Chapter 1

Revision on Set Theory

1.1 Sets and set operations,ordered pairs

Introduction

Set theory is a branch of mathematical logic that studies sets, which informally are col-
lections of objects. Although any type of object can be collected into a set, set theory is
applied most often to objects that are relevant to mathematics. The language of set theory
can be used to define nearly all mathematical objects.

Definition 1.1.1. A set is a (unordered) well-defined collection of objects. * To indicate
that we are considering a set, the objects (or the description) are put inside a pair of set
braces, {}.) These objects are sometimes called elements or members of the set and can be
anything: numbers, people, letters of the alphabet, and so on.

Well defined: (if there is a way to determine that an object belongs to the set or not.

\. .

Georg Cantor, one of the founders of set theory, gave the following definition of a set at the
beginning of his Beitrage zur Begriindung der transfiniten Mengenlehre:
“A set is a gathering together into a whole of definite, distinct objects of our perception or of our
thought—which are called elements of the set. ”
Terminology
For a set A having an element x, the following are all used synonymously:

e 1z is a member of A

x is contained in A

z is included in A

x 1s an element of the set A

A contains x

A includes z

Notation We specify a set by specifying its members. The curly brace notation is used for this
purpose. {1,2,3} is the set containing 1, 2, 3 as members.
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The curly brace notation can be extended to specify a set by specifying a rule for set membership.
(“—” means “such that”.)
There are four ways of representing sets

Representation of sets

1. Roster method (Tabular form) In this method a set is represented by listing all
its elements, separating these by commas and enclosing these in curly bracket. If V'
be the set of vowels of English alphabet, it can be written in Roster form as :

V ={a,e,i,o0,u}.

e.g., If A be the set of natural numbers less than 7. then A = {1,2,3,4,5,6}, is in the
Roster form.

2. Set-builder form In this form elements of the set are not listed but these are repre-
sented by some common property.
e.g., Let V be the set of vowels of English alphabet then V' can be written in the set
builder form as: V = {z : z is a vowel of English alphabet}.

(a) A= {_37 _27 _17 07 17 27 3}

(b) B=1{3,6,9,12}
Solution :
() A={z:x€Z and 3 <x <3}
(b) B={x:x=3nandn € N;n <}.

3. Interval Notation Used to describe subsets of sets upon which an order is defined,
e.g., numbers.
[a,b] = {z]a <2 < b},
[a,b) = {x]a <z < b},
(a,b] ={z|la <z < b}, (a,b) = {x|a < @ < b} closed interval [a, b] open interval (a,b)
half-open intervals [a, b) and (a, b].

4. Venn diagram British mathematician John Venn (1834-1883 AD) introduced the
concept of diagrams to represent sets. According to him universal set is represented
by the interior of a rectangle and other sets are represented by interior of circles. It is
a drawing in which geometric figures. It is a way of depicting the relationship between
sets.One use of Venn diagrams is to illustrate the effects of set operations.

Example 1.1.1. Write the following in Roster form.
(a) C ={z:2 € Nand 50 <z <60}

(b)) D={z:x€R and 2> — 5x + 6 = 0}.

Solution :

(a) C = {50,51,52, 53,54, 55,56, 57, 58, 59,60}

(b) 2* =52 +6=0 = (r—3)(x—2)=0.

=z =23,2 and D ={2,3}.
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Sets are conventionally denoted with capital letters.
There are two ways of describing, or specifying the members of, a set.

1. One way is by intensional definition, using a rule or semantic description:
A is the set whose members are the first four positive integers. B is the set of colors of the
Ethiopian flag.

2. The sccond way is by extension — that is, listing cach member of the set.
An extensional definition is denoted by enclosing the list of members in curly brackets:
C={4,2,1,3}

D = {green,yellow, red}.

Characteristics of sets
A set is uniquely identified by its members.

(o
o

{2}

T 15 an even prz’me}

x 1S a positive square root of 4}

1.2 Classification of Sets

Equal and Equivalent Sets Moreover, the sets A, B are said to be equal if and only if every
element of A is also an element of B, and every element of B is an element of A and equivalent
if they have the equal number elements.

Repetition of members is inconsequential in specifying a set.

The expressions

{1,2,3}

- {1,1,1,1,2,3}

all specify the same set.
Sets are unordered. The expressions

x 1S an even prime or T is a positive square root of 4 orx =1 orx =2 orx = 3}

1,2,3) = {3,2,1} = {2,1,3}

all specify the same set.
Sets can have other sets as members.

Example 1.2.1. , The set

{{1, 21, {2,3}, {1, Newton}}.
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Finite and infinite sets A is said to be an infinite set and B is said to be is finite set. A set
is said to be finite if its elements can be counted and it is said to be infinite if it is not possible to
count upto its last element.

empty set

The set with no members is the empty or null set. The expressions

{}

1%}

{:1: LT a:}
all specify the empty set.
A set with exactly one member is called a singleton. A set with exactly two members is
called a doubleton.

Thus {1} is a singleton and {1,2} is a doubleton.

