
Numerical Method(Math-2073/53)
Lecture note: Chapter-VI

”If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.”

John von Neumann.

Numerical Method(Math-2073/53)
Lecture note: Chapter-VI

”If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.”

John von Neumann.

Dejen Ketema
Department of Mathematics
dejen.ketema@amu.edu.et

May, 2019



Contents

1 Numerical Solution of Differential Equations 2
1.1 Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Improved Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Second Order Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Fourth Order Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



Chapter 1

Numerical Solution of Differential
Equations

Definition 1.1

A differential equation is a mathematical equation that relates some function with
its derivatives. In applications, the functions usually represent physical quantities, the
derivatives represent their rates of change, and the equation defines a relationship between
the two. Because such relations are extremely common, differential equations play a
prominent role in many disciplines including engineering, physics, economics, and biology.

In pure mathematics, differential equations are studied from several different perspectives,
mostly concerned with their solutions the set of functions that satisfy the equation. Only
the simplest differential equations are solvable by explicit formulas; however, some properties
of solutions of a given differential equation may be determined without finding their exact form.

If a self- contained formula for the solution is not available, the solution may be numerically
approximated using computers. The theory of dynamical systems puts emphasis on qualitative
analysis of systems described by differential equations, while many numerical methods have
been developed to determine solutions with a given degree of accuracy.

Differential equations can be divided into several types. Apart from describing the properties of
the equation itself, these classes of differential equations can help inform the choice of approach
to a solution. Commonly used distinctions include whether the equation is: Ordinary/Partial,
Linear/Non-linear, and Homogeneous/In-homogeneous. This list is far from exhaustive; there
are many other properties and sub-classes of differential equations which can be very useful in
specific contexts.

Ordinary differential equations
Definition 1.2

An ordinary differential equation (ODE) is an equation containing a function of
one independent variable and its derivatives. The term ”ordinary” is used in contrast
with the term partial differential equation which may be with respect to more than one
independent variable.

Linear differential equations, which have solutions that can be added and multiplied by
coefficients, are well-defined and understood, and exact closed-form solutions are obtained.
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By contrast, ODE s that lack additive solutions are nonlinear, and solving them is far more
intricate, as one can rarely represent them by elementary functions in closed form: Instead,
exact and analytic solutions of ODE s are in series or integral form. Graphical and numerical
methods, applied by hand or by computer, may approximate solutions of ODE s and perhaps
yield useful information, often sufficing in the absence of exact, analytic solutions.

Partial differential equations
Definition 1.3:

is a differential equation that contains unknown multivariable functions and their partial
derivatives. (This is in contrast to ordinary differential equations, which deal with func-
tions of a single variable and their derivatives.) PDEs are used to formulate problems
involving functions of several variables, and are either solved in closed form, or used to
create a relevant computer model.

PDEs can be used to describe a wide variety of phenomena such as sound, heat, electro-
statics, electrodynamics, fluid flow, elasticity, or quantum mechanics. These seemingly distinct
physical phenomena can be formalised similarly in terms of PDEs. Just as ordinary differen-
tial equations often model one-dimensional dynamical systems, partial differential equations
often model multidimensional systems. PDEs find their generalization in stochastic partial
differential equations.

Examples
In the first group of examples, let u be an unknown function of x, and let c&ω be known
constants. Note both ordinary and partial differential equations are broadly classified as linear
and nonlinear.

1. In-homogeneous first-order linear constant coefficient ordinary differential equation:
du

dx
= cu+ x2.

2. Homogeneous second-order linear ordinary differential equation:
d2u

dx2 − x
du

dx
+ u = 0.

3. Homogeneous second-order linear constant coefficient ordinary differential equation de-
scribing the harmonic oscillator:

d2u

dx2 + ω2u = 0.

4. In-homogeneous first-order nonlinear ordinary differential equation:
du

dx
= u2 + 4.

5. Second-order nonlinear (due to sine function) ordinary differential equation describing
the motion of a pendulum of length L:

L
d2u

dx2 + g sin u = 0.

In the next group of examples, the unknown function u depends on two variables x and
t or x and y.
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1.1. EULER METHOD AMU

6. Homogeneous first-order linear partial differential equation:

∂u

∂t
+ t

∂u

∂x
= 0.

