Chapter 2

Orthogonality

Notation F,V
e [ denotes R or C.

e V denotes a vector space over F.
Learning objectives for this chapter:

e Cauchy-Schwartz Inequality
e Gram-Schmidt Procedure
o Linear Functional on inner product spaces

e Calculating minimum distance to a subspace

2.1 The inner product

The notion of inner product generalizes the notion of dot product of vectors in R™.

Definition 2.1.0.7. Let V' be a vector space. A function (,) : V x V — R, usually denoted
fx,y) = (x,y), is called an inner product on V if it positive, symmetric, and bilinear. That is,

if

i. (x,x) >0, and (x,x) =0 only for x =0 (positivity)
i. (x,y) = (g, @ (symmetry)
iii.  (ru,v) = r(u, v) for all scalars r and (vy + ve,v) = (v1,v) + (vo,v) for all vy, vy, v,u € V.

(bilinear, that is linear (in both factors))
w. (x+y,2) = (x,2) + (y,2) (distributive law)
v. positive that is (v,v) > 0.

vi. mnon-degenerate that is if (u,v) =0 for every v € V then u = 0.

The vector space R™ is an inner product space with respect to the usual dot product :

T hn T hn
o Y2 To Y2 L
< A I > = I = Z ZiYi-
: . : : i=1
fEn y?’? 'I’n yn
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2.2. INNER PRODUCT SPACES September 14, 2019
2.2 Inner product spaces

An inner product space is a vector space V. with an inner product {,), (V.(,)). if V is a vector
space over R (real vector space) it is called a Euclidean space and V' is a vector space over C, we
call it is Unitary space.

Example 2.2.0.7. . V =R".

2.2.1 Cauchy-Schwartz and triangular inequalities

Theorem 2.2.1.1. (Cauchy-Schewartz inequality)
Let V' be an inner product space. Then

[(u, v)| < [[ul[.][v]]
forallu, vevV.

Proof. Let us consider the real case first. If y = 0, the statement is trivial, so we can assume that
y # 0. By the properties of an inner product, for all scalar ¢

0< [lx —tyl| = (x — ty,x — ty) = ||| = 2t(x.y) + ¢*[[y]]*

In particular, this inequality should hold for

- (xy)
= z,
[yl
and for this point the inequality becomes
0 < 2 _ 2(X7 y)2 (X7Y)2 _ 2 _ (X7 y)2
—||X|| 2+ 2 _|| || 9
Iyl N2l [yl

which is exactly the inequality we need to prove. There are several possible ways to treat the
complex case. One is to replace x by ax, where « is a complex constant, | a |= 1 such that (ax,y)
is real, and then repeat the proof for the real case. The other possibility is again to consider

0< [lx—ty||* = (x —ty.x — ty) = (x,x — ty) = t(y, x = ty) = [[x[|t(y,x) = Et(x —y) + [t]*[|y[|*.
Substituting ¢ = Goy) — %) in¢6 this inequality, we get

llyll> vl
0< HXHQ _ |(X7Y)|2
- Iy l?
which is the inequality we need. Note, that the above paragraph is in fact a complete formal
proof of the theorem. The reasoning before that was only to explain why do we need to pick this
particular value of ¢.
Equivalently, consider the function

y=y(t):=(u+tv,u+tv), teR

Then y(t) > 0 by the third property of inner product. Note that y(t) is a quadratic function of ¢.
In fact ,
y(t) = (w,u+tv) + (tv,u+ tv) = (w,u) + 2(u, v)t + (v, v)t%
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Thus the quadratic equation

(w,u) +2(u,v) + (v, v)t* = 0

has at most one solution as y(¢) > 0. This implies that its discriminant must be less than or equal

to zero, i.e.,
(2(u,v))* — 4{u,u)(v,v) <0.

Theorem 2.2.1.2. (Triangle Inequality) Let V' be an inner product space. Then
[lx + vl < [Ix[[ + |lyl|
forallx,y eV .

Proof.

Ix+ylI* = (x+y,x+y) =[x +lylI" + (x,¥) + (y.%)
< {1x[* + [lyl* + 2/ (x, y)]
< Il* + [y 117 + 20y [l = ([l + Ty D™

The following polarization identities allow one to reconstruct the inner product from the norm: [J

Lemma 2.2.1.1. (Polarization identities). For x,y € V

1
(x,y) = 7(Ix+yl* =[x = y[[*)

if V' is a real inner product space, and

1
(xy) =70 X alx+ayl)
a==x1,%i

if V is a complex space.
Lemma 2.2.1.2. (Parallelogram Identity). For any vectors u,v
[[u+ v = [fu = = 2([[ul* + v

In 2-dimensional space this lemma relates sides of a parallelogram with its diagonals, which explains
the name. It is a well-known fact from planar geometry.

Normed Vector Spaces

Definition 2.2.1.1. Let V' be a real or complex vector space. Suppose to each v € V there is
assigned real number, denoted by ||v||. This function ||.]| is called a norm on V if it satisfies the
following azioms:

e ||V]| = 0; and ||v]| = 0 if and only if v = 0.
o [[EvI] = |K[[Iv]]
o [ut vl <[+ [[v]]

Then the vector space with a norm (V. ||.||) is called normed vector space.
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Norms on R"” and C"

Norm of Vector
[af| = /(u,u).

If[|u|| = 1 or, equivalently, if (u,u) = 1, then u is called a unit vector and is said to be normalized.
Every non-zero vector v in V' can be multiplied by the reciprocal of its length to obtain the unit

vector
1

IVl

which is a positive multiple of v. This process is called normalizing v. We have proved before that
the norm ||v|| satisfies the following properties:

v = )\%

1. . Homogeneity: ||av|| = |al||v|| for all vectors v and all scalars c.
2. Triangle inequality: ||ku+ v|| < |Jul|| + ||v]].

3. Non-negativity: [[v|| > 0 for all vectors v.

4. Non-degeneracy: ||v|| =0 if and only if v = 0.

Suppose in a vector space V we assigned to each vector v a number ||v|| such that above properties
1-4 are satisfied. Then we say that the function

v [l

is a norm. A wvector space V equipped with a norm is called a normed space. The following
define three important norms on R™ and C™:

|| < ay,az,...,an > ||oo = max{|a;|, Ya; coordinates of the vector}

| <ai,as,...;an > |[1 = |ai] + ... an|

| < ar,az, sy > [lo = ]2 + oo + |anl.

Example 2.2.1.1. Any inner product space is a normed space, because the norm ||v|| = \/(v,v
satisfies the above properties 1-4. However, there are many other normed spaces.

Example 2.2.1.2. Consider vectors < 1,—5,3 > and < 4,2,—3 > in R>. Find
a. the infinity norm of the vectors.
b. the one-norm.
c. the two-norm.
d. ds, di, and d,.
A linear space with a norm such as:
|z, = (i |§i|p> ’ x={&} € P, p#2, is a normed space but not an inner product space,
i=1

because this norm does not satisfy the parallelogram equality required of a norm to have an inner
product associated with it.
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Howewver, inner product spaces have a naturally defined norm based upon the inner product of
the space itself that does satisfy the parallelogram equality:

2]l = \/(z, z).

This is well defined by the nonnegativity axiom of the definition of inner product space. The
norm is thought of as the length of the vector x. Directly from the axioms, we can prove the
following:

Definition 2.2.1.2. (Matriz Norms) Matriz norms are functions f : R™*" — R that satisfy the
same properties as vector norms. Let A € R™*"™. Here are a few examples of matriz norms:

e The Frobenius norm: || A ||p= \/TT’(ATA) = \/Zm A
e The sum-absolute-value norm: || A ||s av = 3=, ; | X; ;|

e The maz-absolute-value norm: || A ||, av = max; ;| A; ;|

Definition 2.2.1.3. (Operator norm). An operator (or induced) matriz is a norm || - ||qp: R™™ —
R defined as
| A |lap= max, || Az ||,
st x |[p< 1,
where || - ||o is a vector norm on R™ and || - ||p is a vector norm on R™.

Notation:

When the same vector norm is used in both spaces, we write
| A lle=max || Az |

st @ |l.< 1.

Example 2.2.1.3. :

e || A|l2= \/Amax(AT A), where \ax denotes the largest eigenvalue.

e || A 1= max; X |Aijl, i.e., the mazimum column sum.
e || A |loo=maz; >, |Ay, i.e., the mazimum row sum.

Notice that not all matriz norms are induced norms. An example is the frobenius norm given above
as || I |ls=1 for any induced norm, but || I ||p= +/n.

Lemma 2.2.1.3. Every induced norm is submultiplicative, i.c., || AB ||<|| A ||| B ||
Proof: We first show that || Ax ||<|| A |||| ||
Suppose that this is not the case, then

| Az [|>[] A} ]
1
= — [ Az [[>[[ A]
| ]
T
= A= (> Al
KA
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ﬁ s a unit vector.

This contradicts the definition of || A ||. Now we need to prove the claim.

