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Chapter 1

Finite Differences

Lot of operators are used in numerical analysis/computation. Some of the frequently used op-
erators, viz. forward difference (∆), backward difference (∇), central difference (δ), shift (E)
and mean (µ) are discussed in this chapter.

Assume that we have a table of values f(xi), i = 1, 2, 3, · · · , n of any function y = f(x) where
the value of x being equally spaced, that is, xi = x0 + ih. When x = xi, the value of y is
denoted by yi and is defined by yi = f(xi). The values of x and y are called arguments and
entries respectively. To determine the value of f(x) and f ′(x) for some intermediate values of
x, is based on the principle of finite difference. Which requires three types of differences.

1.1 Forward difference operators
Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 +h, x0 +
2h · · · , x0 + nh giving the functional values y0, y1, y2, · · · , yn. The constant difference between
two consecutive values of x is called the interval of differences and is denoted by h.

The operator ∆ defined by

∆y0 = y1 − y0

∆y1 = y2 − y1

∆y2 = y3 − y2
...

∆yn−1 = yn − yn−1

is called Forward difference operator.

The first forward difference is ∆yn = yn+1 − yn. The second forward difference are defined as
the difference of the first differences.

∆2y0 = ∆y1 −∆y0 = (y2 − y1)− (y1 − y0) = y2 − 2y1 + y0

∆2y1 = ∆y2 −∆y1 = (y3 − y2)− (y2 − y1) = y3 − 2y2 + y1

∆3y0 = ∆2y1 −∆2y0 = (y3 − 2y2 + y1)− (y2 − 2y1 + y0) = y3 − 3y2 + 3y1 − y0

∆3y1 = y4 − 3y3 + 3y2 − y1
...

2



1.2. BACKWARD DIFFERENCE OPERATORS AMU

Similarly, higher order differences can be defined. In general,general,

∆n+1f(x) = ∆[∆nf(x)], i.e.∆n+1yi = ∆[∆nyi], n = 0, , 2, · · ·

Again, ∆n+1f(x) = ∆n[f(x+ h)− f(x)] = δnf(x+ h)−∆nf(x) and

∆n+1yi = ∆nyi+1 −∆nyi, n = 0, 1, 2, · · ·

It must be remembered that ∆0 ≡ identity operator, i.e. ∆0f(x) = f(x) and ∆1 ≡ ∆. All
the forward differences can be represented in a tabular form, called the forward difference or
diagonal difference table.

Let x0, x1, · · · , x4 be four arguments. All the forwarded differences of these arguments are
shown in the table below.

x y ∆y ∆2y ∆3y ∆4y ∆5y
x0 y0

∆y0
x1 y1 ∆2y0

∆y1 ∆3y0
x2 y2 ∆2y1 ∆4y0

∆y2 ∆3y1 ∆5y0
x3 y3 ∆2y2 ∆4y1

∆y3 ∆3y2
x4 y4 ∆2y3

∆y4
x5 y5

The operator ∆ satisfies the following properties:

1. ∆[f(x)− g(x)] = ∆f(x)−∆g(x)

2. ∆[cf(x)] = c∆f(x)

3. ∆m∆nf(x) = ∆m+nf(x), m, n are positive integers

4. Since ∆nyn is a constant, ∆n+1yn = 0, ∆n+2yn = 0, · · · i.e. (n+1)th and higher differences
are zero.

1.2 Backward difference operators
Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 +h, x0 +
2h, · · · , x0 + nh giving the functional values y0, y1, y2, · · · , yn. The operator ∇ defined by

∇y1 = y1 − y0

∇y2 = y2 − y1
...

∇yn = yn − yn−1

is called Backward difference operator.

c© Dejen K. 2019 3



1.3. CENTRAL DIFFERENCE OPERATORS AMU

The first backward difference is ∇yn = yn− yn−1 The second backward difference are obtain by
the difference of the first differences.

∇2y2 = ∇(∇y2) = ∇(y2 − y1) = ∇y2 −∇y1

= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0

∇2y3 = ∇y3 −∇y2

∇2yn = ∇yn −∇yn−1

In general nth backward difference of f is defined by

∇nyi = ∇n−1yi −∇n−1yi−1

Backward Difference Table:

x y ∇y ∇2y ∇3y ∇4y ∇5y
x0 y0

∇y1
x1 y1 ∇2y2

∇y2 ∇3y3
x2 y2 ∇2y3 ∇4y4

∇y3 ∇3y4 ∇5y5
x3 y3 ∇2y4 ∇4y5

∇y4 ∇3y5
x4 y4 ∇2y5

∇y5
x5 y5

1.3 Central difference operators
The operator δ defined by

δy1 1
2

= y1 − y0

δy1 3
2

= y2 − y1

...
δyn−1 1

2
= yn − yn−1

is called Central difference operator.

Similarly, higher order central differences are defined as

δ2y1 = y1 3
2
− y1 1

2

δ2y2 = y1 5
2
− y1 3

2

...
δnyi = δn−1yi+1/2 − δn−1yi−1/2

c© Dejen K. 2019 4



1.4. OTHER OPERATORS AMU

Central Difference Table:

x y δy δ2y δ3y δ4y δ5y
x0 y0

δy0
x1 y1 δ2y0

δy1 δ3y0
x2 y2 δ2y1 δ4y0

δy2 δ3y1 δ5y0
x3 y3 δ2y2 δ4y1

δy3 δ3y2
x4 y4 δ2y3

δy4
x5 y5

NOTE:

• From all three difference tables, we can see that only the notations changes not the
differences.

y1 − y0 = ∆y0 = ∇y1 = δy 1
2

• Alternative notations for the function y = f(x). For two consecutive values of x differing
by h.

∆yx = yx+h − yx = f(x+ h)− f(x)
∇yx = yx − yx−h = f(x)− f(x− h)
δyx = yx+h/2 − yx−h/2 = f(x+ h/2)− f(x− h/2)

1.4 Other operators
1. Shift Operator E:
E does the operation of increasing the argument x by h so that

Ef(x) = f(x+ h);
E2f(x) = E(Ef(x)) = Ef(x+ h) = f(x+ 2h);
E3f(x) = f(x+ 3h);
Enf(x) = f(x+ nh);

The inverse operator E−1 is defined as

E−1f(x) = f(x− h);
E−nf(x) = f(x− nh);

If yx is the function f(x), then

Eyx = yx + h;
E−1yx = yx−h;

Enyx = yx + nh;
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1.5. RELATION BETWEEN THE OPERATORS AMU

2. Averaging Operator µ:
It is defined as

µf(x) = 1
2

[
f(x+ h

2 ) + f(x− h

2 )
]

i.e µf(x) = 1
2
[
yx+ h

2
+ yx−h

2

]
3. Differential Operator D:

It is defined as
Df(x) = d

dx
f(x) = f ′(x);

1.5 Relation between the operators
1. ∆ = E − 1

2. ∇ = 1− E−1

3. δ = E1/2 − E−1/2

4. µ = 1
2{E

1/2 − E−1/2}

5. δ = E∇ = ∇E = δE
1
2

6. E = ehD

7. (1 + ∆)(1−∇) = 1

8. ∆−∇ = ∆∇ = δ2

9. 1 + µ2δ2 =
(
1 + 1

2δ
2
)2

10. µ2 = 1 + 1
4δ

2

11. E1/2 = µ+ 1
2δ

12. E−1/2 = µ− 1
2δ

13. ∆ = 1
2δ

2 + δ
√

1 + δ2

4

14. µδ = 1
2∆E−1 + 1

2∆

Example 1.1

Construct a forward difference table for the following values:

x 0 5 10 15 20 25
f(x) 7 11 14 18 24 32

Solution: Forward difference table for given data is:

x y ∆y ∆2y ∆3y ∆4y ∆5y
0 7

4
5 11 −1

3 2
10 14 1 −1

4 1 0
15 18 2 −1

6 0
20 24 2

8
25 32
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1.5. RELATION BETWEEN THE OPERATORS AMU

Example 1.2

Given f(0) = 3, f(1) = 12, f(2) = 81, f(3) = 200, f(4) = 100 and f(5) = 8. From the
difference table and find ∆5f(0).

Solution:
The difference table for given data is as follows:

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x) ∆5f(x)
0 3

9
5 12 60

69 −10
10 81 50 −259

119 −269 755
15 200 −219 496

−100 227
20 100 8

−92
25 8

Hence, ∆5f(0) = 755.

Exercise 1.1

a) Obtain the missing term in the following table:

x 2.0 2.1 2.2 2.3 2.4 2.5 2.6
f(x) 0.135 ? 0.111 0.100 ? 0.082 0.074

[Ans:f(2.1) = 0.123, f(2.4) = 0.0900]

b) Estimate the production for the year 1964 and 1966 from the following data:

Year 1961 1962 1963 1964 1965 1966 1967
product 200 220 260 ? 350 ? 430

[Ans: f(1964) = 306, f(1966) = 390]

Exercise 1.2

Evaluate the following. The interval of difference being h.

a) ∆nex

b) ∆ log f(x)

c) ∆(tan−1 x)

d) ∆2 cos 2x

c© Dejen K. 2019 7



Chapter 2

Interpolation

It is often needed to estimate the value of a function y = f(x) at certain point x based on the
known values of the function f(x0), · · · , f(xn) at a set of n + 1 node points a = x0 ≤ x1 ≤
· · · ≤ xn = b in the interval [a, b]. This process is called interpolation if a < x < b or
extrapolation if either x < a or b < x. Theorem by Weierstrass in 1885, ”Every continuous
function in an interval (a, b) can be represented in that interval to any desired accuracy by a
polynomial. ”

Definition 2.1

Interpolation is the process of deriving a simple function from a set of discrete data points
so that the function passes through all the given data points (i.e. reproduces the data
points exactly) and can be used to estimate data points in-between the given ones.

It is necessary because in science and engineering we often need to deal with discrete experi-
mental data. Interpolation is also used to simply complicated functions by sampling data points
can interpolating them using a simpler function. Polynomials are commonly used for interpo-
lation because they are easier to evaluate, differentiate, and integrate - known as polynomial
interpolation.

It can be proven that given n + 1 data points it is always possible to find a polynomial of
order/degree n to pass through/reproduce the n+1 points. Purpose of numerical Interpolation

1. Compute intermediate values of a sampled function

2. Numerical differentiation - foundation for Finite Difference and Finite Element methods

3. Numerical Integration

2.1 Interpolations with Equal Interval

2.1.1 Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table, the forward difference inter-
polation formula in used.

Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, · · · corresponding to the
values x0, x0 + h, x0 + 2h, · · ·of x. Suppose we want to evaluate yx when x = x0 + ph, where p
is any real number.
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2.1. INTERPOLATIONS WITH EQUAL INTERVAL AMU

Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x+nh).

∴ yx = yx0 + ph = f(x0 + ph) = Epyx0 = (1 + ∆)py0

=
[
1 + p∆ + p(p− 1)

2! ∆2 + p(p− 1)(p− 2)
3! ∆3 + · · ·

]
y0

yx = y0 + p∆y0 + p(p− 1)
2! ∆2y0 + p(p− 1)(p− 2)

3! ∆3y0 + · · ·

is called Newton’s forward interpolation formula.
Example 2.1

Ordinates f(x) of a normal curve in terms of standard deviation x are given as:

x 1.00 1.02 1.04 1.06 1.08
f( x) 0.2420 0.2371 0.2323 0.2275 0.2227 .

