Numerical Method (Math-2073) Chapter 6-7 problem

By:- Dejen Ketema (Msc.) *
Department of Mathematics
Arba Minch University

June 13, 2019
" Problems cannot be solved at the same level of awareness that created them." Albert Einstein.

[^0]1. Water is flowing from a reservoir shaped like a hemisphere bowl of radius 12 m (see figure below). The volume of water is given by

$$
V(x)=\frac{\pi}{3} x^{3}(3 r-x)
$$

The rate of change of the volume of water is

$$
d V / d t=(d V / d x)(d x / d t)
$$

Assume that $d x / d t=1$ and approximate $d V / d t=d V / d x$ when $x=3$ using the central-difference formula with $h=0.1,0.01$, and 0.001 .

2. Using the composite trapezoidal rule and the composite Simpson rule ($1 / 3$ and $3 / 8$) find $\int_{a}^{b} f(x) d x$. Up to fourth iteration
(a) $f(x)=x^{3}+x^{2}-x+1 / x-1 / x^{2}, a=-3, b=-1$
(b) $f(x)=\sin x+\cos x+e^{x}, a=-1, b=1$
3. Compare numerical results for $\int_{1}^{2} \ln x d x$ achieved when using the simple trapezoidal rule and the simple Simpson's rule to the analytically result. Explain any differences or similarities.
4. With precision $\xi=0.0001$ apply the composite trapezoidal rule on

$$
\int_{0}^{\frac{\pi}{4}} \sin \left(\frac{x}{8}\right) d x
$$

5. Using a method of your choice calculate

$$
\int_{-0.5}^{0.7} 2 \sin 3 x d x .
$$

Any result which differs less than 20% from the exact value of the integral will be accepted.
6. Evaluate the integral $\int_{0}^{3} \frac{1}{e^{-x^{2}}} d x$ with step length $\mathrm{h}=0.5$ by using
(a) Trapezoidal rule
(b) Simpson's $1 / 3$ and $3 / 8$ rule
7. To monitor the thermal pollution of a river, a biologist takes hourly temperature T reading (in ${ }^{\circ} F$) from $9 A M$ to $4 P M$. The results are shown in the following table.

Time of day	9	10	11	12	13	14	15	16
Temperature	75.3	77.0	83.2	84.8	86.5	86.4	81.1	78.6

Use Simpson's rule to estimate the average water temperature between $9 A M$ and $4 P M$ given by

$$
T_{a v}=\frac{1}{b-a} \int_{a}^{b} T(t) d t
$$

8. Assume that Kulfo river is 80 m wide. The depth of the river at a distance of x from the Campus is given by the following data

x	0	10	20	30	40	50	60	70	80
y	0	4	7	9	12	15	14	8	3

Find the approximate area of cross section of Kulfo river.
9. The table below reveals the velocity v of athlete Haile G/Slasie during the time t.

t	1	1.1	1.2	1.3	1.4
v	43.1	47.5	51.3	57.1	63.5

(a) Find the acceleration of Hiale at $t=1.2$.
(b) Find the total distance covered by Hiale from $t=1$ to $t=1.4$
10. Find the particular solution of the given ordinary differential equations on the respective intervals $I=[a, b]$ with step h. Find the solution using the Euler method, it's modifications and using the classical RungeKutta method.
(a) $y^{\prime}=x^{2}-y, y(0)=1, I=[0,1], h=0.2$
(b) $y^{\prime}-y-x=\sin (x+y) ; y(1)=2$. With step $\mathrm{h}=0.2$ find $\mathrm{y}(1.4)$.
(c)
11. Suppose water is leaking from a tank through a circular hole of area Ah at its bottom. Friction and contraction of a water stream near the hole reduce the volume of water leaving the tank per second to $c A_{h} \sqrt{2 g h}$, where $0<c<1$ is a constant. The differential equation for the height h of water at time t for a cubical tank with a side 10 ft and a hole of radius $2 f t$ is

$$
\frac{d h}{d t}=-\frac{c \pi}{450} \sqrt{h} .
$$

Suppose the tank is initially full and $c=0.4$, find the height of water after 3 seconds using the Runge-Kutta method of order 2.
12. In the study of nonisothermal flow of Newtonian fluid between parallel plates, the initial-value problem of the form

$$
y^{\prime \prime}=-t^{2} e^{y}, \quad y(0)=1, y^{\prime}(0)=1
$$

arises. Use the Runge-Kutta method of order 4 to approximate $y(1)$ with $h=0.05$

[^0]: *dejen.ketema@amu.edu.et
 Note: it is the 1.1 version, if you have any comment and suggestion please contact me.