I AB [|= max [| ABz [|< max [| A [[[| Bz [|=[| A || max {| Bz [|=[| A [[| B ]|

llll<1

Theorem 2.2.1.3. A norm in a normed space is obtained from some inner product if and only
if it satisfies the Parallelogram Identity

[la+ v+ [Ju = vI[* = 2(|fu][* + [Iv[]*). Yu, veV.

300
Exercise 2.2.1.4. 1. Let D= |0 7 0. Consider the inner product defined on R? by (u,v) =
0 0 2
u’Dv, u= 3 ) Verify that both inequalities hold.

2.3 Orthogonal and Orthonormal sets

Definition 2.3.0.4.
Let V' be an inner product space.

e We say that v, w are orthogonal if (v,w) = 0.
o A set B of vectors is orthogonal if every pair of vectors within it are orthogonal.
e A set A of vectors is orthonormal if it is orthogonal and every vector in A has unit norm.
Thus the set 5 = {v1,Va, ..., vk} is orthonormal if
0 if i#j
<Ui, v]> = 1 ifi=i
ifi=j
An orthonormal basis for an inner product space V' is a basis which is itself an orthonormal set.

Lemma 2.3.0.4. : Let 'V be an inner product space. Suppose v € V is orthogonal to cach

of the vectors vyi,vg, -+, vy € V. Then v is orthogonal to any linear combination of vectors
Vi,V2,: -, Vp.
Proof. Since (v,v;) =0 for all i € {1,2,--- ,n},ifay, -, a, € F, we have

V.S v = Y@ vovi) = 0
i=1 =1
|

Theorem 2.3.0.5. (Generalized Pythagorean Theorem). Let V' be an inner product space, and
V1,Va, -, v €V be mutually orthogonal vectors. Then

n n

2 2

2o vilP=>_lvill
i=1 i=1
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Proof. For simplicity, we assume k = 2. If u and v are orthogonal, then

lu+v|?={u+v,u+v)
= (uw,u) + (v, v)
= [[u]|* +[|v][*.
O
Example 2.3.0.4. The three vectors
u=[1,2,1]", v=[2,1,-4]", w=[3,-2,1]"
are mutually orthogonal. Ezpress the vector a = [7,1,9]T as a linear combination of u, v, w.
Set
T+ ToV + T3W = a.
There are two ways to find x1, T, x3.
Method 1: Solving the linear system by performing row operations to its augmented matrixc
[vi, va, vsla].
we obtain v1 = 3,19 = —1, 23 = 2. So
v =3vy — Vg + 2vg.
Method 2: Since vi L vy for i # j, we have
(a,vi) = (x1v1 + T2Va + 23V3, Vi) = 2;(Vi, Vi),
where i = 1,2,3. Then
e Vi) o
<Vi7 Vi)
Then we have
T+24+9 18
rTH=—=— =
YTl4441 6 7
14+1-36 21
$2 = = = ]_7
44+1+16 21
21-249 28
I3=——=— =
YT 9+441 14
Corollary 2.3.0.1. Let V' be an inner product space, and vy, vy, -+ ,v, € V be orthogonal to each

other. That is (v;,v;) =0 for alli,j € {1,2,--- ,n} withi # j,oq,--- ,a, € F. Then

n

n
| Z%’Uz‘ ||2: Z |04i|2 || Uy ||2 .
=1

i=1

Corollary 2.3.0.2. Let V' be an inner product space and vy, vo, -+ ,v, € V be an orthonormal set

of vectors. Then
n

n
I Zaﬂ’i ||2= Z |Oéi|2-
=1

1=1

Corollary 2.3.0.3. Any set of orthonormal vectors is linearly independent.
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2.3.1 Orthogonal complements

Definition 2.3.1.1. Let V' be an inner product space. If U is a subspace of V , the orthogonal

complement to U is
Ut={veVl{v, u)=0 foralluc U}

If V=W @ U is a direct sum of subspaces with W C U+, we write b = by L by and say b is
the the (internal) orthogonal sum of by and by. The subspace V* is called the radical of b and
denoted by rad(b) . The form b is non-degenerate if and only if rad(b) = 0.

Lemma 2.3.1.1. Let V' be an inner product space and U be a subspace of V. Then
(i) Ut is a subspace of V , and
(ii) UN U+ = {0}.

Example 2.3.1.1. Consider a line L = {z,0,0)| z € R} and plane 1 = {(0,y, 2) y, 2 € R} in R>,
Then L+ =11 and I+ = L.

Theorem 2.3.1.1. Let V be a finite-dimensional inner product space and U be a subspace of V'
. Then
V=UaU"

We can consider the projection map Py : 'V — V onto U associated to the decomposition V =
U @ U+, This is given by
PU(V) = U

where v =1 + w is the unique decomposition of v withu € U and w € U=,

Theorem 2.3.1.2. Let V' be a finite-dimensional inner product space and U be a subspace of
V. Let Py : V. — V be the projection map onto U associated to the direct sum decomposition
V=U®U* IfveV, then Py(v) is the vector in U closest to v.

Proposition 2.3.1.1. Let S be a nonempty subset of an inner product space V. Then the
orthogonal complement S+ is a subspace of V.

Proof. To show that St is a subspace. We need to show that S* is closed under addition and
scalar multiplication. Let u, v € S* and ¢ € R. Since (u,w) = 0 and (v,w) = 0 for all w € S,
then

u+v,w)=(u,w)+ (v,w) =0,

(cu,w) = c(u,w) =0
for all w € S. So u+ v, cuS*. Hence S+ is a subspace of R". O

Proposition 2.3.1.2. Let S be a subset of an inner product space V . Then every vector of S+
is orthogonal to every vector of Span(S), i.e.,

(u,v) =0,Yu € Span(9), v € S .
Proof. For any u € Span(S), the vector u must be a linear combination of some vectors in S, say,
u=ajuy + agueg + ... + arpug.

Then for any v € S+,
(u,v) = ai{uyg,v) + ... + ap(uy,, v) = 0.
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Theorem 2.3.1.3. (Orthogonal sets are linearly independent)

If S = {v,va, -+ ,v,} is an orthogonal set of nonzero vectors in an inner product space V,
then S is linealry independent.

Proof:

S is an orthogonal set of nonzero vectors, i.e., (v;,v;) = 0, fori # j, and(v;, vy > 0
For

n
Zci'vi = 0 (If there is only the trivial solution for c¢.s arc0, S is linearly independent)
i=1

= (¢; Y v, v;) = (0,0, = 0,Vi
=1

= (v, v;) + (v, v;) + -+ + (v, vi) = (v, v;) = 0 why?
A, v) £ 0= ¢ =0V
.S is linearly independent
Theorem 2.3.1.4. (Coordinate relative to an orthonormal basis)

If B = {vy,vy,--+ ,u,} is an orthonormal basis for an inner product space V, then the unique
coordinate representation of vector w with respect to B is

n

w = Z(w, ’U,'>’U,’

1=1

The above theorem tells us that it is easy to derive the coordinate representation of a vector relative
to an orthonormal basis, which is another advantage of using orthonormal bases.

Proof
l,i=3
B = {v1,vq,- -+ ,v,} is an orthonormal basis for V, w= Y1, kv € V since (v, v;) = {O’Z_ 7&]
V7]
n
w, 'Ui> = (Z k;v;, ’Ui>
i=1
= ki, v;) + ka(vo, vg) + -+ - + ki (v, v;)
=k, fori=1to n
= w= (w,v)v + (W, W)V + - + (W, v,) v,
Note If B = {vy,vq,--+ ,v,} is an orthonormal basis for V and w € V', then the corresponding
<w7 vl>
. . . . <w7 vQ>
coordinate matriz of w relative to B is [W]y =
(w, v,)

Exercise 2.3.1.5. :
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1. Find all values of the scalar k for which the two vectors are orthogonal.

2
2 k1 ! b
@ u= | 0, V= 4 bh.u=|—1|, u= |k
1 -3
2. Describe all vectors that are orthogonal to
3 a
a. ul, b. u b]
2.3.2 The gram Schmidt orthogonalization/orthonormalization pro-
cess

Projections and Orthogonal Projection

Projections
Let V' be an inner product space, w is a given nonzero vector in V', v any vector. The projection
of v along w is denoted and given by

projy = (
{
Orthogonal projection Let V' be an inner product space. Let v be a nonzero vector of V.. We
want to decompose an arbitrary vector y into the form
y = av +z, where z € v

Sincez L v
(v,y) = (av, V).
This implies that

—~

v.y)
v,V)

o =

—~

We define the vector

: (v,y)
P v = )
called the orthogonal projection of y along v. The linear transformation Proj, :V — V is called
the orthogonal projection of V' onto the direction v.

Proposition 2.3.2.1. Let v be a nonzero vector of the Fuclidean n-space R"™. Then the orthogonal
projection Proj, : R™ — R"™ is given by
Proj(y) = (¥ ) y;
Proj,. : R" — R™ is given by
. T
Projy(y) = (I - &> y.

V.V

Write the vector v as v = [a aa, ...,an|". The for any scalar c,
cay ac
Cca9 aoC

ev=1| . |=1|.1|=v][,
cay, ayC
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where [c] is the 1 x 1 matriz with the only entry c. Note that

v.y] =v'y.