Find the ordinate for standard deviation x = 1.025.
Solution:Let us first form the difference table:

x y ∆ ∆2 ∆3 ∆4

1.00 0.2420
-0.0049

1.02 0.2371 0.0001
-0.0048 -0.0001

1.04 0.2323 0 0.001
-0.0048 0

1.06 0.2275 0
-0.0048

1.08 0.2227

Here,h = 0.02, x0 = 1.00, x = 1.025

∴ p = x− x0

h
= 1.025− 1.00

0.02 = 1.25

yx = y0 + p∆y0 + p(p− 1)
2! ∆2y0 + p(p− 1)(p− 2)

3! ∆3y0 + p(p− 1)(p− 2)p(p− 3)
4! ∆4y0

Now on putting values of various functions, we get

y1.025 = 0.2420 + 1.25× (−0.0049) + 1.25(1.25− 1)
2! × (0.0001)

+ 1.25(1.25− 1)(1.25− 2)
3! × (−0.0001) + 1.25(1.25− 1)(1.25− 2)p(1.25− 3)

4! × (0.01)

= 0.2420− 0.006125 + 0.000015625 + 0.000003906 + 0.000001708
= 0.242021239− 0.006125 = 0.235896239(Approx.)
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2.1. INTERPOLATIONS WITH EQUAL INTERVAL AMU

Example 2.2

Find the cubic polynomial which takes the following data:

x 0 1 2 3
f(x ) 1 0 1 10

Solution: Let us first form the difference table:

x y ∆ ∆2 ∆3

0 1
-1

1 0 2
1 6

2 1 8
9

3 10

yx = y0 + p∆y0 + p(p− 1)
2! ∆2y0 + p(p− 1)(p− 2)

3! ∆3y0

Now. x = x0 + ph

p = x− x0

h
= x− 0

1 = x

y = y0 + x∆y0 + x(x− 1)
2! ∆2y0 + x(x− 1)(x− 2)

3! ∆3y0

= 1 + x(−1) + x(x− 1)
2 × (2) + x(x− 1)(x− 2)

6 × (6)

= 1− x+ x2 − x+ x3 − 2x2− x2 + 2x
= x3 − 2x2 + 1

Example 2.3

Find the number of students from the following data who secured marks not more than
45.

Marks range 30-40 40-50 50-60 60-70 70-80
No. of students 35 48 70 40 22

Construct a table Here, h = 10, x0 = 40, x = 45

p = 45− 40
10 = 0.5

No. of students who secured not more than 45 marks are 51.

Exercise 2.1

The population of the town in decennial census was as given below estimate the popula-
tion for the year 1895.

Year: 1891 1901 1911 1921 1931
Population(in million): 46 66 81 93 101

c© Dejen K. 2019 10



2.1. INTERPOLATIONS WITH EQUAL INTERVAL AMU

Exercise 2.2

Following are the marks obtained by 492 candidates in a certain examination:

Marks 0-40 40-45 45-50 50-55 55-60 60-65
No.of Candidates 210 43 54 74 32 79

Find out

(a) No. of candidates, if they secure more than 48 but less than 50 marks.

(b) Less than 48 but not less than 45 marks

2.1.2 Gregory -Newton Backward Interpolation Formula
To estimate the value of a function near the end a table, the backward difference interpolation
formula in used.

Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, · · · corresponding to the
values x0, x0 + h, x0 + 2h, · · ·of x. Suppose we want to evaluate yx when x = xn + ph, where p
is any real number.
Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x+nh).

∴ yx = yxn + ph = f(xn + ph) = Epyxn = (1−∇)−pyn

=
[
1 + p∇+ p(p+ 1)

2! ∇2 + p(p+ 1)(p+ 2)
3! ∇3 + · · ·

]
yn

yx = yn + p∇yn + p(p+ 1)
2! ∇2yn + p(p+ 1)(p+ 2)

3! ∇3yn + · · ·

is called Newton’s Backward interpolation formula.
Example 2.4

Using Newton’s backward difference formula find the value of e−1.9 from the following
table of value of e−x.

x 1 1.25 1.50 1.75 2.00
e−x .3679 0.2865 0.2231 0.1738 0.1353

Difference table for the given data as follows:

x e−x ∇ ∇2 ∇3 ∇4

1 0.3679
-0.0814

1.25 0.2865 0.0180
-0.0634 -0.0039

1.50 0.2231 0.0141 0.0006
-0.0493 - 0.0033

1.75 0.1738 0.0108
-0.0385

2.00 0.1353

p = x− xn
h

= 1.9− 2
0.25 = −0.4

c© Dejen K. 2019 11



2.1. INTERPOLATIONS WITH EQUAL INTERVAL AMU

Example

using Newton’s backward difference formula

yx = yn + p∇yn + p(p+ 1)
2! ∇2yn + p(p+ 1)(p+ 2)

3! ∇3yn + p(p+ 1)(p+ 2)(p+ 3)
4! ∇4yn

On putting the subsequent values, we get

y1.9 = 0.1353 + (−0.4)× (−0.0385) + −0.4(−0.4 + 1)
2! (0.0108)

+ −0.4(−0.4 + 1)(−0.4 + 2)
3! × (−0.0033) + −0.4(−0.4 + 1)(−0.4 + 2)(−0.4 + 3)

4! × (0.0006)

= 0.1353 + 0.0154− 0.001296 + 0.0002112 + 0.000024
= 0.14959

Example 2.5

The area A of a circle of diameter d is given for the following values:

d 80 85 90 95 100
A 5026 5674 6362 7088 7854

Find A for 105.
First of all we form the difference table as follow:

d A ∇ ∇2 ∇3 ∇4

80 5026
648

85 5674 40
688 -2

90 6362 38 4
726 2

95 7088 40
766

100 7854

Here, h = 5, xn = 100, x = 105

p = x− xn
h

= 105− 100
5 = 1

Now on applying Newton’s backward difference formula, we have

yx = yn + p∇yn + p(p+ 1)
2! ∇2yn + p(p+ 1)(p+ 2)

3! ∇3yn + p(p+ 1)(p+ 2)(p+ 3)
4! ∇4yn

y105 = 785 + 1(766) + 1(1 + 1)
2! (40) + 1(1 + 1)(1 + 2)

3! (2) + 1(1 + 1)(1 + 2)(1 + 3)
4! (4)

= 7854 + 766 + 46
= 8666

Which is the required area for the given diameter of circle.

c© Dejen K. 2019 12



2.1. INTERPOLATIONS WITH EQUAL INTERVAL AMU

Exercise 2.3

Using Newtons backward difference interpolation, interpolate at x = 1 from the following
data.

x 0.1 0.2 0.3 0.4 0.5 0.6
f(x) 1.699 1.073 0.375 0.443 1.429 2.631

Exercise 2.4

The table gives the distance in nautical miles of the visible horizon for the given heights
in feet above the earth’s surface. Find the value of y when x = 390ft.

Height(x): 100 150 200 250 300 350 400
Distance(y): 10.63 13.03 15.04 16.81 18.42 19.90 21.47

2.1.3 Stirling’s Interpolation Formula
To estimate the value of a function near the middle a table, the central difference interpolation
formula in used.
Let yx = f(x) be a functional relation between x and y. If x takes the values x0 − 2h, x0 −
h, x0, x0 + h, x0 + 2h, · · · and the corresponding values of y are y−2, y−1, y0, y1, y2 · · · then we
can form a central difference table as follows:

x y 1st difference 2nd difference 3rd difference 4th difference
x0 − 2h y−2

∆y−2(= δy−3/2)
x0 − h y−1 ∆2y−2(= δ2y−1)

∆y−1(= δy−1/2) ∆3y−2(= δ3y−1/2)
x0 y0 ∆2y−1(= δ2y0) ∆4y−2(= δ4y0)

∆y0(= δy1/2) ∆3y−1(= δ3y1/2)
x+ h y1 ∆2y0(= δ2y1)

∆y1(= δy3/2)
x+ 2h y2

The Stirling’s formula in forward difference notation is

yp = y0 + p

[
∆y0 −∆y−1

2

]
+ p2

2! ∆2y−1

+ p(p2 − 12)
3!

[
∆3y−1 + ∆3y−2

2

]
+ p2(p2 − 12)

4! ∆4y−2 · · ·

c© Dejen K. 2019 13



2.1. INTERPOLATIONS WITH EQUAL INTERVAL AMU

Example 2.6

Apply Stirling’s formula to find a polynomial of degree three which takes the following
values of x and y:

x 2 4 6 8 10
y -2 1 3 8 20

Solution: Let p = x− 6
2 . Now, we construct the following difference table:

x p yp ∆yp ∆2yp ∆3yp ∆4yp
2 -2 -2

3
4 1 1 -1

2 4
6 0 3 3 0

5 4
8 1 8 7

12
10 2 20

Stirling’s formula is

yp = y0 + p

[
∆y0 −∆y−1

2

]
+ p2

2! ∆2y−1

+ p(p2 − 12)
3!

[
∆3y−1 + ∆3y−2

2

]
+ p2(p2 − 12)

4! ∆4y−2

yp = 3 + p
[2 + 5

2

]
+ p2

2! (3) + p(p2 − 12)
6

[4 + 4
2

]
+ 0

= 3 + 2/3p3 + 3/2u2 + 17/6u

= 3 + 2/3(x− 6
2 )3 + 3/2(x− 6

2 )2 + 17/6(x− 6
2 )

= 0.0833x3 − 1.125x2 + 8.9166x− 19.

Exercise 2.5

Using Stirling’s formula find y35

x: 10 20 30 40 50
y: 600 512 439 346 243

Exercise 2.6

The function y is given in the table below: Find y for x = 0.0341

x: 0.01 0.02 0.03 0.04 0.05
y: 98.4342 48.4392 31.7775 23.4492 18.4542
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2.2. INTERPOLATIONS WITH UNEQUAL INTERVAL AMU

2.2 Interpolations with Unequal Interval
The interpolation formula derived before for forward interpolation, Backward interpolation and
central interpolation have the disadvantages of being applicable only to equally spaced argument
values. So it is required to develop interpolation formulae for unequally spaced argument values
of x. Therefore, when the values of the argument are not at equally spaced then we use two
such formulae for interpolation.

1. Lagrange’s Interpolation formula

2. Newton’s Divided difference formula.

3. Spline Interpolation

2.2.1 Polynomial Interpolation
Let us assign polynomial Pn of degree n (or less) that assumes the given data values

Pn(x0) = y0, Pn(x1) = y1, · · · , Pn(xn) = yn

This polynomial Pn is called interpolation polynomial. x0, x1, · · · , xn is called the nodes (
tabular points, pivotal points or arguments).

One way to carry out these operations is to approximate the function f(x) by an nth degree
polynomial:

f(x) ≈ Pn(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 =

n∑
j=0

ajx
j

where the n+ 1 coefficients a0, · · · , an can be obtained based on the n+ 1 given points. Once
Pn(x) becomes available, any operation applied to the function f(x), such as differentiation,
intergration, and root finding, can be carried out approximately based on Pn(x) ≈ f(x). This is
particulary useful if the function f(x) is non-elementary and therefore difficult to manipulate,
or it is only available as a set of discrete samples without a closed-form expression.

2.2.2 Lagrange polynomial
In numerical analysis, Lagrange polynomials are used for polynomial interpolation. For a given
set of distinct points xj and numbers yj, the Lagrange polynomial is the polynomial of lowest
degree that assumes at each point xj the corresponding value yj (i.e. the functions coincide at
each point). The interpolating polynomial of the least degree is unique, however, and since it
can be arrived at through multiple methods, referring to ”the Lagrange polynomial” is perhaps
not as correct as referring to ”the Lagrange form” of that unique polynomial.

