)$ is a power of irreducible polynomial (one cannot be factored). The characteristic polynomial of A is a product elementary divisors.

Hence the minimal polynomial is the least common multiple of all elementary divisors.

Example 3.4.1.1. Let $f_1(x) = (x-1)(x+1)$, $f_2(x) = (x^2-1)(x+1)(x^2+2)$, $f_3(x) = (x-1)^2(x-1)^2(x^2+2)$ be similarity invariants of A, then the elementary divisors of A are

$$(x-1)(x+1)$$
, $(x-1)^2$, $x+1$, x^2+2 , $(x-1)^2$, $(x+1)^2$, x^2+2 .

Example 3.4.1.2. Suppose x, x, x^2 , x + 1, $(x - 1)^2$, $(x - 1)^2$, $(x - 1)^3$ are the elements of the elementary divisors of A, then the non trivial similarity invariants of are

$$f_1(x) = x$$
, $f_2(x) = x(x-1)(x+1)$, $f_3(x) = (x)^2(x-1)^3(x-1)^2$.

<u>Theorem</u> 3.4.1.1. Let A and B be an $n \times n$ matrix over a field \mathbb{F} . $A \sim B$ if and only if A and B have the same elementary divisor.

3.5 The normal and Jordan canonical forms

3.5.1 Normal canonical forms

Let $f(x) = x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$. We can write $f(x) = p_1^{e_1} p_2^{e_2} ... p_t^{e_t}$, where p_j are distinct monic, irreducible polynomials over $\mathbb{F}[x]$ and e_i 's are positive integers.

<u>Lemma</u> 3.5.1.1. let C = C(f). Then $C \sim diag(C_1, C_2, ..., C_t)$ where $C_i = f(p_i^{e_i})$.

Lemma 3.5.1.2. Let A be $n \times n$ matrix over a field \mathbb{F} , $g_1, g_2, ..., g_n$ be the elementary divisors of A, $C_i = f(g_i)$ for i = 1, 2, ..., r. Then $A \sim daiag(C_1, C_2, ..., C_r)$.

Definition 3.5.1.1. Let $C_1, C_2, ..., C_r$ be the matrix $diag(C_1, C_2, ..., C_r)$ is called **normal canonical form** for the matrix similar to A.

Example 3.5.1.1. Find the normal canonical form of a matrix similar to

$$A = \begin{pmatrix} 6 & 2 & 2 \\ -2 & 2 & 0 \\ 0 & 0 & 2. \end{pmatrix}.$$

Solution:

Step1:- find elementary divisor of $(xI - A) = \begin{pmatrix} x - 6 & -2 & -2 \\ 2 & x - 2 & 0 \\ 0 & 0 & x - 2 \end{pmatrix}$.

The 1st order minors of (xI - A) are x - 6, -2, -2, -2, 2, 0, x - 2

$$d_1(x) = \gcd\{0, -2, 2, x - 6, x - 2\} = 1 = f_1(x).$$

The 2^{nd} order minors of (xI - A) are

$$x^{2} - 8x + 16, x^{2} - 4x + 4, -(x - 2), 4, 2(x - 2), x^{2} - 8x + 10, x - 4$$

$$d_{2}(x) = gcdx^{2} - 8x + 16, x^{2} - 4x + 4, -(x - 2), 4, 2(x - 2), x^{2} - 8x + 10, x - 4 = 1,$$

$$f_{2}(x) = \frac{d_{2}(x)}{d_{1}(x)} = 1.$$

The 3rd order minor of (xI - A) is $(x - 2)(x - 4)^2 = d_3(x)$.

$$f_3(x) = \frac{d_3(x)}{d_2(x)} = (x-2)(x-4)^2.$$

The elementary divisors of A are (x-2) and $(x-4)^2$.

Step 2:- compute the companion matrix for the elementary divisors of (xI-A). Let $C_1 = C(x-2) = (2)$, $C_2 = C((x-4)^2) = C(x^2 - 8x + 16) = \begin{pmatrix} 0 & 1 - 16 & 8 \end{pmatrix}$. Step 3:-

$$A \sim diag(C_1, C_2) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -16 & 8 \end{pmatrix}$$

which is the normal canonical form of any matrix similar to A.

3.5.2 Jordan Canonical Form

Suppose the elementary divisors $p_j^{e_{ij}}$ of an $n \times n$ matrix A are of the form $(x - \lambda_j)^{e_{ij}}$. We define the Jordan block corresponding to the elementary divisor $p_j^{e_{ij}} = (x - \lambda_j)^{e_{ij}}$ to be the $e_{ij} \times e_{ij}$ of matrix J_j , given by

$$J_{j} = \begin{pmatrix} \lambda_{j1} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{j2} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{j2} \end{pmatrix}.$$

Theorem 3.5.2.1. Let \mathbb{F} be algebraically closed field. If the $n \times n$ matrix A over \mathbb{F} has r elementary divisors with associated Jordan J_1, J_2, \dots, J_r , then $A \sim diag(J_1, J_2, \dots, J_r)$.

Definition 3.5.2.1. If $A \sim diag(J_1, J_2, ..., J_r)$ is called the **Jordan canonical form** of A.

Example 3.5.2.1. Let $A = \begin{pmatrix} 6 & 2 & 2 \\ -2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Find the jordan canonical form of the matrix similar

to A.

Solution: From previous example we have seen (x-2) and $(x-4)^2$ are elementary divisors of A. Let J_1 be the jordan canonical form of (x-2), $J_1 = (2)$. Let J_2 be the jordan canonical form of

$$(x-4)^2$$
, $J_2 = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$.

Hence the Jordan canonical form of the matrices similar to A is given by

$$diag(J_1, J_2) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}.$$