Then the orthogonal projection Proj, can be written as
Proju(y) = (&%) (vy)v
= ( v) v[v.y]

- (&)

This means that the standard matriz of Proj, is
1 T
(W) A\'AS

Indeed, v is an n x 1 matriz and v’ is a 1 x n matriz, the product vv' is an n x n matriz.
The orthogonal projection Proj,. : R™ — R™ is given by

|H .<|H

<

Projyi(y) =y — Proju(y) = (I - 5v7)y.
This means that the standard matriz of Proj,. is
(I — %VVT) .

Example 2.3.2.1. Find the linear mapping from R3 to R? that is a the orthogonal projection of
R? onto the plane x + w9 + x5 = 0.

Solution

To find the orthogonal projection of R® onto the subspace v+, where v = [1,1,1]T , we find the
following orthogonal projection

=y1+yz+y3

Proj,(y) = (%) v 3

2 -1 -1 [m

Let W be a subspace of V', and let v, Vo, ..., Vi be an orthogonal basis of W. We want to decompose
an arbitrary vector'y € V into the form

Yy=W-+2Z
with w € W, z € W+, Then there cwist scalars oy, ..., ay such that
Y =a1vy + ... + qpVy.
Sincez 1. vy,z 1L va,...,z L vy, we have
(vi,y) = (vi,a1vy + ... + apvi) = a;(vi, vi).
Then

<Vi7 Y>
(i, vi)’
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Thus we define

. (vi,y)
Projw(y) = vy,
2 v

called the orthogonal projection of v along W. The linear transformation

Projyw :V =V

is called the orthogonal projection of V' onto W. A A A

Definition 2.3.2.1. An ordered basis which is orthonormal is called orthonormal basis

Theorem 2.3.2.1. Suppose S = {vy,Va, -, Vi } is an orthogonal subset of V' such that vi # 0.
For y € span(S),

£
Yy, Vi>
Yy = ( ).Vi.
2w
Example 2.3.2.2. Find the orthogonal projection
Projw : R® = R3,

where W is the plane
1+ 20+ 23 =0.

Solution:
By inspection, the following two vectors

form an orthogonal basis of W. Then

Proju(y) = (355) vi + (32%) v

Y1 — Yo 11 Y1+ Y2 — 2y;

— — AR e

2 0 6 _9
(2 -1 -1 (w
——-1 2 —1||w
Sl 21 2 )

Example 2.3.2.3. Find the matriz of the orthogonal projection

Projw : R®* = R3,

where
1 1
W = Span{|1|, |—1|}.
1 0
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Solution:
The following two vectors

u; = Ug =

S-S5
|
o HLS-

form form an orthonormal basis of W. Then the standard matriz of Projw is the product

LSl
[\
L —

Sshsh
S
Sk
SlLsh-
Io—l§|H

which results the matriz

—_

|

wl»—mlHolm
wl»—mlcnml‘
QW= =

Alternatively, the matrix can be found by computing the orthogonal projection:

1
:y1+y2—|—y3 Y1 — Yo

Projy(y) |+ |-1
3 | 2 o

1 [ 51 — Y2 + 23 |

=5 —y1 + Oy2 + 23

| 2y1 + 2y2 + 2y3 |

1 i 5 —1 2 yl_

=—-|-1 5 2 Ya | .
6lo o 2| |y

Gram-Schmidt process

Problem: Given a (finite-dimensional) inner product space V', how do we find an orthonormal
basis?

Definition 2.3.2.2. Gram-Schmidt Process: is the process of forming an orthogonal sequence
{vi} from a linearly independent sequence {uy} of members of an inner-product space.

Theorem 2.3.2.2. (Gram-Schmidt algorithm) Suppose that V' is a finite-dimensional inner
product space with basis S = {vy,va,--- ,vn}. The following procedure constructs an an orthogonal
and orthonormal basis S = {uy, ug, ..., w}, S" = {eq, ez, -+ ,en} for V respectively.

1
[[u]

Step 1 Set uy :=vq, e; = ( )oug.

Step k For k> 2, uy = vy — (8288)) uy, ey = () u,.

[[vall?

k—1
. 1
Up = U — Z (—Lﬁl‘;ﬁ;) Uj, € = (m).uk.
j=1 k

Then S is orthogonal and span(S = span(s), S" is orthonormal.
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Example 2.3.2.4. By using gram-schmidt process of constructing basis of vector space, find the
orthogonal and orthonormal basis of the vector space, with relative basis

{<1,2,1><2,1,-4>,<3,-2,1>}.

Example 2.3.2.5. Let Vg be a subspace of dimension K in R™. Let vy, va, ..., vy be a basis for V.

i. Find an orthogonal basis for V.

1.  Fxtend it to an orthogonal basis for R™.

Approach 1. FExtend vy,..., vy to a basis vq,Va,...,vy for R". Then apply the Gram-Schmidt
process to the extended basis. We shall obtain an orthogonal basis uy, ..., u, for R™.

By construction, Span(uy, ..., ux) = Span(vy, ..., vi) = Vj.

It follows that uy, ..., uy is a basis for Vi. Clearly, it is orthogonal.

Approach 2. First apply the Gram-Schmidt process to vy, ..., vi and obtain an orthogonal basis
uy, ..., uy for V.

Secondly, find a basis yi,...,ym for the orthogonal complement V5~ and apply the Gram-Schmidt
process to it obtaining an orthogonal basis Xy, ...,Xm for Vg-. Then uy, ..., Uy, Xy, ..., X 1S an
orthogonal basis for R™.

Example 2.3.2.6. Let 7 be the plane in R? spanned by vectors x, = (1,2,2) and x5 = (1,0, 2).

(i) Find an orthonormal basis for .

(ii) Extend it to an orthonormal basis for R3.

X1,Xg 15 a basis for the plane . We can extend it to a basis for R® by adding one vector from the
standard basis. For instance, vectors X1, Xs, and xg = (0,0,1) form a basis for R® because

1 2 2
-1 0 0:|_11 §|:27Ao.
0 0 1

Using the Gram-Schmidt process, we orthogonalize the basis x; = (1,2,2),x3 = (—1,0,2),x3 =
(0,0,1):

Vi = X1 :(]., 2, 2)

Va = Xg — 2327:1;"1 =(—1,0,2) — 3(1, 2,2) = (—4/3,-2/3.4/3).
e <x3,V1>V B (x3,v2)v _ 2 43 B _ B
V3 = X3 ) (Vo va) 2 =(0,0,1) 9(1,2,2) 1 (—4/3,-2/3,4/3) = (2/9,-2/9,1/9).

Now vy = (1,2,2),ve = (—4/3,-2/3,4/3),v3 = (2/9,-2/9,1/9) is an orthogonal basis for R3
while vy, vy is an orthogonal basis for w. It remains to normalize these vectors.

(vi,v1) =9 = [jvi]| =3,
(va,v2) =4 = ||va]| = 2,
<V3,V3> = 1/9 = ||V3|| = 1/3
1
wi =i/ lIvall = (1/3,2/3,2/3) = 5(1,2,2)

wy = va/[vall = (~2/3,1/3,2/3) = 2(~2,-1,2),

wy = va/Ivall = (2/3,~2/3,1/3) = 5(2,~2,1).
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W1, Wao is an orthonormal basis for .
W1, Wa, W3 is an orthonormal basis for R®.

Example 2.3.2.7. Find the distance from the point y = (0,0,0,1) to the subspace V. C R* spanned
by vectors xq = (1,—1,1,—1), x2 = (1,1,3,—1), and xg = (-3,7,1,3).
Solution:

Let us apply the Gram-Schmidt process to vectors X1,Xg,x3,y. We should obtain an orthogonal
system vi,Va, Vs, va. The desired distance will be ||v4]]|.

x;=(1,-1,1,-1),x9 = (1,1,3,—-1),x3 = (=3,7,1,3),y = (0,0,0, 1).
vi=x1 = (1,-1,1,-1),

. <X2,V1>
V2 = X2 — Vi
<V17V1>
4
=(1,1,3,—1) — 1(1, —1,1,-1) = (0,2,2,0),
Vg = Xg — (x3: V1) _ <X37V2>V2

(vi,v1) ! (v2,Vva)

—12 16
=(=3,7,1,3) — T(l, -1,1,-1) — g(O7 2,2,0) = (0,0,0,0).

The Gram-Schmidt process can be used to check linear independence of vectors!.

The vector xg is a linear combination of x1 and xo. V' is a plane, not a 3-dimensional subspace.
We should orthogonalize vectors Xy,Xs,y.

v =y — <y7V1>V . (y,v2>v
’ <V1’V1> ! <V27V2 2
= (0,0,0,1) = —~(1,~1,1,~1) = £(0,2,2,0)
1 113
- (Zv _Zv Za Z)
~ 1
sl =11 (3. ~5. 1.3) 11 = 11, ~1,1.3)]

V2 V3

4 2

Example 2.3.2.8. Find the distance from the point z = (0,0,1,0) to the plane 7 that passes
through the point xo = (1,0,0,0) and is parallel to the vectors vi = (1,—1,1,—1) and va =
(0,2,2,0).