Linear interpolation

Suppose that we have two points (x0, y0) and (x1, y1) where x0 6= x1. We will define the linear
Lagrange interpolating polynomial to be the straight line that passes through both of these
points. Let’s construct this straight line. We first note that the slope of this line will be y1−y0

x1−x0
,
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2.2. INTERPOLATIONS WITH UNEQUAL INTERVAL AMU

and so in point-slope form we have that:

y − y1 = y1 − y0

x1 − x0
(x− x1)

y = y1 + y1 − y0

x1 − x0
(x− x1)

y = y1(x1 − x0) + (y1 − y0)(x− x1)
x1 − x0

y = y1x1 − y1x0 + y1x− y1x1 − y0x+ y0x1

x1 − x0

y = −y1x0 + y1x− y0x+ y0x1

x1 − x0

y = y1(x− x0) + y0(x1 − x)
x1 − x0

y = y0
(x1 − x)
x1 − x0

+ y1
(x− x0)
(x1 − x0)

y = y0

(
x− x1

x0 − x1

)
+ y1

(
x− x0

x1 − x0

)

If we let L0(x) = x−x1
x0−x1

and L1(x) = x−x0
x1−x0

, then the polynomial above can be rewritten as
P1(x) = y0L0(x) + y1L1(x). We note that indeed this function passes through the points
(x0, y0) and (x1, y1) since P1(x0) = y0 and P1(x1) = y1. We formally define this polynomial
below.

Definition 2.2

The Linear Lagrange Interpolating Polynomial that passes through the points (x0, y0)
and (x1, y1) is P1(x) = y0L0(x) + y1L1(x).

which is the formula for linear interpolation in the interval (x0, x1). Outside this interval, the
formula is identical to linear extrapolation. Computation reveals that L0(x1) = 1, L0(x2) =
0, L1(x1) = 0, andL1(x2) = 1. The terms L0(x) and L1(x) are called Lagrange coefficient
polynomials based on the nodes x0 and x1. Let’s now look at some examples of applying linear
Lagrange interpolating polynomials.

Example 2.7

Find the linear Lagrange interpolating polynomial, P1(x), that passes through the points
(1, 2) and (3, 4). The function P1 can be obtained directly by substituting the the points
(1, 2) and (3, 4) into the formula above to get:

P1(x) = 4(x− 1) + 2(3− x)
3− 1 = 4x− 4 + 6− 2x

2 = 2x+ 2
2 = x+ 1
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Example 2.8

Estimate the value of
√

5 using the linear Lagrange interpolating polynomial P1(x) that
passes through the points (1, 1) and (9, 3) and evaluate the error of this approximation
with the true value of

√
5 ≈ 2.23606 · · · .

Note that (1, 1) and (9, 3) are points on the function f(x) =
√
x. We first set up the

linear Lagrange interpolating polynomial P1(x) as follows:

P1(x) = 3(x− 1) + 1(9− x)
9− 1 = 3x− 3 + 9− x

8 = 2x+ 6
8 = x+ 3

4

Now our approximation of f(5) =
√

5 is given by P1(5):

P1(5) = 5 + 3
4 = 2

As we can see, our approximation is an underestimate of the true value of
√

5. We only
obtained one significant digit of accuracy.

Example 2.9

Consider the function y = log(x). Find the linear Lagrange polynomial P1 that in-
terpolates the points (1, 0) and (10, 1). Use P1 to approximate the value of log(2) ≈
0.301029 · · · . Using the formula above we have that:

P1(x) = 1(x− 1) + 0(10− x)
10− 1 = x− 1

9

We have that P1(2) = 1
9 = 0.111 · · · . As we can see, using P1(2) to approximate log(2)

is not that accurate.
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Example 2.10

Consider the function y = 3
√
x. Find the linear Lagrange interpolating polynomial P1 that

interpolates the points (1, 1) and (8, 2). Use P1 to approximate the value of 3
√

3 ≈ 1.44224.
Using the formula above we have that:

P1(x) = 2(x− 1) + 1(8− x)
8− 1 = x+ 6

7

We have that P1(3) = 9/7 ≈ 1.2857 · · · , so using P1(3) to approximate 3
√

3 is somewhat
accurate.

In general, if y0 = f(x0) and y1 = f(x1) for some function f , then P1(x) is a linear approxima-
tion of f(x) for all x ∈ [x0, x1].

Quadratic Interpolation

If (x0, y0), (x1, y1), (x2, y2), are given data points where x0 6= x1 6= x2, then the quadratic
polynomial passing through these points can be expressed as

P2(x) = y0L0(x) + y1L1(x) + y2L2(x)

= y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2) + y1
(x− x0)(x− x2)

(x1 − x0)(x1 − x2) + y2
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
where

L0(x) = (x− x1)(x− x2)
(x0 − x1)(x0 − x2)

L1(x) = (x− x0)(x− x2)
(x1 − x0)(x1 − x2)

L2(x) = (x− x0)(x− x1)
(x2 − x0)(x2 − x1)

Note that P2 does in fact pass through all the points specified above since P2(x0) = y0, P2(x1) =
y1, and P2(x2) = y2. A formal definition of the polynomial above is given below.

Definition 2.3

The Quadratic Lagrange Interpolating Polynomial through the points
(x0, y0), (x1, y1), and (x2, y2) where x0, x1, and x2 are distinct is the polynomial P2(x) =
y0L0(x) + y1L1(x) + y2L2(x).

It is important to note that while we define P2 to be the ”quadratic” Lagrange interpolating
polynomial, it is possible that P2 may have degree less than 2.
Remark: the functions L0, L1, L2 are called Lagrange’s interpolating basis functions and
that

Lj(xi) = δji =

1, if j = i

0, if j 6= i
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where δij is the Kronecker delta. Let’s now look at some examples of constructing a quadratic
Lagrange interpolating polynomials.

Example 2.11

Construct the quadratic Lagrange interpolating polynomial P2(x) that interpolates the
points (1, 4), (2, 1), and (5, 6).
Applying the formula given above directly and we get that:

P2(x) = 4(x− 2)(x− 5)
(1− 2)(1− 5) + 1(x− 1)(x− 5)

(2− 1)(2− 5) + 6(x− 1)(x− 2)
(5− 1)(5− 2)

P2(x) = (x− 2)(x− 5)− 1
3(x− 1)(x− 5) + 1

2(x− 1)(x− 2)

The graph of y = P2(x) is given below:

Example 2.12

Construct the quadratic Lagrange interpolating polynomial P2(x) that interpolates the
points (1, 2), (3, 4), and (5, 6).
Applying the formula given above directly and we get that:

P2(x) = 2(x− 3)(x− 5)
(1− 3)(1− 5) + 4(x− 1)(x− 5)

(3− 1)(3− 5) + 6(x− 1)(x− 3)
(5− 1)(5− 3)

P2(x) = 1
4(x− 3)(x− 5)− (x− 1)(x− 5) + 3

4(x− 1)(x− 3)

The graph of y = P2(x) is given below:

Note that in this example we shows that P2 need not be quadratic and may be a poly-
nomial of lesser degree.
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Example 2.13

Find the quadratic Lagrange interpolating polynomial P2 that interpolates the function
y = tan x at the points

(
π
4 , 1

)
, and (1, tan(1)).

Applying the formula above and we have that:

P2(x) = (x− 0)(x− 1)(
π
4 − 0

) (
π
4 − 1

) + tan(1)
(x− 0)

(
x− π

4

)
(1− 0)

(
1− π

4

)

Example 2.14

Find the quadratic Lagrange interpolating polynomial P2 that interpolates the function
y = ex at the points (0, 1), (1, e), and (2, e2).
Applying the formula above and we have that:

P2(x) = (x− 1)(x− 2)
(0− 1)(0− 2) + e

(x− 0)(x− 2)
(1− 0)(1− 2) + e2 (x− 0)(x− 1)

(2− 0)(2− 1)

Higher-Degree Interpolation

Suppose now that we have n + 1 points (x0, y0), (x1, y1), · · · , (xn, yn) where x0, x1, · · · , xn are
distinct numbers. Then we would need a polynomial with degree n or less to interpolate these
points. To match with our definitions of linear and quadratic interpolating polynomials, we
wish to obtain a polynomial function Pn in terms of functions L0, L1, · · · , Ln such that:

Pn(x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x) (2.1)
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Where

L0(x) = (x− x1)(x− x2)(x− x3) · · · (x− xn)
(x0 − x1)(x0 − x2)(x0 − x3) · · · (x0 − xn)

L1(x) = (x− x0)(x− x2)(x− x3) · · · (x− xn)
(x1 − x0)(x1 − x2)(x1 − x3) · · · (x1 − xn)

L2(x) = (x− x0)(x− x1)(x− x3) · · · (x− xn)
(x2 − x0)(x2 − x1)(x2 − x3) · · · (x2 − xn)

...

Ln(x) = (x− x0)(x− x1)(x− x2) · · · (x− xn−1)
(xn − x0)(xn − x1)(xn − x2) · · · (xn − xn−1)

The numerator of Li(x) does not contain (x− xi).
The denominator of Li(x) does not contain (xi − xi).

Pn(x) =
n∑
k=0

ykLk(x)

Thus for each k = 0, 1, · · · , n, define Lk as follows:

Lk(x) = (x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)
(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn) =

n∏
i=0 i 6=k

(x− xi)
(xk − xi)

Note that from the definition of Lk above that we can easily obtain the general formulas for
the linear Lagrange interpolating polynomials that pass through the points (x0, y0) and (x1, y1)
(x0 and x1 distinct) and the quadratic linear Lagrange interpolating polynomial that passes
through the points (x0, y0), (x1, y1), and (x2, y2) (x0, x1, and x2 distinct). We will now formally
define higher order Lagrange interpolating polynomials.

Definition 2.4

The nth Order Lagrange Interpolating Polynomial that passes through the n + 1
points (x0, y0), (x1, y1), · · · (xn, yn) where x0, x1, · · · , xn are distinct numbers is Pn(x) =
y0L0(x) + y1L1(x) + · · ·+ ynLn(x).

For all i 6= k, Lk(x) includes the term (x− xi) in the numerator, so the whole product will
be zero at x = xi:

Lk 6=i(xi) =
∏
m6=k

xi − xm
xj − xm

= (xi − x0)
(xj − x0) · · ·

(xi − xi)
(xj − xi)

· · · (xi − xn)
(xk − xn) = 0.

On the other hand,
Li(xi) :=

∏
m 6=i

xi − xm
xi − xm

= 1

In other words, all basis polynomials are zero at x = xi, except Li(x), for which it holds that
Li(xi) = 1, because it lacks the (x− xi) term.
It follows that yiLi(xi) = yi , so at each point xi ,L(xi) = yi + 0 + 0 + · · ·+ 0 = yi, showing
that L interpolates the function exactly.
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Example 2.15

Approximate function y = f(x) = x sin(2x+π/4)+1 by a polynomial pn of degree n = 3,
based on the following n+ 1 = 4 points:

i 0 1 2 3
xi −1 0 1 2

yi = f(xi) 1.937 1.000 1.349 −0.995

Based on these points, we construct the Lagrange polynomials as the basis functions of
the polynomial space (instead of the power functions in the previous example):

L0(x) = (x− 0)(x− 1)(x− 2)
−6 = x3 − 3x2 + 2x

−6

L1(x) = (x+ 1)(x− 1)(x− 2)
2 = x3 − 2x2 − x+ 2

2

L2(x) = (x+ 1)(x− 0)(x− 2)
−2 = x3 − x2 − 2x

−2

L3(x) = (x+ 1)(x− 0)(x− 1)
6 = x3 − x

6

Note that indeed L0(x) + L1(x) + L2(x) + L3(x) = 1. The interpolating polynomial can
be obtained as a weighted sum of these basis functions:

L3(x) = 1.937L0(x) + 1.0L1(x) + 1.349L2(x)− 0.995L3(x) = 1.0 + 0.369x+ 0.643x2 − 0.663x3

which is the same as P3(x) previously found based on the power basis functions, with the
same error ε = 0.3063.
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Example 2.16

Find the quartic Lagrange interpolating polynomial, P4(x), that interpolates the points
(−1, 4), (1, 1), (2, 0), (6, 4), and (7,−1).
Applying the formula above directly and we get that:

P4(x) = y0L0(x) + y1L1(x) + y2L2(x) + y3L3(x) + y4L4(x)

P4(x) = y0

∏n
j=0,j 6=0(x− xj)∏n
j=0,j 6=0(x0 − xj)

+ y1

∏n
j=0,j 6=1(x− xj)∏n
j=0,j 6=1(x1 − xj)

+ y2

∏n
j=0,j 6=2(x− xj)∏n
j=0,j 6=2(x2 − xj)

+ y3

∏n
j=0,j 6=3(x− xj)∏n
j=0,j 6=3(x3 − xj)

+ y4

∏n
j=0,j 6=4(x− xj)∏n
j=0,j 6=4(x4 − xj)

P4(x) = 4 (x− x1)(x− x2)(x− x3)(x− x4)
(x0 − x1)(x0 − x2)(x0 − x3)(x0 − x4) + 1 (x− x0)(x− x2)(x− x3)(x− x4)

(x1 − x0)(x1 − x2)(x1 − x3)(x1 − x4)

+ 4 (x− x0)(x− x1)(x− x2)(x− x4)
(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4) − 1 (x− x0)(x− x1)(x− x2)(x− x3)

(x4 − x0)(x4 − x1)(x4 − x2)(x4 − x3)

P4(x) = 4 (x− 1)(x− 2)(x− 6)(x− 7)
(−1− 1)(−1− 2)(−1− 6)(−1− 7) + 1(x+ 1)(x− 2)(x− 6)(x− 7)

(1 + 1)(1− 2)(1− 6)(1− 7)

+ 4(x+ 1)(x− 1)(x− 2)(x− 7)
(6 + 1)(6− 1)(6− 2)(6− 7) − 1(x+ 1)(x− 1)(x− 2)(x− 6)

(7 + 1)(7− 1)(7− 2)(7− 6)

P4(x) = 1
84(x− 1)(x− 2)(x− 6)(x− 7)− 1

60(x+ 1)(x− 2)(x− 6)(x− 7)

− 1
35(x+ 1)(x− 1)(x− 2)(x− 7)− 1

240(x+ 1)(x− 1)(x− 2)(x− 6)

The graph of y = P4(x) is given below:

Theorem 2.1

Let f be a function that has n + 1 continuous derivatives on the interval [a, b], and let
(x0, y0), (x1, y1), · · · , (xn, yn) be n+1points where x0,x 1, · · · , xn are distinct numbers. Let
Pn be the nth order Lagrange interpolating polynomial for these points. Then for each x ∈
[a, b] there exists ξn between m = min{x0, x1, · · · , xn, x} and M = max{x0, x1, · · · , xn, x}
such that f(x)− Pn(x) = f (n+1)(ξn)

(n+1)! (x− x0)(x− x1) · · · (x− xn).

Note that we can bound this error formula above by maximizing the error on the interval
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[a, b], that is find x ∈ [a, b] such that:

| f(x)− Pn(x) | =
∣∣∣∣∣f (n+1)(ξn)

(n+ 1)! (x− x0)(x− x1) · · · (x− xn)
∣∣∣∣∣

≤ max
m≤x≤M

∣∣∣∣∣f (n+1)(x)
(n+ 1)!

∣∣∣∣∣ max
m≤x≤M

| (x− x0)(x− x1) · · · (x− xn) |

2.2.3 Newton divided difference interpolation
Divided Difference

Let f(x0), f(x1), · · · , f(xn) be the values of a function f corresponding to the arguments
x0, x1, · · · , xn where the intervals x1 − x0, x2 − x1, · · · , xn − xn−1 are not necessarily equally
spaced. Then the first divided difference of f for the arguments x0, x1, · · · , xn are defined
by ,

f [x0, x1] = f [x1]− f [x0]
x1 − x0

f [x1, x2] = f [x2]− f [x1]
x2 − x1

The second divided difference of f for three arguments x0, x1, x2 is defined by

f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x2 − x0

and similarly the divided difference of order n is defined by

f [x0, x1, · · · , xn] = f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]
xn − x0

Properties:

• The divided differences are symmetrical in all their arguments; that is, the value of any
divided difference is independent of the order of the arguments.

• The divided difference operator is linear.

• The nth order divided differences of a polynomial of degree n are constant, equal to the
coefficient of xn.

Newton’s Divided Difference Interpolation

A major difficulty with the Lagrange Interpolation is that one is not sure about the degree of
interpolating polynomial needed to achieve a certain accuracy. Thus, if the accuracy is not
good enough with polynomial of a certain degree, one needs to increase the degree of the poly-
nomial, and computations need to be started all over again. Furthermore, computing various
Lagrangian polynomials is an expensive procedure. It is, indeed, desirable to have a formula
which makes use of Pn−1(x) in computing Pn(x).

The following form of interpolation, known as Newton’s interpolation allows us to do so. The
idea is to obtain the interpolating polynomial Pn(x) in the following form:

Pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1)
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The constants a0 through an can be determined as follows:
Newton’s Divided Difference Interpolating Polynomial Or Newton’s Form
Define

P1(x) = f(x0) + f [x0, x1](x− x0)
P2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x1)(x− x0)

= P1(x) + f [x0, x1, x2](x− x0)(x− x1)
P3(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x1)(x− x0)

+ f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)
= P2(x) + f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

...
Pn(x) = Pn−1(x) + f [x0, x1, · · · , xn−1](x− x0)(x− x1) · · · (x− xn−1)

The polynomial Pn is called Newton’s divided deference formula for the interpolating polyno-
mial or Newton’s form for the interpolating polynomial. Note that Pn(xi) = f(xi).

Newton’s divided deference interpolating polynomial defined as

Pn(x) =f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·
+ f [x0, x1, x2, · · · , xn](x− x0)(x− x1)(x− x2) · · · (x− xn−1)

Where

a0 = f [x0] = y0 because f [xi] = yi by definition

a1 = f [x0, x1] = f [x1]− f [x0]
x1 − x0

a2 = f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x2 − x0

...

ak = f [x0, x1, x2, . . . , xk−1, xk] = f [x1, x2, . . . , xk−1, xk]− f [x0, x1, x2, . . . , xk−1]
xk − x0

A difference table is again a convenient device for displaying differences, the standard diagonal
form being used and thus the generation of the divided differences is outlined in Table below.

x f(x) First Divided Difference Second Divided Difference Third Divided Difference
x0 f [x0]

f [x0, x1] = f [x1]−f [x0]
x1−x0

x1 f [x1] f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x1, x2] = f [x2]−f [x1]
x2−x1

f [x0, x1, x2, x3] = f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

x2 f [x2] f [x1, x2, x3] = f [x2,x3]−f [x1,x2]
x3−x1

f [x2, x3] = f [x3]−f [x2]
x3−x2

f [x1, x2, x3, x4] = f [x2,x3,x4]−f [x1,x2,x3]
x4−x1

x3 f [x3] f [x2, x3, x4] = f [x3,x4]−f [x2,x3]
x4−x2

f [x3, x4] = f [x4]−f [x3]
x4−x3

x4 f [x4]

A table for solving the coefficients of a Newton’s polynomial.
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Example 2.17

Find the polynomial P2 for the function y =
√
x that interpolates the points (1, 1), (4, 2),

and (9, 3) using Newton’s divided difference formula.
Applying Newton’s divided difference formula from above and we get that:

P2(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

P2(x) = 1 + (x− 1)f(x1)− f(x0)
x1 − x0

+ (x− 1)(x− 4)f [x1, x2]− f [x0, x1]
x2 − x0

P2(x) = 1 + (x− 1)2− 1
4− 1 + (x− 1)(x− 4)

3−2
9−4 −

2−1
4−1

9− 1
P2(x) = 1 + 1

3(x− 1)− 1
60(x− 1)(x− 4)

The graph of y = P2(x) is given below.

Example 2.18

For example, given data points (1, 6) , (2, 11), (3, 18), and (4, 27) we can draw the fol-
lowing table:
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Example

i xi yi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]

0 x0 = 1
y0 = f [x0]

= 6

f [x0, x1] = f [x1]− f [x0]
x1 − x0

= 11− 6
2− 1

= 5

f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x2 − x0

= 7− 5
3− 1

= 1

f [x0, x1, x2, x3]

= f [x1, x2, x3]− f [x0, x1, x2]
x3 − x0

= 1− 1
4− 1

= 0

1 x1 = 2
y1 = f [x1]

= 11

f [x1, x2] = f [x2]− f [x1]
x2 − x1

= 18− 11
3− 2

= 7

f [x1, x2, x3] = f [x2, x3]− f [x1, x2]
x3 − x1

= 9− 7
4− 2

= 1

2 x2 = 3
y2 = f [x2]

= 18

f [x2, x3] = f [x3]− f [x2]
x3 − x2

= 27− 18
4− 3

= 9

3 x3 = 4
y3 = f [x3]

= 27

The four data points lie on a polynomial of order 2, which is why the coefficient
a3(f [x0, x1, x2, x3]) is zero. Given [a0, a1, a2] = [6, 5, 1] the result polynomial is:

y = a0 + a1(x− x0) + a2(x− x1)(x− x0)
= 6 + 5× (x− 1) + 1× (x− 2)(x− 1)
= x2 + 2x+ 3

Example 2.19

For a function f , the divided differences are given by

x1 = 2 f [x1] = 2

x0 = 1 f [x0] = −6

x2 = 4 f [x2] = 12

find f [x0, x1, x2].
Solution:

x f(x) First Divided Difference Second Divided Difference
x1 = 2 f [x1] = 2

f [x1, x0] = (−6)−2
1−2 = 8

x0 = 1 f [x0] = −6 f [x1, x0, x2] = 6−8
4−2 = −1

f [x0, x2] = 12−(−6)
4−1 = 6

x2 = 4 f [x2] = 12

Hence, f [x1, x0, x2] = −1 and by symmetry property we know that
f [x1, x0, x2] = f [x0, x1, x2], Hence f [x0, x1, x2] = −1.
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Example 2.20

For a function f , the divided differences are given by

x0 = 0.0 f [x0]
f [x0, x1]

x1 = 0.4 f [x1] f [x0, x1, x2] = 50
7

f [x1, x2] = 10
x2 = 0.7 f [x2] = 6

Determine the missing entries in the table.
Solution: We have the formula

f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x2 − x0

and substituting gives
50
7 = (10− f [x0, x1])

0.7 .

Thus,
f [x0, x1] = −0.7 · (50

7 ) + 10 = 5

Using the formula
f [x1, x2] = f [x2]− f [x1]

x2 − x1

and substituting gives
10 = (6− f [x1])

0.3 .

Thus,
f [x1] = 6− 3 = 3 .

Further,
f [x0, x1] = f [x1]− f [x0]

x1 − x0
.

So,
5 = (3− f [x0])

0.4 .

Thus,
f [x0] = 3− 2 = 1.

Example 2.21

The set of the following five data points is given: x 1 2 4 5 7
y 52 5 -5 -40 10

a) Determine the fourth-order polynomial in Newton’s form that passes through the
points. Calculate the coefficients by using a divided difference table.

b) Use the polynomial obtained in part (a) to determine the interpolated value for
x = 3.
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Example: Solution

a) Newton’s polynomial for the given points has the form:

f(x) = y = a1+a2(x−1)+a3(x−1)(x−2)+a4(x−1)(x−2)(x−4)+a5(x−1)(x−2)(x−4)(x−5)

The coefficients can be determined by the following divided difference table:

With the coefficients determined, the polynomial is:

f(x) = y = 52−47(x−1)+14(x−1)(x−2)−6(x−1)(x−2)(x−4)+2(x−1)(x−2)(x−4)(x−5)

(b) The interpolated value for x= 3 is obtained by substituting for x in the polynomial:

f(3) = y = 52−47(3−1)+14(3−1)(3−2)−6(3−1)(3−2)(3−4)+2(3−1)(3−2)(3−4)(3−5) = 6
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2.3 Spline Interpolation
Many scientific and engineering phenomena being measured undergo a transition from one
physical domain to another. Data obtained from these measurements are better represented by
a set of piecewise continuous curves rather than by a single curve. One of the difficulties with
polynomial interpolation is that in some cases the oscillatory nature of high-degree polynomials
can induce large fluctuations over the entire range when approximating a set of data points.
One way of solving this problem is to divide the interval into a set of subintervals and construct
a lowerdegree approximating polynomial on each subinterval. This type of approximation is
called piecewise polynomial interpolation.