7. Homogeneous second-order linear constant coefficient partial differential equation of el-
liptic type, the Laplace equation:

∂2u

∂x2 + ∂2u

∂y2 = 0.

∂u

∂t
= 6u∂u

∂x
− ∂3u

∂x3 .

1.1 Euler Method
Why numerical solutions? For many of the differential equations we need to solve in the real
world, there is no ”nice” algebraic solution. That is, we can’t solve it using the techniques we
have met in this chapter (separation of variables, integrable combinations, or using an integrat-
ing factor), or other similar means.

As a result, we need to resort to using numerical methods for solving such DEs. The concept
is similar to the numerical approaches we saw in an earlier integration chapter (Trapezoidal
Rule, Simpson’s Rule and Riemann Sums).

Even if we can solve some differential equations algebraically, the solutions may be quite
complicated and so are not very useful. In such cases, a numerical approach gives us a good
approximate solution.

Initial Value Problem: Consider

dy/dt = f(t, y) with y(t0) = y0

From the definition of the derivative

dy/dt = lim
h→0

y(x+ h) − y(x)
h

Instead of taking the limit, fix h, so

dy/dt ≈ y(x+ h) − y(x)
h

Substitute into the differential equation and with algebra write

y(x+ h) ≈ y(t) + hf(t, y)

Euler’s Method for a fixed h is

y(t+ h) = y(t) + hf(t, y)

Geometrically, Euler’s method looks at the slope of the tangent line

• The approximate solution follows the tangent line for a time step h.
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1.1. EULER METHOD AMU

• Repeat this process at each time step to obtain an approximation to the solution.

The ability of this method to track the solution accurately depends on the length of the time
step, h, and the nature of the function f(t, y). This technique is rarely used as it has very bad
convergence properties to the actual solution.

Euler’s Method Formula: Euler’s method is just a discrete dynamical system for approxi-
mating the solution of a continuous model

• Let tn+1 = tn + h

• Define yn = y(tn)

• The initial condition gives y(t0) = y0

• Euler’s Method is the discrete dynamical system

yn+1 = yn + hf(tn, yn)

• Euler’s Method only needs the initial condition to start and the right hand side of the
differential equation (the slope field), f(t, y) to obtain the approximate solution

Definition 1.4: Algorithm (Euler’s Method)

Consider the initial value problem

dy/dt = f(t, y), y(t0) = y0.

Let h be a fixed stepsize and define tn = t0 + nh. Also, let y(tn) = yn.
Euler’s Method for approximating the solution to the IVP satisfies the difference
equation

yn+1 = yn + hf(tn, yn).
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Example 1.1

Consider the model
dy/dt = y + t with y(0) = 3

Find the solution to this initial value problem
Exact Solution:
With the initial condition the solution is

y(t) = 4et − t− 1

Numerical solution Euler’s formula with h = 0.25 is

yn+1 = yn + 0.25(yn + tn)

Actual solution is y(1) = 8.8731, so the Euler solution has a 12.5% error
If h = 0.1, after 10 steps y(1) ≈ y10 = 8.3750 with 5.6% error

Euler’s formula with different h is

We see the percent error at t = 2 (compared to the actual solution) declining by about
1/2 as h is halved

1.2 Improved Euler’s Method
Algorithm (Improved Euler’s Method (or Heun Formula)) Consider the initial value problem

dy/dt = f(t, y), y(t0) = y0

. Let h be a fixed stepsize. Define tn = t0 + nh and the approximate solution y(tn) = yn.

1. Approximate y by Euler’s Method

yen = yn + hf(tn, yn)
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1.2. IMPROVED EULER’S METHOD AMU

2. Improved Euler’s Method is the difference formula

yn+1 = yn + h

2 (f(tn, yn) + f(tn + h, yen))

or

k1 = hf(tn, yn)
k2 = hf(tn + h, yn + k1)

yn+1 = yn + k1 + k2

2

Improved Euler’s Method Formula: This technique is an easy extension of Euler’s Method

• The Improved Euler’s method uses an average of the Euler’s method and an Euler???s
method approximation to the function