The plane 7 is not a subspace of R* as it does not pass through the origin. Let mq = Span(vy, va).
Then

T = Tg + Xg-
Hence the distance from the point z to the plane 7 is the same as the distance from the point z —Xg
to the plane m.

We shall apply the Gram-Schmidt process to vectors vy,va,Z — Xg.
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This will yield an orthogonal system w1, Wa,ws. The desired distance will be ||wsl]|.

= (1,-1,1,-1), v2=(0,2,2,0), z —xo = (—1,0,1,0).
W1 =Vi =(17_17]-7_]-)7

<V27 >

Wy = Vg — —————wy =vg = (0,2,2,0) as v L vy.
<W17W1>
(z — xg, W1) (z — xg, W2> 0 2
= (z — _ 7 Wy - — -1,0,1,0) — —(1,-1,1,—1) — =(0,2,2,0
ws = (2~ xo) (w2, w1) b (W2, Wa) =(L0.L0) 4(7 b 8(/ 20
L1y
272

HW3||=’(—1,—1/2,1/2,0)‘=% —2,—1,1,0)] f \[

Exercise 2.3.2.3. 1. Let W be the subspace of R* spanned by (1,0,—1,2) and (2,1,0,—1) and
take the inner product to be the standard dot product.

(a) Find the vector in W which is closest to the vector (4,3,2,1).
(b) Find a basis for W+ and the dimension of W+.
(c) Find the unique w1, wo € W such that (4,3,2,1) = wy + Wa.

2. Letx; = (1,—1,1,—1), x5 = (1,0,0,1), x3 = (1,1, 3,3) in R* and let S = Span(x1, X2, X3).

(a) If the Gram-Schmidt procedure is applied to the vectors Xy, Xa, X3 in that order, find
the resulting orthonormal basis for S.

(b) Find a basis for S*.

(c) Find an orthonormal basis for R* which extends the orthonormal basis for S found in
part (a).

2.4 The dual space

Definition 2.4.0.3. A mapping f : V — K is called linear functional iff f(aub+ v) = af(u)+
bf(v),Vu,veV and a,b € K.Let V be a vector space over the field K.

Definition 2.4.0.4. : - The dual space V* := {L(V, K) of V set of all linear maps from V to K}.
The elements of V* are linear functional on V', and the annihilator is defined by V° = {l € V*:
l(u) =0, forall ueV}

Notation:
Let p € V* and v € V* we shall use the notation < p, v >= @(v)
Note:
1 <p+eav>=(e+e)v)=p(v)+e(v) =<, v>+ <pyv>
2. < p,vi+ vy >=p(vi+Va) = (Vi) +@(va) =< p, vy >+ < p, vy >

3. < Ap,v>=(Ap)(v) = Aop(v) =A< p,v>
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4. <AV >S=A< o,V >

Example 2.4.0.9. Let V =R" and ¢ : R* — R. The projection on the i component is defined

by ¢(v1,Va, -+, vn) = vi. Show that ¢ is a linear functional.
Solution:
Lemma 2.4.0.1. : - Assume that V and W are vector spaces over the field K,{vy, va, -+, vp}
be basis of V' and {wy, wa, ---, Wn} be an arbitrary element of W. Then there exist a unique
linear map T :'V — W defined by T (v;) = w;, fori=1,2,--- n.

Proof

Note: Let V' be a finite dimensional vector space over a field K. Then dimV™* = dimV .
Definition 2.4.0.5. :- The basis {vi*, va*, -+ vy*} of V* called the dual basis of {v1, va, --+, Vn}.

Theorem 2.4.0.4. :- Let V be a finite dimensional inner product space,p € V*. Then there exists
a unique v € V such that ¢ = Lv.

Corollary 2.4.0.1. : - Let V be a finite dimensional Euclidean space, then the map @ : V. — V*
given by p(v) = Lv is an isomorphism.

Note: If V' be a unitary space in the above corollary,  fails to be linear.

The Duality Principle
For each ordered basis

{81, €a, ..., en}

of of a finite dimensional vector space V', there exists a corresponding basis
{wh W2, ..y w'rL}

for V*, and vice versa such that
(wi. €5) = 0yj.

The wvalidation of the duality principle consists of the actual three-step construction of the basis
dual to the given basis, which we denote by

B ={e1,ea,...,en} CV (basis for V).

Steps of constructing dual basis

Step I For all vectors x and 'y one has the following unique expansions:

X =qa1€e1 + ... + oen
y = /1e1+ ...+ Bneén
X+y=(a+p)er+ ..+ (a+ Bu)en

CcX = cay€eq + ... + capen
Note that
ay 1s uniquely determined by x
B is uniquely determined by y
a1 + By is uniquely determined by X +y

cay is uniquely determined by cx
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Step II These four relations determine a linear function, call it wy. Its defining properties are

wi(x) = a1, wily) =5
wi(x+y)=a;+p1, wi(ex)=ca

which imply

wi(x+y) =wi(x) +wily), wiex)=caw(x)
In particular, from the equation in step I, one has

wi(er) =1, wi(ex) =0, -+, wi(ey) =0.

We conclude that w, is a linear function, indeed. The function w' is called the first coor-
dinate function.

Step III Similarly the j* coordinate function, is defined by
wj =ay, forj=12,...n
By applying w; to the ith basis vector e;, and using the equation in step I one obtains

1, 7=1

wj(er) = (wj, &) = {07 i

or in terms of the Kronecker delta,
<Wj7 e;) = 5¢j-

This is called a duality relation or duality principle. The choice of a different vector basis
would have resulted in a correspondingly different set of coordinate functions, but would have again
resulted in a duality relation.

Being elements in V*, do these coordinate functions form a basis for V*?
The answer to this important question is answered in the affirmative by the following:

Theorem 2.4.0.5. (Dual Basis)

If B = {eyq, ea,...,en} is a basis of finite dimensional inner product space V', then B* = {e1*, e2*, ...,en"}
(the set of linear functions B* = {w;}_, which satisfies the duality relation (wj,e;) = d55) is a
basis for V*.

Proof. Spanning property
Let f € V* be some linear function on V' . Evaluate f(x) and use

X = Z ;€.
Thus

fx)=fO " aies) =D flei)ay, o is the i coordinate of x, i.e. a' = w;(x);

2

Zf(ei)wi(x), Vx € V.
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This holds for all x € V. Consequently,

f= Zf(ei)wi-

which is an expansion of f in terms of the elements of B*, which means that B* is a spanning set
for V* indeed.

Linear independence property

Let us consider the equation

clwi + cows + ... + cpw, =0

where 0 is the function with constant value zero on V, then
(Z cie;,v) =0
j

for every v € V.
In particular, if v = e;, we get

0= <l7€i> = ZCJ‘<€;7GZ'> = chaji = C;
J J

for 1 <i < n, By evaluating both sides on the i** basis vector e; and using the second step in the
above process one obtains ¢; =0 for i =1,2,...,n.

Consequently, B* does have the linear independence property. Together with its spanning property,
this validates the claim made in the Theorem that B* is a basis for V*. (I

Example 2.4.0.10. (Column spacex =Row space)

GIVEN:
Let
1 1 1
B:{elzo,ez: 1,83: 1}
0 0 1

be a basis for the column space V = R3.
a. Identify V*, the space dual to V.
b. Find the basis

B* = {w,ws,ws} dual to B.

Solution:
a. The space dual to V' consists of the row space

Vi={o=labc: ab,ceR}
x

Indeed, for any x = |y| € R3,
2

T xr
(o,xy=0 | |y| | =labd|y| =ax+by+cz.
2 2
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1
(wi,e1) =[a b (] {O] =l=a=1

0
1
(wi,ea) =labc|l| =0=a+b=0=b=—a=—1
0

1
(wi,es) =la b [1] =0=c=—-a—-b=-14+1=0
1

1
(wa,es) =la b [1} =0=>c=—a—-b=0—-1=-1
1

ﬁCUQ:[Ol —1],

.
(ws,e1) =labcl |0 =0=a=0
O—
o
(ws,ex) =labc |[1| =0=b=0
—0-
=
(ws,eg)=labcl |l =1=c=1
1

= wy=1[001].
Thus the basis of duals for V*, the space dual to V = R3 is

B' = {wi}i, = {11 —1 0,01 —1],/001]}.

Example 2.4.0.11. Let B = {fi, fa, f3} denote the dual basis for V* the standard ordered basis
for V be B = {ey = (1,0.0), ez = (0,1,0), es = (0,0,1)}.