Piecewise polynomial functions, especially spline functions, have become increasingly popular.
Most of the interest has centered on cubic splines because of the ease of their applications to a
variety of fields, such as the solution of boundary value problems for differential equations and
the method of finite elements for the numerical solution of partial differential equations.

We start out with the general definition of spline functions. Let f be a real-valued function de-
fined on some interval [a, b] and let the set of data points (a = x1, f(x1)), (x2, f(x2)), · · · , (xn.f(xn))
be given. For simplicity, assume that

a = x1 < x2 < · · · < xn = b.

We have the definition:
Definition 2.5:

function S is called a spline of degree k if it satisfies the following conditions:

1. S is defined in the interval [a, b].

2. S(r) is continuous on [a, b] for 0 ≤ r ≤ k − 1.

3. S is a polynomial of degree ≤ k on each subinterval [xi, xi+1], i = 1, 2, · · · , n− 1.

2.3.1 Linear Spline
The simplest connection between two points is a straight line. The first-order splines for a
group of ordered data points can be defined as a set of linear functions by a series of straight
lines as shown in Figure 2.1.

Using the formula of the equation of the line, it is easy to see that the function S(x) is
defined by

S1(x) = f(x1) +m1(x− x1), x1 ≤ x2

S2(x) = f(x2) +m2(x− x2), x2 ≤ x3

S3(x) = f(x3) +m3(x− x3), x3 ≤ x4
...

Si(x) = f(xi) +mi(x− xi), xi−1 ≤ xi

(2.2)

where mi is the slope of the straight line connecting the points:

mi = f(xi+1)− f(xi)
xi+1 − xi

= f [xi+1, xi]
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Figure 2.1: Linear Spline

Generally linear spline is defied as

Si(x) = f(xi) + f [xi+1, xi](x− xi), on each subinterval [xi, xi+1].

Outside the interval [a, b], S(x) is usually defined by

S(x) =

S1(x), if x < a

Sn−1(x) if x > b
.

The points x2, x3, · · · , xn−1, where S(x) changes from one polynomial to another, are called the
breakpoints or knots. Because S(x) is continuous on [a, b], it is called a spline of degree

1.
Example 2.22

The set of the following four data points is given:

x 8 11 15 18
f(x) 5 9 10 8

(a) Determine the linear splines that fit the data.

(b) Determine the interpolated value for x = 12.7 .

SOLUTION:

(a) There are four points and thus three splines. Using Eq. (2.2) the equations of the splines
are:

S1(x) = f(8) + f(11)− f(8)
11− 8 (x− 8) = 8 + 9− 5

11− 8(x− 8) = 4x
3 −

8
3 , for 8 ≤ x ≤ 11

S2(x) = f(11) + f(15)− f(11)
15− 11 (x− 11) = 9 + 10− 9

15− 11(x− 11) = x

4 + 25
4 , for 11 ≤ x ≤ 15

S3(x) = f(15) + f(18)− f(15)
18− 15 (x− 15) = 10 + 8− 10

18− 15(x− 15) = −2x
3 , for 15 ≤ x ≤ 18
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(b) The value x = 12.7 lies in [11, 15], since the interpolated value of f(x) for x = 12.7 is
obtained by substituting the value of x in the equation for S2(x) above:

x

4 + 25
4 = 12.7

4 + 25
4 = 37.7

4 = 9.425

2.3.2 Quadratic Spline
In many cases, linear piecewise polynomials are unsatisfactory when being used to interpolate
the values of a function, which deviate considerably from a linear function. In such cases,
piecewise polynomials of higher degree are more suitable to use to approximate the function. In
this section, we shall discuss the simplest type of differentiable, piecewise polynomial functions,
known as quadratic splines. As before, consider the subdivision

a = x1 < x2 < · · · < xn = b.

where x1, · · · , xn are given. For piecewise linear interpolation, we choose two points (xi, f(xi))
and (xi+1, f(xi+1)) in the subinterval [xi, xi+1] and draw a line through those two points to
interpolate the data. This approach is easily extended to construct the quadratic splines.
Instead of choosing two points, we choose three points in the subinterval [xi, xi+1] and pass
a second-degree polynomial through these points as shown in Figure 2.2. We shall show that
there is only one such polynomial. To construct a quadratic spline S(x), we first define a

Figure 2.2: Quadratic spline

quadratic function in each subinterval [xi, xi+1] by

Si(x) = ci + bi(x− xi) + ai(x− xi)2 (2.3)

where ai, bi, and ci are constants to be determined.
Now by Definition 2.3, S(x) must satisfy the conditions

S(x) = Si(x) on [xi, xi+1] for i = 1, 2, · · · , n− 1. (2.4)

Si(xi) = f(xi) (2.5)
Si(xi+1) = f(xi+1). (2.6)

S ′(x) is continuous on [a, b] if

S ′i(xi) = di and S ′i(xi+1) = di+1 (2.7)

Here the values of di will be defined later. Using conditions (2.5) and (2.7), it is easy to see
thatsi(x) is uniquely defined on [xi, xi+1] by

Si(x) = f(xi) + di(x− xi) + di+1 − di
2(xi+1 − xi)

(x− xi)2. (2.8)
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We now use condition (2.6) to obtain di from the recursive formula

di+1 = −di + 2
[
f(xi+1)− f(xi)

xi+1 − xi

]
, i = 1, 2, · · · , n− 1 (2.9)

with d1 arbitrary.

Thus, given the data (xi, f(xi)) and an arbitrary value for d1, the quadratic spline S(x) is
uniquely determined by formulas (2.4), (2.8), and (2.9).

Example 2.23

The set of the following four data points is given:

x 8 11 15 18
f(x) 5 9 10 8

(a) Determine the quadratic splines that fit the data.

(b) Determine the interpolated value for x = 12.7 .

SOLUTION:

(a) To determine the quadratics spline we flowing the above approach let d1 = 0, then from
(2.9) we have

d2 = −d1 + 2
[
f(x2)− f(x1)

x2 − x1

]
= 0 + 2

[
f(11)− f(8)

11− 8

]
= 2

[9− 5
3

]
= 8

3

d3 = −d2 + 2
[
f(x3)− f(x2)

x3 − x2

]
= −8

3 + 2
[
f(15)− f(11)

15− 11

]
= −8

3 + 2
[10− 9

4

]
= −13

6

d4 = −d3 + 2
[
f(x4)− f(x3)

x4 − x3

]
= 13

6 + 2
[
f(18)− f(15)

18− 15

]
= 13

6 + 2
[8− 10

3

]
= 5

6

We now use (2.8) to get a quadratic spline S(x) defined by

S1(x) = f(x1) + d1(x− x1) + d2 − d1

2(x2 − x1)(x− x1)2 = 5 + 4
9(x− 8)2, [8, 11]

S2(x) = f(x2) + d2(x− x2) + d3 − d2

2(x3 − x2)(x− x2)2 = −61
3 + 8x

3 −
29
48(x− 11)2, [11, 15]

S3(x) = f(x3) + d3(x− x3) + d4 − d3

2(x4 − x3)(x− x3)2 = 10− −13
6 (x− 15)− 1

2(x− 15)2, [15, 18]

(b) S(12.7) = 11.787

2.3.3 Cubic Spline
In cubic splines, third-degree polynomials are used to interpolate over each interval between
data points. Suppose there are n + 1 data points (x1, f(x1)), · · · (xn+1, f(xn+1)) so that there
are n intervals and thus n cubic polynomials. Each cubic polynomial is conveniently expressed
in the form

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3, ∀j ∈ {0, 1, · · · , n− 1}
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where ai, bi, ci, di(i = 1, 2, · · · , n) are unknown constants to be determined. Since there are
n such polynomials, and each has four unknown constants, there are a total of 4n unknown
constants. Therefore, 4n equations are needed to determine all the unknowns. These equations
are derived based on the same logic as quadratic splines, except that second derivatives of
adjacent splines also agree at the interior knots and two boundary conditions are required.

Figure 2.3: Cubic Spline

Definition 2.6

Given a function f defined on [a, b] and a set of nodes a = x0 < x1 < · · · < xn = b, a
cubic spline interpolant S for f is a function that satisfies the following conditions:

a. S(x) is a cubic polynomial, denoted Sj(x), on the sub-interval [xj, xj+1] ∀j =
0, 1, · · · , n− 1.

b. Sj(xj) = f(xj), ∀j = 0, 1, · · · , (n− 1). ”Left” Interpolation

c. Sj(xj+1) = f(xj+1), ∀j = 0, 1, · · · , (n− 1). ”Right” Interpolation

d. S ′j(xj+1) = S ′j+1(xj+1), ∀j = 0, 1, · · · , (n− 2). Slope-match

e. S ′′j (xj+1) = S ′′j+1(xj+1), ∀j = 0, 1, · · · , (n− 2). Curvature match

One of the following sets of boundary conditions is satisfied:

(i) S ′′(x0) = S ′′(xn) = 0 (natural (or free) boundary);
(ii) S ′(x0) = f ′(x0) and S ′(xn) = f ′(xn) (clamped boundary).

Building Cubic Splines. Applying the Conditions
We start with

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3, ∀j ∈ {0, 1, · · · , n− 1} (2.10)

and apply all the conditions to these polynomials. For convenience we introduce the notation

hj = xj+1 − xj.
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b. Sj(xj) = aj = f(xj)

c.
Sj+1(xj+1) = Sj(xj+1)
f(xj+1) =aj + bj(xj+1 − xj) + cj(xj+1 − xj)2 + dj(xj+1 − xj)3

aj+1 = aj + bjhj + cjh
2
j + djh

3
j

(2.11)

d. By differentiating Eqn. (2.10), we obtain

S ′j(x) = bj + 2cj(x− xj) + 3dj(x− xj)2

S ′′j (x) = 2cj + 6dj(x− xj).

The continuity condition on the first derivative implies

S ′j(xj) = S ′j−1(xj)
bj = bj−1 + 2cj−1(xj − xj−1) + 3dj−1(xj − xj−1)2

= bj−1 + 2cj−1hj−1 + 3dj−1h
2
j−1, i = 2, 3, · · · , n.

(2.12)

Notice S ′j(xj) = bj , hence we get

bj+1 = bj + 2cjhj + 3djh2
j (2.13)

e. Similarly, imposing the continuity condition on the second derivative gives

S ′′j (xj) = S ′′j−1(xj)
2cj = 2cj−1 + 6dj−1(xj − xj−1)
cj = cj−1 + 3dj−1hj−1, i = 2, 3, · · · , n.

(2.14)

Notice S ′′j (xj) = 2cj , hence we get

cj+1 = cj + 3djhj. (2.15)

We got a whole lot of equations to solve!!! (How many???)