Definition 1.2.1. If every element of set A is also in B, then A is said to be a subset of
B, written A C B (pronounced A is contained in B).

Equivalently, one can write B O A, read as B is a superset of A, B includes A, or B contains
A.

The relationship between sets established by C is called inclusion or containment, and is
given also for equal sets, that is, equality of sets is the same as mutual containment in each
other: A C B and B C A is equivalent to A = B.

If A is a subset of, but not equal to, B, then A is called a proper subset of B, written
A C B, or simply A C B (A is a proper subset of B), or B 2 A (B is a proper superset of
A, BDA).

The expressions A D B and B D A are used differently by different authors; some authors
use them to mean the same as A C B (respectively B O A), whereas others use them to
mean the same as A C B (respectively B 2 A).

Disjoint Sets : Two sets are said to be disjoint if they do not have any common element.
For example,sets A = {1,3,5} and B = {2,4,6} are disjoint sets.

Example 1.2.2. Given that A = {2,4} and B = {z : x is a solution of x>+ 6x+8 = 0}. Are A
and B disjoint sets ¢

Solution :

If we solve 2% + 62 + 8 = 0, we get v = —4, —2.

. B ={—-4,-2} and A = {2,4}.
Clearly ,A and B are disjoint sets as they do not have any common element.

Example 1.2.3. If A= {z: x is a vowel of English alphabet} and B ={y:y € N and y < 5}.
Is (i) A=B (ii)) A~ B ¢
Solution :

A=A{a,e,i,o,u}, B={1,2,3,4,5}.
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Each set is having five elements but elements are different.
SA# Bbut Ax B.

Exercise 1.2.1. Which of the following sets A = {x : x is a point on a line}, B ={y:y €
N and y < 50} are finite or infinite ¢

Example 1.2.4. The expression {1,2} C {1,2,3} says that {1,2} is a subset also proper subet of
{1,2,3).

The empty set is a subset of every set.

FEvery set is a subset of itself.

Cardinality of sets
Definition 1.2.2. The cardinality of a set S, denoted |S|, is the number of members of S.

Example 1.2.5. If B = {blue, white,red}, then |B| = 3.
There is a unique set with no members, called the empty set. The cardinality of the empty set is
2ero.

Example 1.2.6. The set of all three-sided squares has zero members and thus is the empty set.
Though it may seem trivial, the empty set, like the number zero, is important in mathematics.
Indeed, the existence of this set is one of the fundamental concepts of axiomatic set theory'.
Some sets have infinite cardinality. The set N of natural numbers, for instance, is infinite. Some
infinite cardinalities are greater than others.

For instance, the set of real numbers has greater cardinality than the set of natural numbers.
Howewver, it can be shown that the cardinality of (which is to say, the number of points on) a
straight line is the same as the cardinality of any segment of that line, of the entire plane, and
indeed of any finite-dimensional Fuclidean space.

Example 1.2.7. Let A ={1,2,3,4,5}, |A] = 5.

Power sets

A power set of a set is the set of all its subsets. P is used for the power set.
Note that the empty set and the set itself are members of the power set.

P{1,2,3} = {@, (1}, {2}, {3}, {1, 2},{1,3},{2,3}, {1,2,3}}.

If set S is finite with |S| = n, then |P(S)| = 2".

Universal set

- The universal set is denoted by U: the set of all objects under the consideration.

laxiomatic set theory
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AUB

Figure 1.1 — The union of sets A and B

1.2.1 set operations

Sets can be combined in a number of different ways to produce another set. Here four basic opera-
tions are introduced and their properties are discussed.

Definition 1.2.3. (Union): The union of sets A and B, denoted by AU B, is the set defined as

AUB={z|lr € AVx € B}

Example 1.2.8. : [f A={1,2,3} and B = {4,5} , then AUB ={1,2,3,4,5} .

Example 1.2.9. : [f A={1,2,3} and B ={1,2,4,5} , then AUB ={1,2,3,4,5} .
A more general form of the principle can be used to find the cardinality of any finite union of

sets:
|Ay UAy U A3 U .. UAL = (A1 + |As| + |As| + ... |An])

—(|[AiT N A+ [Ai N A3+ ... |A—1 N AL
+...
+ (=D (AN AN A5 N A).

Basic properties of unions

e AUB=BUA.

AU(BUC)=(AUuB)uUC.

°

AC (AUB).
AUA=A.

[ )

AuU=U.

AU = A.

°

A C B ifand only if AUB = B.

Definition 1.2.4. (Intersection): The intersection of sets A and B, denoted by AN B , is the set
defined as
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ANB

Figure 1.2 — The intersection of sets A and B

ANB={x|lr € ANz € B}

Example 1.2.10. : If A={1,2,3} and B =1{1,2,4,5} , then AN B ={1,2} .
Example 1.2.11. : If A={1,2,3} and B = {4,5} , then AN B = 0.

basic properties of intersections:

Let A and B be two sets. Then
1. ANB=BnNA (Commutativity).
2. AnN(BNnC)=(AnB)NnC (Associativity).
3. ANBCAand ANBCB
4. ANA=A AnU = A.
5. Anp=0.
6. AC B ifand only if AN B = A.