Solution:

To find an explicit formula for f; we need to consider the equations

1= fi((1,0,1)) = fi(e1 +e3) = fi(e1) + fi(es) = fi(er),
0= f1((1,2,1)) = fi(e1) +2fi(e2) + fi(es) = 1 +2fi(ez),
0= fl((()vo? 1)) - fl(e3)
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implying

filer) =1, fl(ez) = %, fi(es) =0

implying

1

f1(37,y,2) =T = éy

To find an explicit formula for fo we need to consider the equations

0= f2((1,0,1)) = fa(es +es) = fale1) + fales) = fa(er),
1= f((1,2,1)) = foler) + 2fa(ez) + fa(es) = 2fa(e2),
0= f2((0707 1)) = f2(83)

implying
fa(er) =0, foez) = %, fa(es) =0

implying
1

foz,y,2) = §y'

Finally, to find an explicit formula for fs we need to consider the equations

f3(e1 +e3) = fz(er) + fs(es) = fs(er) + 1
fa(e1) +2fs(e2) + fa(es) = =1 +2f3(e2) + 1 = 2f3(ez),

0= f3((1707 1))
0= f3((17 2, 1))
1= f3((0,0,1)) = fs(es)

implying
faler) = L. falez) = 0, fs(es) = 1

implying
fg(fII,y,Z) =T+ 2z

Exercise 2.4.0.6. : Identify V*, the space dual to 'V and find the basis
B* = {wy,ws,ws} dual to B.

given the basis for the column space V = R3.

1 1 1
ool ol
0 0 2

B={u=(1,0,1), v=(1,—-1,0),w = (2,0,—1)}.

—_
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2.4.1 Adjoint of linear operator

Definition 2.4.1.1. : - Let < V,<,>> be an n-dimensional Euclidean space and T :'V — V a
linear operator. The adjoint T* of T is the linear operator S : V. — V such that < T'(u),v >=<
u, S(v) >, for allu,v € V.

Here if A is an m x n matriz which rpesents the linear operator T, then the adjoint of A is denoted
and given by

A = (A%)y = Ay

Example 2.4.1.1. : Find T*(x,vy, 2) of the linear operator T : R?® — R3 defined by T(x,y,2) =
(x 4+ 2y,3x — 4z,y), for all x,y,z € R.
Solution.:

T have usual basis of R3.

T(1,0,0) = (1,3,0) = 1.(10,0) + 3(0, 1,0) +0.(0,0, 1)T(0, 1,0) = (2,0,1) = 2.(1,0,0) + 0.(0, 1,0) + 1.(0, 0, !

1 3 0\ (12 0 1 3 0
Msr =12 0 1| =13 0 —4|. Therefore[T*]p = A* = (A1)l = (A)f = {2 0 1].
0 —4 0 01 0 0 —4 0
Thus T*(x,y, z) = (x + 3y, 2z + z, —4y).
Theorem 2.4.1.1. e (x,y+2) = (x,yi+ hx,z).
o« (z.cy) =¢(z.y).
e (x,0)=(0,z) =0.
e (x,z) =04f and only if ©r=0.
o If (x,y) = (x,2) for everyx € V |, theny = z.
Theorem 2.4.1.2. : - Let V be a finite dimensional inner product space, X € K, T and S be

linear operators on V. Then
1. (T+ S =T+ 5"
2. (\T)* = \T*

3. (TOS)* = S*OT*

4. (T =T
5 (]Tl)* - [n
6. (0)"=0

2.4.2 Self-adjoint linear operators

Preliminary Concept
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Conjugate of matrix

Definition 2.4.2.1. : - Let A be a matrix over a field C, conjugate of A is denoted and defined
as A is a matriz obtained from A by replacing each entry by its conjugate.

1430 4 (13 —4i
( 2 5—6@') the”A_< 2 5+6z>
Theorem 2.4.2.1. : - Let A, B be maltrices over C, A € C then
]Z_:A o 2. M =\A B 3. A+ B=A+1DB

4. AB = (A)(B) 5. (A)f = (4)

Example 2.4.2.1. - A

>

Hermitian and Skew-Harmitian matrices

Definition 2.4.2.2. : - Let A be a square matrixz over C. A is called Hermitian if A* = A and
Skew-Harmitian A* = —A

Note:

The diagonal elements of a hermitian matrix are real numbers.

2. The diagonal elements of a skew-hermitian matrices either zero or pure imaginaries.

~

orthogonal matrix
Definition 2.4.2.3. : - Let A be a square matriz over R. A is called orthogonal if A* = A~}

2/3 —-1/3 2/3
Example 2.4.2.2. : Show that the matriz A = | 2/3  2/3 —1/3| is an orthogonal matrix
-1/3 2/3  2/3
and the columns A form an orthonormal set.
Solution:

Theorem 2.4.2.2. : - Let A, B be orthogonal matrices of the same size, then A', A= and AB
are orthogonal det(A) = +1

Unitary Matrices

Definition 2.4.2.4. : - Let A be a square matrixz over C. A is called unitary if and only if
A* = A—l — (A_l)t.
Theorem 2.4.2.3. : - Suppose A and B are unitary matrices of the same size, then A', A~' and AB

are also unitary.

Self-Adjoint Linear operators

Definition 2.4.2.5. : - An operator T €V is called self-adjoint if T* =T
Note:-
IfV is a Euclidean space and T is self adjoint linear operator on V', then T is called symmetric.
If V is a unitary space and T is self adjoint linear operator on V', then T is called hermaitian.

Example 2.4.2.3. :- The linear transformation T : R? — R? defined by T(z,y) = (y,x)for all
x,y € R is self- adjomt.
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2 -1

Example 2.4.2.4. : - let V = R?, with an inner product <,> defined by A = 1 w.r.t
a fived basis E = {(1,0),(0,1)}. Let T : V — V a linear operator, defined by T(F) = EB,where
B = ; f . Show that T is self adjoint operator or not. If so, find the matriz of its adjoint
operator w.r.t E.

Solution:

If T were self-adjoint, we would have < T(Fzx), By >=< Ez,T(Fy) >;VEx,Ey € V. From
which x'(B*A)y = 2'(AB)y, for all x,y € M, 1(R)(minor).
Therefore, we should have B'A = AB, but: B'A = (g _11> # <(1) _31> Hence T is not self-
adjoint.

The adjoint of T is defined by: S(E) = EC with C = A™'B'A = <g _01>

Lemma 2.4.2.1. :- Let T be a linear operator on a finite dimensional inner product space V', then
<T(v),w>=0, for every v,w € V.

Lemma 2.4.2.2. : - Let T be a self adjoint linear operator on a finite dimensional inner product
space V', if and only if < T'(v),v >=0, for allv V.

Lemma 2.4.2.3. : - Let T be a linear operator on a finite dimensional unitary space V', then
<T(v),v>=0,YveV.

Theorem 2.4.2.4. : - T be a self adjoint linear operator on V' if and only if each eigenvalue of
T is real and admits an orthonormal eigenbasis with real eigenvalues

Proof. i. Let v € V be a non zero vector such that Tv = Av. Then
A< v,v>=<Tv,v>=<0v,T*0 >= X< v,0>.
Thus, A = ), which means \ is real.

ii. For F' = C: we already know that My is upper-triangular is some orthonormal basis.
Method IT Suppose that T(v) = Av for v < 0. Because a self-adjoint operator is normal, then
if v is an eigenvector of T then v is also an eigenvector of 7. Thus

MW =T(v)=T*v) = v.
O

Theorem 2.4.2.5. Let T be a linear operator on a finite dimensional inner product space V., B =
{v1,v9,++ v} be an orthonormal basis of V, A = (aij) n xn, [T|g = the matriz representation
of T with respect to B, then a;; =< T'(vj),v; >.

Proof:

Corollary 2.4.2.1. : - Let T be a linear operator on finite dimensional inner product space V.,
B = {wvy,v9, -+ ,v,} be an orthonormal basis of V., A = [T|p =the matriz representation of T with

respect to B, then [T*|p = A*.
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2.5 Isometry

Definition 2.5.0.6. :- An isometry is an operator such that < u,v >=< Tu,Tv > Yu,v € V.
That is, isometries are operators that preserve the inner product.

Example 2.5.0.5. For the Euclidean n-space R™ with the dot product, rotations and reflections
are isometries.

Proposition 2.5.0.1. :- T is an isometry iff it preserves length (norm)i.e. || T'(v) ||=]|| v ||, for
everyv € V.

Proof.

IT(u+ [P =(T(a+v), T(u+v)) = (T(w), T(w)) +(T(v),T(v)){(+2T(u), T(v))
= [|T()|]? + [|T(v)* + 2(T(u), T(v)),
lu+v|)?=u+v,u+v)=(uu)+(v,v)+2(u,v)
= [Jul* + [[v]]* + 2(u, v).

It is clear that the length preserving is equivalent to the inner product preserving. O

Characterization of isometries Let V = W be finite dimensional inner product space. T €
L(V) is an isometry iff T*T =1 =TT*.
An n x n matriz Q is called orthogonal if QQT =1, i.e.,

Q—l — QT-

Theorem 2.5.0.6. - Let V be a finite dimensional inner product space, T be a linear operator on
V. Then the following statements are equivalent.

a. TF*=T""
b. T preserves inner product i.e. < T(v),T(w) >=<v,w > Yo, w e V.
c. T preserves length (norm) i.e. | T (v) ||=| v ||, for everyv e V.