• This technique requires two function evaluations, instead of one

• Simple two step algorithm for implementation

• Can show this converges as O(h2), which is significantly better than Euler’s method

Example 1.2

Improved Euler’s Method: Consider the initial value problem:

dy/dt = y + t with y(0) = 3

• Numerically solve this using Euler’s Method and Improved Euler’s Method using
h = 0.1

• Compare these numerical solutions

Solution: Let y0 = 3, the Euler’s formula is

yn+1 = yn + h(yn + tn) = yn + 0.1(yn + tn)

The Improved Euler’s formula is

yen = yn + h(yn + tn) = yn + 0.1(yn + tn)

with

yn+1 = yn + h

2 ((yn + tn) + (yen + tn + h))

yn+1 = yn + 0.05(yn + yen + 2tn + 0.1)
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1.3. THE RUNGE-KUTTA METHOD AMU

Example

Comparison of the numerical simulations

• It is very clear that the Improved Euler’s method does a substantially better job of
tracking the actual solution

• The Improved Euler’s method requires only one additional function, f(t, y), evalu-
ation for this improved accuracy At t = 1, the Euler’s method has a −5.6% error
from the actual solution

• At t = 1, the Improved Euler’s method has a −0.19% error from the actual solution

1.3 The Runge-Kutta method
Although Euler’s method is easy to implement, this method is not so efficient in the sense
that to get a better approximation, one need a very small step size. One way to get a better
accuracy is to include the higher order terms in the Taylor expansion in the formula. But the
higher order terms involve higher derivatives of y. The Runge-Kutta methods attempt to obtain
greater accuracy and at the same time avoid the need for higher derivatives, by evaluating the

c© Dejen K. 2019 8



1.3. THE RUNGE-KUTTA METHOD AMU

function f(x, y) at selected points on each subintervals. A general Runge Kutta algorithm is
given as

yn+1 = yn + hφ(xn, yn, h) (1.1)
The function φ is termed as increment function. The mth order Runge-Kutta method gives

accuracy of order O(hm). The function φ is chosen in such a way that when expanded the right
hand side of (1.1) matches with the Taylor series up to desired order. This means that for a
second order Runge-Kutta method the right side of (1.1) matches up to second order terms of
Taylor series.

1.3.1 Second Order Runge-Kutta
The Second order Runge Kutta methods are known as RK2 methods. For the derivation
of second order Runge Kutta methods, it is assumed that φ is the weighted average of two
functional evaluations at suitable points in the interval [xn, xn+1], i.e., φ(xn, yn, h) = w1k1+w2k2.
Thus, we have:

yn+1 = yn + [w1k1 + w2k2] (1.2)
where

k1 = hf(xn, yn), k2 = hf(xn + αh, yn + βk1) (1.3)
Here w1, w2, α and β are constants to be determined so that equation (1.2) agrees with the
Taylor algorithm of a possible higher order.

Now, let’s write down the Taylor series expansion of y in the neighborhood of xn correct to
the h2 term i.e

y(xn+1) = y(xn) + hf(xn, y(xn)) + h2

2 f
′(xn, y(xn)) +O(h3) (1.4)

Then, using chain rule for the derivative f ′(xn, y(xn)) we get

f ′(xn, y(xn)) = ∂f(xn, y(xn))
∂x

+ f(xn, y(xn))∂f(xn, y(xn))
∂y

,

Thus we have

y(xn+1) = y(xn) + hf(xn, y(xn)) + h2

2

[
∂f(xn, y(xn))

∂x
+ f(xn, y(xn))∂f(xn, y(xn))

∂y

]
+O(h3)

(1.5)
In addition, equation (1.2) and (1.3) can be rewritten as:

yn+1 = yn + w1hf(xn, yn) + w2hf(xn + αh, yn + βhf(xn, yn))

= yn + w1hf(xn, yn) + w2h

[
f(xn, yn) + αh

∂f(xn, yn)
∂x

+ βhf(xn, yn)f(xn, yn)
∂y

+O(h2)
]

= yn + h(w1 + w2)f(xn, yn) + h2
[
w2α

∂f(xn, yn)
∂x

+ w2βf(xn, yn)∂f(xn, yn)
∂y

]
+O(h3)