Solving the Resulting Equations.
Now, by solving Eqn. (2.15) for dj we have

dj = cj+1 − cj
3hj

,

and substituting its value into Eqn. (2.12), we get,

aj+1 = aj + bjhj +
h2
j

3 (2cj + cj+1), (2.16)

Similarly, solve Eqn.(2.15) for dj and substitute its value into Eqn.(2.13) to get

bj+1 = bj + hj(cj + cj+1). (2.17)

c© Dejen K. 2019 35



2.3. SPLINE INTERPOLATION AMU

We solve for bj in 2.16 and get

bj = 1
hj

(aj+1 − aj)−
hj
3 (2cj + cj+1). (2.18)

Reduce the index by 1, to get

bj−1 = 1
hj−1

(aj − aj−1)− hj−1

3 (2cj−1 + cj). (2.19)

Finally Plug 2.18 (lhs) and 2.19 (rhs) into the index-reduced-by-1 version of 2.17, i.e.

bj = bj−1 + hj−1(cj−1 + cj). (2.20)

After some ”massaging” we end up with the linear system of equations for j ∈ {1, 2, · · · , n−
1} (the interior nodes).

hj−1cj−1 + ujcj + hjcj+1 = vj, i = 2, 3, · · · , n− 1 (2.21)

Where
uj = 2(hj−1 + hj), vj = 3wj − 3wj−1 andwj = 1

hj
(aj+1 − aj)

We are almost ready to solve for the coefficients {cj}n−1
j=0 , but we only have (n− 1) equations

for (n+ 1) unknowns. We can complete the system in many ways, some common ones are:

1. Natural boundary conditions:

[n1] 0 = S ′′0 (x0) = 2c0 =⇒ c0 = 0
[n2] 0 = S ′′n(xn) = 2cn =⇒ cn = 0

From this we produce a linear, tridiagonal system of the form

Ax = b

where

A =



1 0 0 · · · · · · 0
h0 2(h0 + h1) h1

. . . ...
0 h1 2(h1 + h2) h2

. . . ...
... . . . . . . . . . . . . ...
... . . . . . . . . . 0
... . . . hn−2 2(hn−2 + hn−1) hn−1
0 · · · · · · 0 0 1



b =



0
3(a2 − a1)

h1
− 3(a1 − a0)

h0...
3(an − an−1)

hn−1
− 3(an−1 − an−2)

hn−2
0


, x =



c0
c1
...

cn−1
cn



x are the unknowns (the quantity we are solving for!)
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2. Clamped boundary conditions: (Derivative known at endpoints).

[c1] S ′0(x0) = b0 = f ′(x0)
[c2] S ′n−1(xn) = bn = bn−1 + hn−1(cn−1 + cn) = f ′(xn)

[c1] and [c2] give the additional equations

[c′1] 2h0c0 + h0c1 = 3
h0

(a1 − a0)− 3f ′(x0)

[c′2] hn−1cn−1 + 2hn−1cn = 3f ′(xn)− 3
hn−1

3(an − an−1).

From this we have a linear system
Ax = b

where

A =



2h0 h0 0 · · · · · · 0
h0 2(h0 + h1) h1

. . . ...
0 h1 2(h1 + h2) h2

. . . ...
... . . . . . . . . . . . . ...
... . . . . . . . . . 0
... . . . hn−2 2(hn−2 + hn−1) hn−1
0 · · · · · · 0 hn−1 2hn−1



b =



3(a1−a0)
h0

− 3f ′(x0)
3(a2 − a1)

h1
− 3(a1 − a0)

h0...
3(an − an−1)

hn−1
− 3(an−1 − an−2)

hn−2

3f ′(xn)− 3(an − an−1)
hn−1


, x =



c0
c1
...

cn−1
cn



Boundary Terms: marked in red-bold.

This system is strictly diagonally dominant, so an elimination method can be used to find the
solution without the need for pivoting. Having obtained the values of {cj}ni=1, the remainder
of the spline coefficients for

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

is obtained using the formulas

aj = f(xj)

bj = aj+1 − aj
hj

− hj(2cj + cj+1)
3

dj = cj+1 − cj
3hj

. (2.22)

for i = 1, 2, · · ·n− 1.
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Example 2.24

Use the values given by f(x) = x3 +2 at x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 to find an approx-
imation of f(x) at x = 0.1, 0.3, 0.5, 0.7, and 0.9 using natural cubic spline interpolation.

We have the table x 0.0 0.2 0.4 0.6 0.8 1.0
f(x) 2.0 2.008 2.064 2.216 2.512 3.0

u1 = 0.8, u2 = 0.8, u3 = 0.8, u4 = 0.8
v1 = 0.72, v2 = 1.44, v3 = 2.16, v4 = 2.88.

Using these values, we obtain the linear system of equations

1 0 0 0 0 0
0.2 0.8 0.2 0 0 0
0 0.2 0.8 0.2 0 0
0 0 0.2 0.8 0.2 0
0 0 0 0.2 0.8 0.2
0 0 0 0 0 1





c1
c2
c3
c4
c5
c6


=



0
0.72
1.44
2.16
2.88

0


.

The solution of this system is

c = [0.0, 0.586, 1.257, 1.585, 3.204, 0.0]T .

Using Eqn. (2.22), we obtain the coefficients

a =


2

2.008
2.064
2.216
2.512

 , b =


0.001
0.118
0.487
1.055
2.013

 , d =


0.976
1.120
0.545
2.699
−5.340

 .

Hence,

S(x) =



S1(x), x ∈ [0.0, 0.2]
S2(x), x ∈ [0.2, 0.4]
S3(x), x ∈ [0.4, 0.6]
S4(x), x ∈ [0.6, 0.8]
S5(x), x ∈ [0.8, 1.0]

With
Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3, i = 1, · · · , 5.

That is,

S(x) =



2 + 0.001x+ 0.976x3, x ∈ [0.0, 0.2]
2.008 + 0.118(x− 0.2) + 0.586(x− 0.2)2 + 1.120(x− 0.2)3, x ∈ [0.2, 0.4]
2.064 + 0.487(x− 0.4) + 1.257(x− 0.4)2 + 0.545(x− 0.4)3, x ∈ [0.4, 0.6]
2.216 + 1.055(x− 0.6) + 1.585(x− 0.6)2 + 2.699(x− 0.6)3, x ∈ [0.6, 0.8]
2.512 + 2.013(x− 0.8) + 3.204(x− 0.8)2 − 5.340(x− 0.8)3, x ∈ [0.8, 1.0]

For example, the value x = 0.5 lies in the interval [0.4, 0.6], so S3(0.5) = 2.064+0.487(0.5−
0.4) + 1.257(0.5− 0.4)2 + 0.545(0.5− 0.4)3 ≈ 2.126.
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Example 2.25

Construct the natural cubic spline interpolant for f(x) = ln(ex + 2) with nodal values:

x f (x)
-1.0 0.86199480
-0.5 0.95802009
0.0 1.0986123
0.5 1.2943767

Calculate the absolute error in using the interpolant to approximate f(0.25) and f ′(0.25).
In this case n = 3 and h0 = h1 = h2 = 0.5 with

a0 = 0.86199480, a1 = 0.95802009,
a2 = 1.0986123, a3 = 1.2943767.

The linear system resembles,

Ax =


1.0 0.0 0.0 0.0
0.5 2.0 0.5 0.0
0.0 0.5 2.0 0.5
0.0 0.0 0.0 1.0



c0
c1
c2
c3

 =


0.0

0.267402
0.331034

0.0

 = b

The coefficients of the piecewise cubics:

j aj bj cj dj
0 0.861995 0.175638 0.0 0.0656509
1 0.95802 0.224876 0.0984763 0.028281
2 1.09861 0.344563 0.140898 -0.093918

The cubic spline:

S(x) =


0.861995 + 0.175638(x+ 1) + 0.0656509(x+ 1)3 − 1 ≤ x ≤ −0.5
0.95802 + 0.224876(x+ 0.5) + 0.0984763(x+ 0.5)2, −0.5 ≤ x ≤ 0
+0.028281(x+ 0.5)3

1.09861 + 0.344563x+ 0.140898x2 − 0.093918x3, 0 ≤ x ≤ 0.5

f(0.25) S(0.25) Abs. Err. f ′(0.25) S ′(0.25) Abs. Err.
1.18907 1.19209 3.02154−3 0.390991 0.3974 6.40839× 10−3
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Example 2.26

Construct the clamped cubic spline interpolant for f(x) = ln(ex + 2) with nodal values:

x f (x)
-1.0 0.86199480
-0.5 0.95802009
0.0 1.0986123
0.5 1.2943767

Calculate the absolute error in using the interpolant to approximate f(0.25) and f ′(0.25).
In this case n = 3 and h0 = h1 = h2 = 0.5 with

a0 = 0.86199480, a1 = 0.95802009,
a2 = 1.0986123, a3 = 1.2943767.

Note that f ′(−1) ≈ 0.155362 and f ′(0.5) ≈ 0.451863 Ṫhe linear system resembles,

Ax =


1.0 0.0 0.0 0.0
0.5 2.0 0.5 0.0
0.0 0.5 2.0 0.5
0.0 0.0 0.0 1.0



c0
c1
c2
c3

 =


0.110064
0.267402
0.331034
0.181001

 = b

The coefficients of the piecewise cubics:

j aj bj cj dj
0 0.861995 0.1553628 0.0653748 0.0160031
1 0.95802 0.23274 0.0893795 0.0150207
2 1.09861 0.333384 0.11191 0.00875717

The cubic spline:

S(x) =



0.861995 + 0.1553628(x+ 1) + 0.0653748(x+ 1)2

+0.0160031(x+ 1)3, −1 ≤ x ≤ −0.5
0.95802 + 0.23274(x+ 0.5) + 0.0893795(x+ 0.5)2

+0.0150207(x+ 0.5)3, −0.5 ≤ x ≤ 0
1.09861 + 0.333384x+ 0.11191x2 + 0.00875717x3, 0 ≤ x ≤ 0.5

f(0.25) S(0.25) Abs. Err. f ′(0.25) S ′(0.25) Abs. Err.
1.18907 1.18991 1.97037× 10−5 0.390991 0.390982 9.67677× 10−6
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Chapter 3

Least Square Method

Many scientific and engineering observations are made by conducting experiments in which
physical quantities are measured and recorded. The experimental records are typically referred
to as data points.

An available set of data can be used for developing, or evaluating, mathematical formulas
(equations) that represent the data. In some cases, the data is represented by a function,
which in turn can be used for numerical differentiation or integration. Such function may be
obtained through curve fitting, or approximation, of the data. Curve fitting is a procedure
where a function is used to it a given set of data in the ”best” possible manner without having
to match the data exactly. As a result, while the function does not necessarily yield the exact
value at the data points, overall it its the set of data well. Curve fitting is normally used when
the data has substantial inherent error, such as data gathered from experimental measurements.

The goal of Least-Squares Method is to find a good estimation of parameters that fit a
function, f(x), of a set of data, x1, x2, · · ·xn. The Least-Squares Method requires that the
estimated function has to deviate as little as possible from f(x) in the sense of a 2-norm.
Generally speaking, Least-Squares Method has two categories, linear and non-linear.

3.1 Least-Squares Regression
Sometimes we get a lot of data, many observations, and want to fit it to a simple model. Low
dimensional models (e.g. low degree polynomials) are easy to work with, and are quite well
behaved (high degree polynomials can be quite oscillatory.) However, when the data has sub-
stantial error, even if the size of data is small, this may no longer be appropriate. Consider
Figure 3.1, which shows a set of seven data points collected from an experiment. The nature
of the data suggests that, for the most part, the y values increase with the x values. A single
interpolating polynomial goes through all of the data points, but displays large oscillations in
some regions. As a result, the interpolated values near x = 1.2 and x = 2.85, for instance, will
be well outside of the range of the original data. In these types of situations, it makes more
sense to ind a function that does not necessarily go through all of the data points, but its the
data well overall. One option, for example, is to it the ”best” straight line into the data. This
line is not random and can be generated systematically via least-squares regression.

All measurements are noisy, to some degree. Often, we want to use a large number of measure-
ments in order to ”average out” random noise.

Approximation Theory looks at two problems:
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3.1. LEAST-SQUARES REGRESSION AMU

Figure 3.1: Interpolation by a single polynomial, and linear regression it of a set of data.