Definition 2.5.0.7. : - Let T be a linear operator on a finite dimensional inner product space V.
An isometry on a Fuclidean space is called orthogonal operator.
An isometry on a unitary space is called unitary operator

Let T be an isometry and {vy,vq, -+ ,v,} be an orthonormal basis of V.. Then
| T(vi) [[=]lvi [[=1
< T(v;), T(vj) >=< v;,v; >= 6;; hence {T'(v1),T(vs),--- ,T(vy)} is also an orthonormal basis for

V. Because an isometry measures the inner product it measures orthogonality and other matriz
notions.

Theorem 2.5.0.7. : - Let T be a linear operator on a finite dimensional inner product space V.
Let A be the matrixz representation of T relative to the orthonormal basis, then T is an isometry if
and only if A* = A1,

Two inner product spaces V and W over F are isometric, if we can find an isometry L : V — W,
i.e. an isomorphism such that

(L(x), L(y)) = (x,y).
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2.6 Normal operators and the spectral theorem

Definition 2.6.0.8. - Let T' be a linear operator on a finite dimensional inner product space V.
T is called a normal operator if and only if ToT* = T*oT.

Example 2.6.0.6. : - show that the operator T : R? — R? given by T'(z,y) = (y, —x),Vx,y € R
is normal operator.

Proof. T(x,y) = (y, —x),Va,y € R then T*(x,y) = (—y, x), by the definition of T*.
Then, TOT*(z,y) = T(—yx) = (z,y) and T*T(z,y) = T*(y, —z) = (x,y).
So,T*T = TT*,

Hence, T' is normal .

O
Exercise 2.6.0.8. show that every diagonal matriz is normal.
Lemma 2.6.0.4. :- An operator T on V' is normal iff | T'(v) ||=|| T*(v) ||, Vv € V.
Proof. || T(v) |=]| T*(v) |
S<TWw), T(v) >=<T*(v), T*(v) >
S< v, T*T(v) >=< v, TT*(v) >
< (T"T —TT*)v,v >=0
ST T=TT*
That is, Since T*T — TT* is self adjoint Vo iff T' is normal.
O
Lemma 2.6.0.5. : - Let T' be normal operator be a finite dimensional inner product space on V.
Then for any A € K, T — X is also normal operator.
Theorem 2.6.0.9. : - Let T' be normal operator be a finite dimensional inner product space on

V. Then v € V such that v # 0 is an eigenvector of T with eigenvallue A iff v is the eigenvector
of T with eigenvalue \.

Proof. T(v) =X+ T(v)—Mv =0« (T —\)(v) =0 < since T is normal T'— AI is also normal.
Now, (T — M)* =T* — M.
Hence (T* — \I)(v) =0
& T*(v) = M) =0
& T*(v) = M.
& Since v # 0, X is an eigenvalue of T*. O

Definition 2.6.0.9. :- Let V' be a vector space over K, T be a linear operator on V., W be a
subspace of V.. we say W is T invariant if for each w € W the vector T'(w) € W.

Lemma 2.6.0.6. : - Let T be a linear operator an inner product space on V, W be aT' invariant
subspace of V.. Then W orthogonal W+ is T* invariant.

Theorem 2.6.0.10. : - (Spectral Theorem) Let T be a self-adjoint operator on a finite dimen-
stonal Euclidean space or a normal operator on a finite dimensional unitary space V., Ai, Aa, -+, \p
be distinct eigenvalues of T, T; orthogonal projection of V' on wj. Then

1. wy J_wl,l%j
11. VZUMGBUJQ@,'” 7®wn
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ii. T=y7,(\NT)

(Equivalently, any real symmetric matriz A can be diagonalized by an orthogonal matriz. More
specifically, there exists an orthonormal basis B = {uy, ...,un} of R™ such that

Aui:Aiub 1 SZSTZ

Q' AQ = Q"AQ = Diag[\, ..\,

where Q@ = [uy, Uz, ..., Uy|; and spectral decomposition
A= \uuil + ...+ \upuy,’.
Proof. Let T : R™ — RY has an orthonormal basis B = {uy, ..., u, } of eigenvectors of T,
T(w) = \u;, 1 <i<mn;
and @ = [uy, ..., up]. Then
Q'AQ = QTAQ = Diag[\,,..\,] = D.
Alternatively,

A=QDQ ' =QDQ"

)\1 0 0 ulT
0 )\2 0 UZT
= [ul,llz,...,lln] . . . . .
0 0 ... M| |usT
ulT
U2T
= {)\11,11 -+ )\2112 + ...+ )\nun .
u,”

= )\1111111T + /\2112112T + ...+ /\nununT.
O

Note. It is clear that if a real square matriz A is orthogonally diagonalizable, then A is sym-
metric.

13 3
Example 2.6.0.7. Is the matrir A= |3 1 3| orthogonally diagonalizzable?
3 3 1

Solution:
The characteristic polynomial of A is

At) = (t+2)2(t—T7).

There are eigenvalues \y = —2 and Ay = 7.
For A\ = =2, there are two independent eigenvectors

vi = [-1,1,0]", vo = [-1,0,1]".
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Set wq = vy,

. -1 1
Wo — Vo — V2 W1 Wi — [—, -, 1]T
Wi1. W1 2°2
Then
1 1
u; = 75 , Ug = _76
2
0 72
form an orthonormal basis of E,.
For Ay =7, there is one independent eigenvector
1
V3 = 1
1_
The orthonormal basis of Ey, is
1
?g
Us 7§
1
V3
Then the orthogonal matrix
1 11
V2 V6 VB
| L -1 1
“Cle v
0 %

diagonalizes the symmetric matrixz A.

2.7 Factorization of a matrix

In linear algebra, a matriz decomposition or matriz factorization is a factorization of a matrixz into
a product of matrices. There are many different matrix decompositions. Among those

Preliminary concepts

Definition 2.7.0.10. o A is positive definite if A is symmetric and
2T Ax >0Vz >0

That is definite if it’s symmetric and all its pivots are positive. the k" pivot of a matriz is

d. — det(Ak)
"7 det(Ay,)

where Ay is the upper left k x k submatriz. All the pivots will be positive if and only if
det(Ag) > 0 for all 1 < k <n. So, if all upper left k X k determinants of a symmetric matriz
are positive, and all of its eigenvalues are positive the matriz is positive definite.

e A is positive semi-definite if A is symmetric and

T Ax >0V .
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and if all of its eigenvalues are non-negative
Note: if A is symmetric of order n,then

non
I‘TAJ? = Z Z Qi Tl = Z GM.IJf + 2 Z Qi L35,
i=1

i=1j=1 i>j

Example 2.7.0.8. Determine whether the following matrices are positive, semipositive of neither.

=5 em=(l) e (5)

Solution

A is positive since

:L‘TA:L‘ = 91.% + 12x129 + 533% = (3331 + 2552)2 + l‘%

B is semi-positive definite but not positive definite: since
rT Az = 922 + 122,39 + 422 = (3, + 229)%
C' is not positive semi-definite:

rT Az = 922 + 123129 + 322 = (3, + 225)? — 22

2.7.1 LU decomposition

key point : An LU decomposition of a matriz A is the product of a lower triangular matrixz and
an upper triangular matriz that is equal to A.

Definition 2.7.1.1. A m x n matriz is said to have a LU-decomposition if there exists matrices
L and U with the following properties:

(i) L is a m x n lower triangular matriz with all diagonal entries being 1.
(ii) U is a m X n matriz in some echelon form.
(iii) A= LU.
Suppose we have the system of equations
AX = B.

The motivation for an LU decomposition is based on the observation that systems of equations
involving triangular coefficient matrices are easier to deal with. Indeed, the whole point of Gaussian
elimination is to replace the coefficient matriz with one that is triangular. The LU decomposition
is another approach designed to exploit triangular systems. We suppose that we can write

A=LU

where L is a lower triangular matrix and U is an upper triangular matriz. Our aim is to find L
and U and once we have done so we have found an LU decomposition of A.
It turns out that we need only consider lower triangular matrices L that have 1's down the diagonal.

U
A
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Types of LU decomposition

The principle difference between Doolittle’s and Crout’s LU decomposition method is the calcu-
lation sequence these methods follow. Both the methods exhibit similarity in terms of inner product
accumulation.

In Doolittle’s method, calculations are sequenced to compute one row of L followed by the
corresponding row of U until A is exhausted. Below is the computational sequence and algorithm
for Doolittle’s LU decomposition.

For each

Ui, = @i, — Y (Lijuge)

=1

Fork=1d,i+1,....,n — 1 produces the k'* row of U.

(air — X1 (Lijujp))
Uk

Liy =

Fori=k+1,k+2,...,n—1 and L; = 1 produces the k' column of L.

Crout’s LU Factorization
An equivalent LU decomposition of A = LU may be obtained by assuming that L is lower triangular
and U is unit upper triangular. This factorization scheme is referred to as Crout’s method. The
defining equations for Crout’s method are

i—1
Lij = a;; — Z Liyuyj, where i > j
k=1

and -
i
Q5 — Zk:1 Likukj

Ui = L. , where 1 < j.
Example 2.7.1.1.
1 2 4
A=13 8 14| =1LU,
2 6 13
where
1 0 0 Un U U
L= L21 1 0 and U = 0 U22 U23
L31 L32 1 0 0 U33
Then
Un Ura Uiz
LU = | LoyUyy LoyUyg + U Lo1Uiz + Uss = A.