Therefore,

yn+1 = yn+h(w2+w2)f(xn, yn)+h2
[
w2α

∂f(xn, yn)
∂x

+ w2βf(xn, yn)∂f(xn, yn)
∂y

]
+O(h3). (1.6)

Assuming y(xn) ≈ yn and comparing equations (1.5) and (1.6) yields

w1 + w2 = 1, w2α = 1
2 and w2β = 1

2 . (1.7)
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1.3. THE RUNGE-KUTTA METHOD AMU

Observe that four unknowns are to be evaluated from three equations. Accordingly many
solutions are possible for (1.7). Two examples of second-order Runge-Kutta methods of the
form (1.2) and (1.3) are the modified Euler method and the improved Euler method.

(a) The modified Euler method In this case we take β = 1
2 obtain

yn+1 = yn + hf

(
xn + 1

2h, yn + h

2f(xn, yn)
)
.

(b) The improved Euler method, usually called RK2 This is arrived at by choosing
β = 1 which gives

k1 = hf(xn, yn),
k2 = hf(xn + h, yn + k1),

yn+1 = yn + 1
2 (k1 + k2) .

1.3.2 Fourth Order Runge-Kutta
A similar but more complicated analysis is used to construct Runge-Kutta methods of higher
order. One of the most frequently used methods of the Runge-Kutta family is often known as
the classical fourth-order method, RK4, given by:

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4) (1.8)

where

k1 = hf(xn, yn)

k2 = hf(xn + 1
2h, yn + 1

2k1)

k3 = hf(xn + 1
2h, yn + 1

2k2)

k4 = hf(xn + h, yn + k3).

Example 1.3

Consider the initial value problem

y′ = y, y(0) = 1.

Approximate y(0.05) with a step-size h = 0.01 using RK2 and RK4.
Solution: Here f(x, y) = y, x0 = 0, y0 = 1, and h = 0.01. First let’s use RK2 for
n = 0, 1, · · · , 5. A x = 0.01 or when n = 0:

k1 = hf(x0, y0) = hy0 = 0.010000
k2 = hf(x0 + h, y0 + k1) = h(y0 + k1) = 0.01(1 + 0.01) = 0.010100

y1 = y0 + 1
2(k1 + k2) = 1.0 + 0.5(0.010000 + 0.010100) = 1.010050
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Example

At x = 0.02 or when n = 1:

k1 = hf(x1, y1) = hy1 = 0.01(1.010050) = 0.010100
k2 = hf(x1 + h, y1 + k1) = h(y1 + k1) = 0.01(1.010050 + 0.010100) = 0.010202

y2 = y1 + 1
2(k1 + k2) = 1.010050 + 0.5(0.010100 + 0.010202) = 1.020201

Repeating this until x = 0.05 we get the following

xi k1 k2 yi

0.0 – – 1.000000
0.1 0.010000 0.010100 1.010050
0.2 0.010100 0.010202 1.020201
0.3 0.010202 0.010304 1.030454
0.4 0.010305 0.010408 1.040810
0.5 0.010408 0.010512 1.051270

Therefore, y(0.05) = 1.051270
Now, let us use RK4 for n = 0, 1, · · · 5.
A x = 0.01 or when n = 0:

k1 = hf(x0, y0) = hy0 = 0.010000

k2 = hf(x0 + 1
2h, y0 + 1

2k1) = h(y0 + 1
2k1) = 0.01(1 + 0.005) = 0.010050

k3 = hf(x0 + 1
2h, y0 + 1

2k2) = h(y0 + 1
2k2) = 0.01(1 + 0.005025) = 0.010050

k4 = hf(x0 + h, y0 + k3) = h(y0 + k3) = 0.01(1 + 0.010050) = 0.010101

y1 = y0 + 1
2(k1 + 2k2 + 2k3 + k4) = 1.0 + 1

6(0.010000 + 2 × 0.010050 + ×0.010050 + 0.010101)

= 1.010050

At x = 0.02 or when n = 1:

k1 = hf(x1, y1) = hy1 = 0.01(1.010050) = 0.010101

k2 = hf(x1 + 1
2h, y1 + 1

2k1) = h(y1 + 1
2k1) = 0.01(1.010050 + 0.005050) = 0.010151

k3 = hf(x1 + 1
2h, y1 + 1

2k2) = h(y1 + 1
2k2) = 0.01(1.010050 + 0.5 × 0.010151) = 0.010151

k4 = hf(x1 + 1
2h, y1 + k3) = h(y1 + k3) = 0.01(1.010050 + 0.010151) = 0.010202

y2 = y1 + 1
2(k1 + 2k2 + 2k3 + k4) = 1.010050 + 1

6(0.010101 + 2 × 0.010151 + 2 × 0.010151 + 0.010202)

= 1.020201.