1 Given a data set, find the best fit for a model (i.e. in a class of functions, find the one
that best represents the data.)

2 Find a simpler model approximating a given function.

3.1.1 Criteria for a ”Best” Fit
A criterion that measures how good a fit is between given data points and an approximating
linear function is a formula that calculates a number that quantifies the overall agreement be-
tween the points and the function. Such a criterion is needed for two reasons. First, it can be
used to compare two different functions that are used for fitting the same data points. Second,
and even more important, the criterion itself is used for determining the coefficients of the
function that give the best fit.

We are going to relax the requirement that the approximating function must pass through all
the data points. Now we need a measurement of how well our approximation fits the data.

If f(xi) are the measured function values, and a(xi) are the values of our approximating func-
tions, we can define a function, r(xi) = f(xi) − a(xi) which measures the deviation (residual)
at xi. Notice that r̃ = {r(x0), r(x1), · · · , r(xn)}T is a vector.
Notation: From now on, fi = f(xi), ai = a(xi), and ri = r(xi). Further, f̃ = {f0, f1, · · · , fn}T , ã =
{a0, a1, · · · , an}T , and r̃ = {r0, r1, · · · , rn}T .

Different strategies can be considered for determining the best fit of a set of n data points
(x1, y1), · · · , (xn, yn).

1. One strategy is to minimize the sum of all the individual errors,

E =
n∑
i=0

ri =
n∑
i=0

[fi − ai]

This criterion, however, does not offer a good measure of how well the line its the data
because, as shown in Figure3.2, it allows for positive and negative individual errors even
very large errors to cancel out and yield a zero sum.
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Figure 3.2: Zero total error based on the criterion

2. To minimize the sum of the absolute values of the individual errors,

E1 =
n∑
i=0
|ri| =

n∑
i=0
|fi − ai| ⇔ ‖r̃i‖1

As a result, the individual errors can no longer cancel out and the total error is always
positive. This criterion, however, is not able to uniquely determine the coefficients that
describe the best line it because for a given set of data, several lines can have the same
total error. Figure 3.3 shows a set of four data points with two line its that have the same
total error.

Figure 3.3: Two linear its with the same total error calculated

3. To minimize the sum of the squares of the individual errors,

E1 =
n∑
i=0

r2
i =

n∑
i=0

(fi,−ai)2 ⇔ ‖r̃i‖1

This criterion uniquely determines the coefficients that describe the best line it for a given
set of data. As in the second strategy, individual errors cannot cancel each other out and
the total error is always positive. Also note that small errors get smaller and large errors
get larger. This means that larger individual errors have larger contributions to the total
error being minimized so that this strategy essentially minimizes the maximum distance
that an individual data point is located relative to the line.

c© Dejen K. 2019 43



3.2. LINEAR LEAST SQUARE AMU

3.1.2 Discrete Least Squares Approximation
We have chosen the sum-of-squares measurement for errors. Lets find the constant that best
fits the data, minimize

E(C) =
n∑
i=0

(fi − C)2.

If C∗ is a minimizer, then E ′(C∗) = 0 [derivative at a max/min is zero]

E ′(C) = −
n∑
i=0

2(fi − C) = −2
n∑
i=0

fi+ 2(n+ 1)C,︸ ︷︷ ︸
Set =0, and solve for C

E ′′(C) = 2(n+ 1)︸ ︷︷ ︸
Positive

hence C∗ = 1
n+1

∑n
i=0 fi it is a min since E ′′(C∗) = 2(n + 1) > 0. is the constant that best the

fits the data. (Note: C∗ is the average.)

3.2 Linear Least Square
As decided above, the criterion to find the line y = a1x + a0 that best fits the data is to
determine the coefficients a1 and a0. The error E(a0, a1) we need to minimize is:

E(a0, a1) =
n∑
i=0

[(a1xi + a0)− yi]2 (3.1)

The first partial derivatives with respect to a0 and a1 better be zero at the minimum:

∂

∂a0
E(a0, a1) = 2

n∑
i=0

[(a1xi + a0)− yi] = 0

∂

∂a1
E(a0, a1) = 2

n∑
i=0

xi[(a1xi + a0)− yi] = 0

Expanding and rearranging the above equations to get the Normal Equations
a0(n+ 1) + a1

n∑
i=0

xi =
n∑
i=0

yi

a0

n∑
i=0

xi + a1

n∑
i=0

x2
i =

n∑
i=0

xiyi

Since everything except a0 and a1 is known, this is a 2-by-2 system of equations.
(n+ 1)

n∑
i=0

xi

n∑
i=0

xi
n∑
i=0

x2
i


[
a0
a1

]
=


n∑
i=0

yi

n∑
i=0

xiyi

 .

By Cramer’s rule, the solutions are found as

a1 =
(n+ 1)

(
n∑
i=0

xiyi

)
−
(

n∑
i=0

xi

)(
n∑
i=0

yi

)

(n+ 1)
(

n∑
i=0

x2
i

)
−
(

n∑
i=0

xi

)2
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a0 =

(
n∑
i=0

x2
i

)(
n∑
i=0

yi

)
−
(

n∑
i=0

xiyi

)(
n∑
i=0

xi

)

(n+ 1)
(

n∑
i=0

x2
i

)
−
(

n∑
i=0

xi

)2
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Example 3.1

Find the best-fit values of a and b so that y = a + bx fits the data given in the table.
x 0 1 2 3 4
y 1 1.8 3.3 4.5 6.3 Let the straight line is y = a+ bx

xi yi xiyi x2
i

0 1 0 0
1 1.8 1.8 1
2 3.3 6.6 4
3 4.5 13.5 9
4 6.3 25.2 16∑

xi = 10 ∑
yi = 16.9 ∑

xiyi = 47.1 ∑
x2
i = 30

Putting these values in normal equations we get,

16.9 = 5a+ 10b
47.1 = 10a+ 30b

On solving these two equations we get, a = 0.72, b = 1.33. So required line y = 0.72 +
1.33x. Now, we can evaluate the sum of squares of errors as:

yi 1 1.8 3.3 4.5 6.3
p1(xi) = 0.72 + 1.33xi 0.72 2.05 3.38 4.71 6.04

ei = yi − p1(xi) 0.28 -0.25 -0.08 -0.21 0.26

4∑
i=0

(ei)2 = (0.28)2 + (−0.25)2 + (−0.08)2 + (−0.21)2 + (0.26)2 = 0.2590

x=0:4;
y=[1 1.8 3.3 4.5 6.3];
a = 1.330000
b = 0.720000

______________________________________________
x y a*x+b |y-(ax+b)|

______________________________________________
0.00 1.00 0.720000 0.280000
1.00 1.80 2.050000 0.250000
2.00 3.30 3.380000 0.080000
3.00 4.50 4.710000 0.210000
4.00 6.30 6.040000 0.260000

E(a,b) = 0.259000
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Example 3.2

Using the method of least-squares, find the linear function that best fits the following
data

x 1 1.5 2 2.5 3 3.5 4
y 25 31 27 28 36 35 32

x=[1:0.5:4];
y=[25 31 27 28 36 35 32];
linlsqr(x,y)

linear least squares

a = 2.714286
b = 23.785714

______________________________________________
x y a*x+b |y-(ax+b)|

______________________________________________
1.00 25.00 26.500000 1.500000
1.50 31.00 27.857143 3.142857
2.00 27.00 29.214286 2.214286
2.50 28.00 30.571429 2.571429
3.00 36.00 31.928571 4.071429
3.50 35.00 33.285714 1.714286
4.00 32.00 34.642857 2.642857

E(a,b) = 50.142857

Therefore, the least-squares line is

y = 2.71428571x+ 23.78571429.
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3.3 Non-Linear Least Square

3.3.1 Quadratic Model
For the quadratic polynomial p2(x) = a0 + a1x+ a2x2, the error is given by

E(a0, a1, a2) =
n∑
i=0

[
a2x

2
i + a1xi + a0 − yi

]2
At the minimum (best model) we must have

∂

∂a0
E(a0, a1, a2) = 2

n∑
i=0

[(a2x
2
i + a1xi + a0)− yi] = 0

∂

∂a1
E(a0, a1, a2) = 2

n∑
i=0

xi[(a2x
2
i + a1xi + a0)− yi] = 0

∂

∂a2
E(a0, a1, a2) = 2

n∑
i=0

x2
i [(a2x

2
i + a1xi + a0)− yi] = 0

Similarly for the quadratic polynomial p2(x) = a0 + a1x+ a2x
2, the normal equations are:

a0(n+ 1) + a1

n∑
i=0

xi + a2

n∑
i=0

x2
i =

n∑
i=0

yi

a0

n∑
i=0

xi + a1

n∑
i=0

x2
i + a2

n∑
i=0

x3
i =

n∑
i=0

xiyi

a0

n∑
i=0

x2
i + a1

n∑
i=0

x3
i + a2

n∑
i=0

x4
i =

n∑
i=0

x2
i yi

Note: Even though the model is quadratic, the resulting (normal) equations are linear. The
model is linear in its parameters, a0, a1, and a2.
We rewrite the Normal Equations as:

(n+ 1)
n∑
i=0

xi
n∑
i=0

x2
i

n∑
i=0

xi
n∑
i=0

x2
i

n∑
i=0

x3
i

n∑
i=0

x2
i

n∑
i=0

x3
i

n∑
i=0

x4
i



a0
a1
a2

 =



n∑
i=0

yi

n∑
i=0

xiyi

n∑
i=0

x2
i yi


.
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Example 3.3

Find the least square polynomial approximation of degree two to the data.
x 0 1 2 3 4
y -4 -1 4 11 20 also compute the least error.

Solution: Let the equation of the polynomial be y = a + bx + cx2

xi yi xiyi x2
i yix

2
i x3

i x4
i

0 - 4 0 0 0 0 0
1 - 1 - 1 1 -1 1 1
2 4 8 4 16 8 16
3 11 33 9 99 27 81
4 20 80 16 320 64 256∑

xi = 10 ∑
yi = 30 ∑

xiyi = 120 ∑
x2
i = 30 ∑

yix
2
i = 434 ∑

x3
i = 100 ∑

x4
i = 354

From the normal equation we have

30 = 5a+ 10b+ 30c
120 = 10a+ 30b+ 100c
434 = 30a+ 100b+ 354c

On solving these equations, we get a = −4, b = 2, c = 1. Therefore required polynomial
is y = −4 + 2x+ x2 , errors = 0 since p2(xi) = yi

3.3.2 Least-Squares Polynomial
The method of least-squares data fitting is not restricted to linear functions f(x) = ax+ b only.
As a matter of fact, in many cases data from experimental results are not linear, so we need to
consider some other guess functions.

pm(x) =
m∑
k=0

akxk (3.2)

of degree m ≤ n−1. So, according to the least-squares principle, we need to find the coefficients
a0, a1, · · · , am that minimize

E(a0, · · · , am) =
n∑
i=1

[pm(xi)− yi]2

=
n∑
i=1

[
m∑
k=0

(akxki )− yi
]2 (3.3)

As before,E is minimum if

∂

∂aj
E(a0, · · · , am) = 0, j = 0, 1, · · · ,m. (3.4)
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that is
∂E

∂a0
=

n∑
i=1

2
[
m∑
k=0

(akxki )− yi
]

= 0,

∂E

∂a1
=

n∑
i=1

2
[
m∑
k=0

(akxki )− yi
]

(xi) = 0,

...
∂E

∂am
=

n∑
i=1

2
[
m∑
k=0

(akxki )− yi
]

(xmi ) = 0.