L31Uyy L3yUig + LUy + L3gUsy  L31Uyz + L3aUss + Uss

Now we use this to find the entries in L and U. Fortunately this is not nearly as hard as it
might at first seem. We begin by running along the top row to see that
Urp=1, Upyp=2, U3z=14.
Now consider the second row LoyUyy =3 .. Loy x1=3= Loy =3,
LoiUis + Uy =8=3%2+ Uy =8= Uy =2 s
L21U13+U23: 14$3*4+UQ3: 14:>U23:2 .
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Notice how, at each step, the equation being considered has only one unknown in it, and other
quantities that we have already found. This pattern continues on the last row

L31U11:2$L31*1:2$L31:2,
L31U12+L32U22=6:>2*2+L32*2=6:>L32=1,
L31U13+L32U23+U33:13:>(2*4)+(1*2)+U33:13:>U33:3.

We have shown that

1 2 4 1 00 1 2 4
A=13 8 14| =3 1 0].]10 2 2|,
2 6 13 211 00 3

and this is an LU decomposition of A.

Exercise 2.7.1.1. Find an LU decomposition of
3 1 6
a. (—36 _14> b. | -6 0 —16
0 8 —17
Theorem 2.7.1.2. Let A be a m x n matrix and Ey, Es, ..., B}, be elementary matrices such that
U — Ek‘Ek—l---ElA

is in row echelon form . If none of the E;s corresponds to the operation of row interchange, then

is a lower triangular invertible matriz. Further L = C~1 is also a lower triangular matriz with
A=LU .
Proof:

We observe that if an elementary row operation does not involve a row-interchange , then to reduce
A to row echelon form, each row operation involved is either multiplying a row by a nonzero scalar,
or adding a row to some row below it.

Thus, all the elementary matrices E, Es, ..., Ey such that

U - EKElA

is in row echelon form , are lower triangular and invertible.
Hence, C'= EFEy_1...Ey is also lower triangular and invertible. Finally

L=0C"!

is also lower triangular and
A=LU.

Do matrices always have an LU decomposition?

No. Sometimes it is impossible to write a matrix in the form “lower triangular “ x
qular’.

Why not?

An invertible matrix A has an LU decomposition provided that all its leading sub-matrices have
non-zero determinants. The k™ leading submatriz of A is denoted Ay and is the k x k matriz
found by looking only at the top k rows and leftmost k columns.

7

upper trian-
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1
Example 2.7.1.2. Determine whether the matrizc A = (2
1

W = DN

3
5) has LU decomposition or not.
4

Solution:
The second leading submatrix has determinant equal to

|<; Z>|:(1x4)—(2x2)=o.

0 is not positive. Due to this the matriz A doesn’t have an LU decomposition.

2 -1 3
4 2 1
-6 —1 2

Then by applying row operations Ry <> Ry — 2Ry, R3 <> R3+ 3Ry, R3 <> R3+ Ry on A, we obtain

2 -1 3 2 -1 3
A~10 4 5| ~|0 4 —=5|=U
0 —4 11 0 0 6

The corresponding elementary matrices and their inverses are

1 00 1 00
Ey=1-2 10|, E'=[21 0],
0 01 00 1
1 00 1 00
E,=10 10|, E;'=1(2 1 0],
000 00 1
1 00 1 0 0
Fs=10 10|, E;'=[0 1 0].
11 0 -1 1
1 00\ /10O /1L 0 0 1 0 0
L=E'E;'E;'=[2 1 0|2 1 0|0 1 Ool=]|2 1 0.
00 1/\0oo01/\0 -1 1 -3 -1 1

We observe that
2 -1 3 1 0 0 2 -1 3
A=4 2 1|=1] 2 1 0 0 4 —-5].
-6 —1 2 -3 -1 1 0 0 ©6

Exercise 2.7.1.3. Determine whether the following matrices has an LU decomposition or not.

1 -3 7 12 3
a. (g ?) b. (g ;) e |l-2 6 1 i |2 15
0 3 -2 13 4

Example 2.7.1.3. Let

)

Thus,
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Once a matrix A has been decomposed into lower and upper triangular parts it is possible to obtain
the solution to AX = B in a direct way. The procedure can be summarized as follows

e Given A, find L and U so that A= LU. Hence LUX = B.
e LetY =UX so that LY = B. Solve this triangular system for'Y .
e Finally solve the triangular system UX =Y for X.

The benefit of this approach is that we only cver need to solve triangular systems. The cost is that
we have to solve two of them.

T 1 2 4 T 3
Example 2.7.1.4. Find the solution of X = | xo | of the system |3 8 14| |xzo| = |13
T3 2 6 13 I3 4

Solution:

The first step is to calculate the LU decomposition of the coefficient matriz on the left-hand side.
In this case that job has already been done since this is the matriz we considered earlier. We found
that

1 00 1 2 4
L=1310|,U=1]0 2 2
2 1 1 0 0 3
hn
The next step is to solve LY = B for the vector Y = | yo | . That is we consider
Ys
1 0 0\ [/ 3
LY =131 0| |w 13| =B
21 1) \gs/) \ 4

which can be solved using forward substitution. From the top equation we see that y, = 3. The
middle equation states that 3y; + yo = 13 and hence yo = 4. Finally the bottom line says that
2y1 + Yo + y3 = 4 from which we see that y3 = —6.

Now that we have found 'Y we finish the procedure by solving UX =Y for X. That is we solve

1 2 4\ [xy 3
UX=|(0 2 2| |x|=|4|=Y
0 0 3/ \us3 —6
by using back substitution. Starting with the bottom equation we see that 3x3 = —6 so clearly

x3 = —2. The middle equation implies that 2xo + 2x3 = 4 and it follows that xo = 4. The top
equation states that x4+ 2wy + 4x3 = 3 and consequently r, = 3.
Therefore we have found that the solution to the system of simultancous equations

1 2 4 T 3

3 8 14| |xz| =113

2 6 13) \x3 4
3
s X =1| 4
-2
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Exercise 2.7.1.4. Solve the system using LU decomposition

3 1 6 T 0
—6 0 =16 22| =| 4
0 8 —17) \z3 17

2.7.2 Cholesky

The Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian,
positive-definite matrix into the product of a lower triangular matriz and its conjugate
transpose.

The Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving sys-
tems of linear equations.

Every symmetric, positive definite matrix A can be decomposed into a product of a unique
lower triangular matriz L and its transpose:

A=LL".

The following formulas are obtained by solving above lower triangular matriz and its transpose.
These are the basis of Cholesky Decomposition Algorithm :

Let
a11 Q12 A13 lih 0 0 lin o s
A= |an axn a3 =LL" = lor lya O 0l I3
az; a3z a33 l31 l32 33 0 0 s
@11 a2 a3 1%1 Linly linls
= a2 ax ax| = |lul 5+ 15, lorlz1 + l2al30
a3) Q32 as3 l31lin I31lo1 + l3al99 l§1 + l%g + l%g

2 _ — — — Q12 _ ay — i
[ = ann = ln = y/a, lnly =ap = lip= " lilsi = a1z = Iy I

= 15, + 155 = a2y = lyy = \Jagy — 15}, loils1 + loalsy = a3 = I3 = a23;2l§1l317
By + By + By = ass = lss = yJags — (13, + 3.

Generally, if A is an n x n symmetric positive definite matriz, it can be decomposed into L x LT
by the following algorithm.:

1 i—1
Lij = 7—(aj; = > LunLw).
k=1

JJ

Example 2.7.2.1. Find the Cholesky decomposition of

solution:

From the beginning, we observe A is symmetric and diagonally dominant matriz which positive
definite. Hence we can use Cholesky decomposition to decompose.
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lh 0 0
Let L= |1y loa 0 | be it’s corresponding lower triangular matriz and from the above algorithm
l31 l32 l33
we have,
l]_]_ — \/E — \/§7
aio —V2
2= 21 5
l = l2 l — 2 —/2 2 o 3
w = Van — b=l =2 - (52) =3,
ai3 0
= n=75=0
(o3 — a1 l3) -1+ */75.0 9
l32=l—:>132=—3:_ ,
22 \/;
2 4
l33 = \/a33 - (l;?z)l + l%Q) = l33 = \/I — \/;.
Thus,
2 -1 0 V20 0N (V2 22 o
12 =22 /& o o VI -2
b o —5 i/ \o 0 i

2.7.3 The QR-Decomposition

The Gram-Schmidt formulas can be organized as matrix multiplication A = QR, where ai, ..., a,
are the independent columns of A, and Q) has columns equal to the Gram-Schmidt orthonormal
vectors uj, ..., Uy, which are the unitized Gram-Schmidt vectors.

Square matric
Any real square matriz A may be decomposed as

A=QR,

where Q is an orthogonal matriz (its columns are orthogonal unit vectors meaning QTQ = QQT =1
and R is an upper triangular matriz (also called right/upper triangular matrix).

If A is invertible, then the factorization is unique if we require the diagonal elements of R to be
positive.

If instead A is a complexr square matrix, then there is a decomposition A = QR where Q) is a
unitary matriz (so

Q'Q=0QQ" =1, Q"= (Q)" is the adjoint of Q.

