Numerical Method (Math-2073) Chapter 6-7 problem

By:- Dejen Ketema (Msc.) *

Department of Mathematics Arba Minch University

June 13, 2019

" Problems cannot be solved at the same level of awareness that created them." Albert Einstein.

^{*}dejen.ketema@amu.edu.et

Note: it is the 1.1 version, if you have any comment and suggestion please contact me.

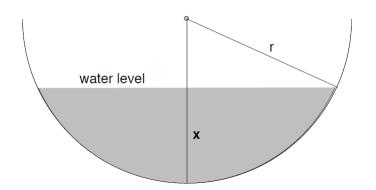
1. Water is flowing from a reservoir shaped like a hemisphere bowl of radius 12 m (see figure below). The volume of water is given by

$$V(x) = \frac{\pi}{3}x^{3}(3r - x).$$

The rate of change of the volume of water is

$$dV/dt = (dV/dx)(dx/dt).$$

Assume that dx/dt = 1 and approximate dV/dt = dV/dx when x = 3 using the central-difference formula with h = 0.1, 0.01, and 0.001.



- 2. Using the composite trapezoidal rule and the composite Simpson rule(1/3 and 3/8) find $\int_{a}^{b} f(x)dx$. Up to fourth iteration
 - (a) $f(x) = x^3 + x^2 x + 1/x 1/x^2$, a = -3, b = -1
 - (b) $f(x) = \sin x + \cos x + e^x, a = -1, b = 1$
- 3. Compare numerical results for $\int_{1}^{2} \ln x dx$ achieved when using the simple trapezoidal rule and the simple Simpson's rule to the analytically result. Explain any differences or similarities.
- 4. With precision $\xi = 0.0001$ apply the composite trapezoidal rule on

$$\int_0^{\frac{\pi}{4}} \sin(\frac{x}{8}) dx.$$

5. Using a method of your choice calculate

$$\int_{-0.5}^{0.7} 2\sin 3x dx.$$

Any result which differs less than 20% from the exact value of the integral will be accepted.

©2019 Dejen K.

dejen.ketema@amu.edu.et

2

- 6. Evaluate the integral $\int_0^3 \frac{1}{e^{-x^2}} dx$ with step length h=0.5 by using
 - (a) Trapezoidal rule
 - (b) Simpson's 1/3 and 3/8 rule
- 7. To monitor the thermal pollution of a river, a biologist takes hourly temperature T reading (in ${}^{o}F$) from 9AM to 4PM. The results are shown in the following table.

Time of day	9	10	11	12	13	14	15	16
Temperature	75.3	77.0	83.2	84.8	86.5	86.4	81.1	78.6

Use Simpson's rule to estimate the average water temperature between 9AM and 4PM given by

$$T_{av} = \frac{1}{b-a} \int_{a}^{b} T(t) dt$$

8. Assume that Kulfo river is 80m wide. The depth of the river at a distance of x from the Campus is given by the following data

X	0	10	20	30	40	50	60	70	80
у	0	4	7	9	12	15	14	8	3

Find the approximate area of cross section of Kulfo river.

9. The table below reveals the velocity v of athlete Haile G/Slasie during the time t.

t	1	1.1	1.2	1.3	1.4
V	43.1	47.5	51.3	57.1	63.5

- (a) Find the acceleration of Hiale at t = 1.2.
- (b) Find the total distance covered by Hiale from t = 1 to t = 1.4
- 10. Find the particular solution of the given ordinary differential equations on the respective intervals I = [a, b] with step h. Find the solution using the Euler method, it's modifications and using the classical Runge-Kutta method.

(a)
$$y' = x^2 - y, y(0) = 1$$
, $I = [0, 1], h = 0.2$
(b) $y' - y - x = \sin(x + y)$; $y(1) = 2$. With step $h = 0.2$ find $y(1.4)$.
(c)

©2019 Dejen K.

dejen.ketema@amu.edu.et

11. Suppose water is leaking from a tank through a circular hole of area Ah at its bottom. Friction and contraction of a water stream near the hole reduce the volume of water leaving the tank per second to $cA_h\sqrt{2gh}$, where 0 < c < 1 is a constant. The differential equation for the height h of water at time t for a cubical tank with a side 10ft and a hole of radius 2ft is

$$\frac{dh}{dt} = -\frac{c\pi}{450}\sqrt{h}.$$

Suppose the tank is initially full and c = 0.4, find the height of water after 3 seconds using the Runge-Kutta method of order 2.

12. In the study of nonisothermal flow of Newtonian fluid between parallel plates, the initial-value problem of the form

$$y'' = -t^2 e^y, \qquad y(0) = 1, y'(0) = 1$$

arises. Use the Runge-Kutta method of order 4 to approximate y(1) with h = 0.05