(3.5)

Rearranging Eqn. (3.5) gives the (m+1) normal equations for the (m+1) unknowns a0, a1, · · · , am

a0n+ a1
∑

xi + · · ·+ am
∑

xmi =
∑

yi

a0
∑

xi + a1
∑

x2
i + · · ·+ am

∑
xm+1
i =

∑
yixi

a0
∑

x2
i + a1

∑
x3
i + · · ·+ am

∑
xm+2
i =

∑
yix

2
i

...
a0
∑

xmi + a1
∑

xm+1
i + · · ·+ am

∑
x2m
i =

∑
yix

m
i

(3.6)

As before,∑ denotes ∑n
i=1.

3.3.3 Linearization of Nonlinear Data
If the relationship between the independent and dependent variables is not linear, curve-fitting
techniques other than linear regression must be used.

Exponential Function

The exponential function is in the form

y = aebx (a, b const

Because differentiation of the exponential function returns a constant multiple of the expo-
nential function, this technique applies to situations where the rate of change of a quantity
is directly proportional to the quantity itself; for instance, radioactive decay. Conversion into
linear form is made by taking the natural logarithm of Equation above to obtain

ln y = bx+ ln a

Therefore, the plot of ln y versus x is a straight line with slope b and intercept ln a; see Figure
3.4 a and d.

Power Function

Another example of a nonlinear function is the power function

y = axb (a, b const

Linearization is achieved by taking the standard (base 10) logarithm ,

log y = b log x+ log a

so that the plot of log y versus log x is a straight line with slope b and intercept log a; see Figure
3.4 b and e.
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Example 3.4

Fit a curve y = abx to the following data:

x 2 3 4 5 6
y 144 172.8 207.4 248.8 298.5

Given equation y = abx reduced to ln y = ln a+ x ln b The normal equations are:

(
n∑
i=0

1) ln a+ (
n∑
i=0

xi) ln b =
n∑
i=0

ln yi

(
n∑
i=0

xi) ln a+ (
n∑
i=0

x2
i ) ln b =

n∑
i=0

xi ln yi

i xi yi x2
i ln yi xi ln yi

0 2 144 4 4.9698 9.9396
1 3 172.8 9 5.1521 15.4564
2 4 207.4 16 5.3346 21.3386
3 5 248.8 25 5.5166 27.5832
4 6 298.5 36 5.6988 34.1926∑ 20 90 26.6719 108.5104

5 ln a+ 20 ln b = 26.6719
20 ln a+ 90 ln b = 108.5104

On solving the system of equation, we get ln a = 4.6053, & ln b = 0.1823 =⇒ eln a =
a = e4.6053 = 100.0130&elnb = b = e0.1823 = 1.2. Thus, the curve is y = 100.0130× 1.2x
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Example 3.5

Find the least-squares exponential that best fits the following data:

x 1 3 4 6 9 15
y 4.0 3.5 2.9 2.5 2.75 2.0

x=[1 3 4 6 9 15];
y=[4 3.5 2.9 2.5 2.75 2];

Exponential least squares

a = 3.801404
b = -0.044406

_______________________________________________
xi yi ln(yi) a*exp(b*xi) |yi-[a*exp(b*xi)]|

_______________________________________________
1.00 4.00 1.39 3.636293 0.363707
3.00 3.50 1.25 3.327274 0.172726
4.00 2.90 1.06 3.182757 0.282757
6.00 2.50 0.92 2.912280 0.412280
9.00 2.75 1.01 2.549046 0.200954

15.00 2.00 0.69 1.952841 0.047159

The equation of the least-squares exponential is

y = 3.801404e−0.044406x
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Saturation Function

The saturation function is in the form

y = x

ax+ b
(a, b const

Inverting the Equation yields
1
y

= b
(1
x

)
+ a

so that the plot of 1/y versus 1/x is a straight line with slope b and intercept a; see Figure 3.4
c and f .

Figure 3.4: Linearization of three nonlinear functions for curve itting. (a, d) Exponential func-
tion, (b, e) Power function, (c, f) Saturation function.
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Example 3.6

Find the least-squares saturation function that best fits the data in above example

1/x 1.0000 0.3333 0.2500 0.1667 0.1111 0.0667
1/y 0.2500 0.2857 0.3448 0.4000 0.3636 0.5000

x=[1 3 4 6 9 15];
y=[4 3.5 2.9 2.5 2.75 2];

hyperbolic least squares

a = 0.420179
b = -0.195506

_____________________________________________________
x y 1/xi x(i)/(a*x(i)+b) |y-x(i)/(a*x(i)+b)|

_____________________________________________________
1.00 4.00 1.00 4.450930 0.450930
3.00 3.50 0.33 2.816824 0.683176
4.00 2.90 0.25 2.693226 0.206774
6.00 2.50 0.17 2.580019 0.080019
9.00 2.75 0.11 2.509690 0.240310

15.00 2.00 0.07 2.456129 0.456129

The equation of the least-squares hyperbolic is

y = x/(0.420179x− 0.195506)
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3.4 Continuous Least-Squares Approximation
In the previous section, we have described least-squares approximation to fit a set of discrete
data. Here we first describe continuous least-square approximations of a function f(x)
by using polynomials and later in the subsequent sections using orthogonal polynomials and
Fourier series.

3.4.1 Approximation by Polynomials
First, consider approximation by a polynomial with monomial basis: {1, x, x2, · · · , xn}.

Least-Square Approximations of a Function Using Monomial Polynomials
Given a function f(x), continuous on [a, b], find a polynomial Pn(x) of degree at most
n:

Pn(x) = a0 + a1x+ a2x
2 + · · · anxn (n ≤ m),

such that the integral of the square of the error is minimized. That is,

E(a0, a1, a2, · · · , an) =
∫ b

a
[f(x)− Pn(x)]2 dx,

is minimized.

The polynomial Pn(x) is called the Least-Squares Polynomial. For minimization, we
must have

∂E

∂ai
= 0, i = 0, 1, · · · , n.

As before, these conditions will give rise to a system of (n+ 1) normal equations in (n+ 1)
unknowns: a0, a1, · · · , an. Solution of these equations will yield the unknowns: a0, a1, · · · , an.

Setting up the Normal Equations

Since
E =

∫ b

a

[
f(x)−

(
a0 + a1x+ a2x

2 + · · · anxn
)]2

dx,

differentiating E with respect to each ai results in
∂E

∂a0
= −2

∫ b

a

[
f(x)− a0 − a1x− a2x

2 − · · · − anxn
]
dx,

∂E

∂a1
= −2

∫ b

a
x
[
f(x)− a0 − a1x− a2x

2 − · · · − anxn
]
dx,

...
∂E

∂an
= −2

∫ b

a
xn
[
f(x)− a0 − a1x− a2x

2 − · · · − anxn
]
dx.

Thus, we have
∂E

∂a0
= 0 =⇒ a0

∫ b

a
1dx+ a1

∫ b

a
xdx+ a2

∫ b

a
x2dx+ · · ·+ an

∫ b

a
xndx =

∫ b

a
f(x).

Similarly,
∂E

∂ai
= 0 =⇒ a0

∫ b

a
xidx+ a1

∫ b

a
dxi+1xdx+ a2

∫ b

a
xi+2dx+ · · ·+ an

∫ b

a
xi+ndx =

∫ b

a
xif(x).

i = 0, 1, 2, · · ·n.
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So, the (n+ 1) normal equations in this case are:

i = 0 : a0

∫ b

a
1dx+ a1

∫ b

a
xdx+ a2

∫ b

a
x2dx+ · · ·+ an

∫ b

a
xndx =

∫ b

a
f(x).

i = 1 : a0

∫ b

a
xdx+ a1

∫ b

a
x2xdx+ a2

∫ b

a
x3dx+ · · ·+ an

∫ b

a
xn+1dx =

∫ b

a
xf(x).

...

i = n : a0

∫ b

a
xndx+ a1

∫ b

a
xn+1xdx+ a2

∫ b

a
xn+2dx+ · · ·+ an

∫ b

a
x2ndx =

∫ b

a
xnf(x).

Denoting∫ b

a
xidx = si, i = 0, 1, 2, · · · , 2n, and bi =

∫ b

a
xif(x)dx, i = 0, 1, 2, · · ·n,

the above (n+ 1) equations can be written as

s0a0 + s1a1 + · · ·+ snan = b0

s1a0 + s2a1 + · · ·+ sn+1an = b0
...

sna0 + sn+1a1 + · · ·+ s2nan = b0

or in matrix notation 
s0 s1 · · · sn
s1 s2 · · · sn+1
... . . . ...
sn sn+1 · · · s2n



a0
a1
...
an

 =


b0
b1
...
bn

 .
Hence, we have the system of normal equations

Sa = b, (3.7)

where

S =


s0 s1 · · · sn
s1 s2 · · · sn+1
... . . . ...
sn sn+1 · · · s2n

 , a =


a0
a1
...
an

 , b =


b0
b1
...
bn

 .

A Special Case:

Let the interval be [0, 1]. Then

si =
∫ 1

0
xidx = 1

i+ 1 , i = 0, 1, 2, · · · , 2n.

Thus, in this case the matrix of the normal equations

S =


1 1

2 · · · 1
n

1
2

1
3 · · · 1

n+1... . . . ...
1
n

1
n+1 · · ·

1
2n

 ,

which is a Hilbert Matrix. It is well-known to be ill-conditioned.
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Example 3.7

Find Linear and Quadratic least-squares approximations to f(x) = ex on [−1, 1]. Solu-
tion:
Linear approximation: n = 1P1(x) = a0 + a1x Step 1:

s0 =
∫ 1

−1
1dx = 2,

s1 =
∫ 1

−1
xdx =

[
x2

2

]1

−1
= 1

2 −
(1

2

)
= 0,

s2 =
∫ 1

−1
x2dx =

[
x3

3

]1

−1
= 1

3 −
(−1

3

)
= 2

3 .

Step 2:
b0 =

∫ 1

−1
1dex = [ex]1−1 = e− 1

e
= 2.3504,

b1 =
∫ 1

−1
xexdx = 2

e
= 0.7358,

Step 3: From the matrix S and vector b:

S =
[
2 0
0 2

3

]
, b =

[
2.3504
0.7358

]

Step 4: Solve the normal system is:[
2 0
0 2

3

] [
a0
a1

]
=
[
2.3504
0.7358

]

This gives
a0 = 1.1752, a1 = 1.1037

The linear least-squares polynomial P1(x) = 1.1752 + 1.1037x.
Accuracy Check:

P1(0.5) = 1.7270, e0.5 = 1.6487.

Relative Error:

|e0.5 − P1(0.5)|
|e0.5|

= |1.6487− 1.7270|
|1.6487| = 0.0475.

Quadratic fitting n=2; P2(x) = a0 + ax + a2x
2

Step 1: Compute si’s

s0 = 2, s1 = 0, s2 = 2
3

s3 =
∫ 1

−1
x3dx =

[
x4

4

]1

−1
= 1

4 −
(1

4

)
= 0,

s4 =
∫ 1

−1
x4dx =

[
x5

5

]1

−1
= 1

5 −
(−1

5

)
= 2

5 .
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Example

Step 2: Compute bi’s

b0 = 2.3504, b1 = 0.7358,

b2 =
∫ 1

−1
x2exdx = e− 5

e
= 0.8789.

Step 3: From the matrix S and vector b:

S =

2 0 2
3

0 2
3 0

2
3 0 2

5

 , b =

2.3504
0.7358
0.8789


Step 4: Solve the normal system is:2 0 2

3
0 2

3 0
2
3 0 2

5


a0
a1
a2

 =

2.3504
0.7358
0.8789


This gives

a0 = 0.9963, a1 = 1.1037, a2 = 0.5368.

The linear least-squares polynomial P2(x) = 0.9963 + 1.1037x+ 0.5368x2.
Accuracy Check:

P2(0.5) = 1.6889, e0.5 = 1.6487.

Relative Error:

|e0.5 − P1(0.5)|
|e0.5|

= |1.6487− 1.6889|
|1.6487| = 0.0204.
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