If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis
for the column space of A. More generally, the first k columns of () form an orthonormal basis
for the span of the first k columns of A for any 1 < k <mn. The fact that any column k of A only
depends on the first k columns of Q) is responsible for the triangular form of R.

More generally, we can factor a complex m x n matriz A, with m > n, as the product of an m xm
unitary matriz Q) and an m X n upper triangular matrix R. As the bottom (m — n) rows of an
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m X n upper triangular matriz consist entirely of zeroes, it is often useful to partition R, or both
R and Q:

A=QR=Q m = Q1 Q) m = Qif,

where Ry is an n X n upper triangular matriz, 0 is an (m — n) X n zero matriz, Q1 is m X
n, Qa2 is mx (m —n), and @y and Qs both have orthogonal columns.
Golub and Van Loan (1996) call Q1 Ry the thin QR factorization of A; Trefethen and Bau call this
the reduced QR factorization.

If A is of full rank n and we require that the diagonal elements of Ry are positive then Ry and (4

are unique, but in general Qo is not. Ry is then equal to the upper triangular factor of the Cholesky
decomposition of A*A (= AT A if A is real).

Computing the ()R decomposition There are several methods for actually computing the QR
decomposition, such as by means of the Gram—Schmidt process, Householder transformations, or
Givens rotations. Each has a number of advantages and disadvantages.

Using the Gram—Schmidt process Consider the Gram—Schmidt process applied to the
columns of the full column rank matriz

A = [al"‘an]7
with inner product
(v,w) =v'w

(or

(v,w) = v'Ww

for the complez case).
By recalling projection of vectors:

uy
u; = ag, €1 = m7
1
. (az,u1> Uz
Uz = as — proji2 = ag — u, €3 = ——
2 2 p jul 2 ||u1|’2 17 2 Hu2||7
n—1 ‘ n—1 <a u_> W
j=1 j=1 J j

! .
We can now express the a;s over our newly computed orthonormal basis:

a; = <el7al>el
Ay = <01732>e1 + <€2,32>92

az = (e, az)e; + (ez,az)es + (e3,a3)e;
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where
(er,a;) = |lus| -

This can be written in matriz form:

A=QR
where:
<el7 al) <ela a2> <el7 a3>
0 ey, a e, a
0= (o1 o o o). R (e2,22) (e2,3)

0 0 <e3, 83>

Example 2.7.3.1. Consider the decomposition of A =

Recall that an orthonormal matrix () has the property

QTQ=1

ei’a; e las er’a,

0 ezTaz ezTan

0 0 e, ay
12 —-51 4
6 167 —68
—4 24 —41

Then, we can calculate Q) by means of Gram—Schmidt as follows:

12 —69 —58/5
U=(u1 u, u3)= 6 158 6/5 |;
—4 30 -33
6/7 —69/175 —58/175
Q= (1 1oy my)=| 3/7 138/175  6/175
—2/7  6/35  —33/35
Thus, we have
QTA=Q'QR=R;
14 21 —14
R=QTA=|0 175 —70].
0 0 35

Advantages and disadvantages

The Gram-Schmidt process is inherently numerically un-

stable. While the application of the projections has an appealing geometric analogy to orthogonal-
ization, the orthogonalization itself is prone to numerical error. A significant advantage however is
the ease of implementation, which makes this a useful algorithm to use for prototyping if a pre-built

linear algebra library is unavailable.

Example 2.7.3.2. Compute the QR factorization of the matriz

1 10
A=1|1 0 1
011

Solution: Consider the matriz with the vectors a; = (1,1,0)7, a” = (1,0,1), ag” = (0,1,1).
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Performing the Gram-Schmidt procedure, we obtain:

u 1
U = aj1 = (17 170)T7 €1 = HU—IH = ﬁ(lv 170)7
1
<327u1> 1 1 1 1 1
Uz = az — u1=(17071)__ _7_70) = 7__71 9
Hu1||2 \/5( 2 2 ) (2 2 >
e U2 _ (L _ L A)
T flugf] VO VETVE
1

1
1 1 1 1 2 1 1 1
Ug — ag — (33761)91 - (33792)82 = (0, 1, 1) — —\/_ (75, 75,0) — —\/_ (75’ NGL 76) — (_7§7 el \ﬁ) ,

s == (- 5 %)
[[us]| VAT VSTV
Thus,
41 1
wos s
Q= lerleses] = |55 55
0 %
2 1 1
aj.e; apz.e; as.ep V2 \é§ \{§
R = 0 dz.€ Aag.€y| — 0 76 76
0 0 ag.es o 0 =
Exercise 2.7.3.1. Compute the QR factorization for the matriz
120
A=1(0 1 1
1 01
(Ans.)
11 -1 1
Q=10 B Ve and R=1 0 \/3 0
RS |
GOV 0 0 ¥

2.7.4 Singular value decomposition

The decomposition has been used as a data compression algorithm. A geometric interpretation will
be given in the next subsection.
If M is an m X n matriz, then we may write A as a product of three factors:

M =USV*, (2.1)

where U is an orthogonal/unitary m x m matrix, V is an orthogonal/unitary n X n matriz, V* is
the conjugate transpose of V', and ¥ is an m x n matriz, then MT M is a real symmetric matriz
whose eigen pairs (A, v) satisfy

L v

> 0. (2.2)

vl[> —
If the real symmetric matriz MT M the eigenvalues

M A > >A0=X\p1 = .. =\,
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The numbers
O = \/>\k’7 1§kSn7

are called singular values of the matrix M. The ordering of the singular values is always with
decreasing magnitude. The diagonal matriz, 3, is uniquely determined by M (though not the
matrices U and V if M is not square, see below).

In the special, yet common case when M is an m X m real square matriz with positive determinant:
U, V*, and X are real m x m matrices as well. ¥ can be regarded as a scaling matrixz, and U, V*
can be viewed as rotation matrices.

Thus, the expression UX V™ can be intuitively interpreted as a composition of three geometrical
transformations: a rotation or reflection, a scaling, and another rotation or reflection.

Theorem 2.7.4.1. (The singular value decomposition (svd))
Let M be a real m x n matriz, (A1, V1), ..., (An, va) be a set of orthonormal eigenpairs for M* M

such that o, = /A, 1 < k <1 defines the positive singular values of A and A\, =0 forr < k < n.
Complete uy = U%le, ey Uy = =Mv, to an orthonormal basis {w o} for R™. Then the

Or

columns of U and V' are orthonormal and

01
M =U x X xV!'= . =Uxv’
~~ ~ ~~ =~
W xD WxW WxD DxD 0 o,
0
(o, 0 0 0 o] [ 01" ]
-T
0 (o)) 0 0 . 0 (%) Row M
W, Ug ... Up Upiq .. Up
= 0 0 ... oo 0 ... 0| a7
Col M Nul MT 0 0 ... 0 0 ... 0f]lo3,7
Nul M
[0 0 0 0 . 0 [ 7

r r
= ZO’iU.iV’ir = AiZViV’iI‘.
=1 =1

Example 2.7.4.1. Find the singular value decomposition of
2 2
=47

5 3
TA
ATA = (8 3>
are 2, 8 and their corresponding unit eigenvectors are
_ 1 L
0 = ( 1“5) and v = (@)
V2 V2

respectively. Hence the singular values are o1 = VA1 = /2, and 02 = Vo = V8 = 2V/2.
We have

The eigenvalues of

Av—uvTv—u—0 u—O
1 =01U1Vy1 Vi3 =01U1 = \/5,30 1= 1
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AVZ = 0'2112V2TV2 = 02U = (2\0/§> , SO U = <(1)> .

The SVD of A is therefore

s ()8 ) (F

S-Sl
}/

Exercise 2.7.4.2. :

(1)

(2)

(3)

(4)

(5)

Show that if the matriz A is square and symmetric then the singular values of A are the
absolute values of the eigenvalues of A and that the singular vectors are eigenvectors of A.

Show that ||All, = o1. If A is square and A™" exists, then ||[A7||, = o,'. Show that the
condition number of A (for the 2-norm) is o1 /0y,.

“Regularization” is a way to compromise between accurate solution of a least squares problem
and the size of the solution. Regularization is used to improve the conditioning of ill con-
ditioned least squares problems. The simplest regularization strateqy is to replace the least
squares problem

min || Az — b,

with the “reqularized” problem
. 2 2
min || Az — b]f2 + € |3

Give an algorithm to solve the reqularized least squares problem, (2), using the SVD of A.
Your algorithm will involve 1/(o; + €). Does this make dimensional sense?

Use the SVD to show that the non zero eigenvalues of A*A are identical to the non zero eigen-
values of AA*. Note that these matrices have different dimensions so they have a different
number of eigenvalues.

The “polar decomposition” of a square matriz, A, is a decomposition A = RQ) where R is
symmetric and positive semi-definite and Q) is orthogonal. This is a generalization of the
polar decomposition of a complex number z = re® into a product of a non negative real
number and a complex number of magnitude 1. The polar decomposition of matrices is used
in elasticity theory. Show how to find the polar decomposition of a matrixz from its SVD.
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