Repeating the above procedure until x = 0.05 we get the following

c© Dejen K. 2019 11



1.3. THE RUNGE-KUTTA METHOD AMU

xi k1 k2 k3 k4 yi

0.0 – – – – 1.000000
0.1 0.010000 0.010050 0.010050 0.010101 1.010050
0.2 0.010101 0.010151 0.010151 0.010202 1.020201
0.3 0.010202 0.010253 0.010253 0.010305 1.030455
0.4 0.010305 0.010356 0.010356 0.010408 1.040811
0.5 0.010408 0.010460 0.010460 0.010513 1.051271

Therefore, y(0.05) = 1.051271
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Example 1.4 y′ = y − t2 + 1
y(0) = 0.5

The exact solution for this problem is y = t2 + 2t+ 1 − 1
2e

t, and we are interested in the
value of y for 0 ≤ t ≤ 2.

1. We first solve this problem using RK4 with h = 0.5. From t = 0 to t = 2
with step size h = 0.5, it takes 4 steps:t0 = 0, t1 = 0.5, t2 = 1, t3 = 1.5, t4 = 2.

Step 0 t0 = 0, y0 = 0.5.
Step 1 t0 = 0.5

k1 = hf(t0, y0) = 0.5f(0, 0.5) = 0.75
k2 = hf(t0 + h/2, y0 + k1/2) = 0.5f(0.25, 0.875) = 0 : 90625
k3 = hf(t0 + h/2, y0 + k2/2) = 0.5f(0.25, 0.953125) = 0.9453125
k4 = hf(t0 + h, y0 + k3) = 0.5f(0.5, 1.4453125) = 1.09765625
y1 = y0 + (k1 + 2k2 + 2k3 + k4) = 6 = 1.425130208333333

Step 2 t2 = 1

k1 = hf(t1, y11) = 0.5f(0.5, 1.425130208333333) = 1.087565104166667
k2 = hf(t1 + h/2, y1 + k1/2) = 0.5f(0.75, 1.968912760416667) = 1.203206380208333
k3 = hf(t1 + h/2.y1 + k2/2) = 0.5f(0.75, 2.0267333984375) = 1.23211669921875
k4 = hf(t1 + h, y1 + k3) = 0.5f(1, 2.657246907552083) = 1.328623453776042
y2 = y1 + (k1 + 2k2 + 2k3 + k4)/6 = 2.639602661132812

Step 3 t3 = 1.5

k1 = hf(t2, y2) = 0.5f(1, 2.639602661132812) = 1.319801330566406
k2 = hf(t2 + h/2, y2 + k1/2) = 0.5f(1.25, 3.299503326416016) = 1.368501663208008
K3 = hf(t2 + h/2, y2 + k2/2) = 0.5f(1.25, 3.323853492736816) = 1.380676746368408
K4 = hf(t2 + h, y2 +K3) = 0.5f(1.5, 4.020279407501221) = 1.385139703750610
y3 = y2 + (k1 + 2k2 + 2k3 + k4)/6 = 4.006818970044454

Step 4 t4 = 2

k1 = hf(t3, y3) = 0.5f(1.5, 4.006818970044454) = 1.378409485022227
k2 = hf(t3 + h/2, y3 + k1/2) = 0.5f(1.75, 4.696023712555567) = 1.316761856277783
K3 = hf(t3 + h/2, y3 + k2/2) = 0..5f(1.75, 4.665199898183346) = 1.301349949091673
K4 = hf(t3+, y3 +K3) = 0.5f(2, 5.308168919136127) = 1.154084459568063
y4 = y3 + (k1 + 2k2 + 2k3 + k4)/6 = 5.301605229265987
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