For sets A and B
|AUB| =|A| + |B| — |AN B|. The principle of inclusion and exclusion

Generally, The inclusion—exclusion principle is a counting technique that can be used to count the
number of elements in a union of two sets, if the size of each set and the size of their intersection
are known. It can be expressed symbolically as

e If A and B are finite sets, then n(AU B) = n(A) + n(B) —n(AN B.)
e IfANB =0, then n(AU B) = n(A) + n(B).

Definition 1.2.5. (Difference or Relative Complement): The difference of sets A from B , denoted
by A — B, is the set defined as

A—B={z|lre ANz ¢ B}

For sets A and B,
n(A— B)=n(A) —n(AN B).
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A-B

Figure 1.3 — The difference of sets A and B respectively

Example 1.2.12. : If A={1,2,3} and B ={1,2,4,5} , then A— B = {3} .

Example 1.2.13. : If A={1,2,3} and B = {4,5} , then A— B ={1,2,3} .
Note that in general A— B # B — A.

Definition 1.2.6. (Absolute Complement): For a set A, the difference U — A, where U is the
universe, is called the complement of A and it is denoted by A’.
Thus is the set of everything that is not in A.
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Some basic properties of complements:

e AB# B A for A# B.

e AUA =U.
e ANA =0.
. (4) = A
e P\ A=0.
e A\D=A.
e A\A=10.
e A\U=0.

e ANA'=Aand A\A=A".
e U =0and® =U.

« AA\B=ANDB.

e if AC B then A\ B = ).

. J

Example 1.2.14. Two programs were broadcast on television at the same time; one was the
Big Game and the other was Ice Stars. The Nelson Ratings Company uses boxes attached to
television sets to determine what shows are actually being watched. In its survey of 1000 homes
at the midpoint of the broadcasts, their equipment showed that 153 households were watching both
shows, 736 were watching the Big Game and 55 households were not watching either. How many
households were watching only Ice Stars? What percentage of the households were not watching
either broadcast?

Solution

Let B the set of Big Game and I Ice Stars.

|B N I| =153 households were watching both broadcasts.

n(B) = 736,were watching the Big Game.

Since we already have 153 in that part of B that is in common with I, the remaining part of B
will have 736 — 153 = 583.

This tells us that 583 households were watching only the Big Game.

We are also told that 55 households were watching neither program,

= n((I UB)) = 55.

Finally, we know that the total of everything should be 1000, n(U) = 1000.

Since only one area does not yet contain a number it must be the missing amount to add up to
1000.

We add the three numbers that we have, 583 + 153 + 55 = 791, and subtract that total from 1000,
1000 — 791 = 209, to get the number that were watching only Ice Stars.

Now, we have the information needed to answer any questions about the survey results.

In particular, we were asked how many households were watching only Ice Stars, we found this

9
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number to be 209.
We were also asked what percentage of the households were watching only the Big Game.
The number watching only the game was found to be 583, so we compute the percentage,

283

1 = 58.3%.
1000* 00% = 58.3%

153

Exercise 1.2.2. In a recent survey people were asked if the took a vacation in the summer, winter,
or spring in the past year. The results were 73 took a vacation in the summer, 51 took a vacation
in the winter, 27 took a vacation in the spring, and 2 had taken no vacation. Also, 10 had taken
vacations at all three times, 33 had taken both a summer and a winter vacation, 18 had taken only
a winter vacation, and 5 had taken both a summer and spring but not a winter vacation.

1. How many people had been surveyed?
2. How many people had taken vacations at exactly two times of the year?
3. How many people had taken vacations during at most one time of the year?

4. What percentage had taken vacations during both summer and winter but not spring?

Proposition 1.2.1. : Let A, B,C' be sets. Then

1. AUA=A ,ANA=A, and A\ A= A;
AUD=Aand AND = 0;

AU(BUC)=(AUB)UC and AN(BNC)=(ANnB)NC;
AUB=BUAand ANB=BNA;
AU(BNC)=(AUB)N(AUC);

S & e

AN(BUC) = (ANB)U(ANC).

10
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Proof

We will prove (1) and (3) and leave the remaining results to be proven in the exercises.
(1) Observe that

AUA={z:z € Aorz e A}
={r:2z e A}
= A.

and

ANA={z:x€Aand x € A}
={z:z € A}
= A

Also, ANA=ANA =0
(3) For sets A, B, and C,

AU(BUC)=AU{x: 2z € Borx € C}
={z:xc€cAorxeBorxelC}
={z:x€AorxzeB}UC
=(AUuB)UC

A similar argument proves that AN (BNC)=(ANB)NC.

The fourth set operation is the Cartesian product We first define an ordered pair and Cartesian
product of two sets using it. Then the Cartesian product of multiple sets is defined using the concept
of n—tuple.

Definition 1.2.7. An extension of the complement is the symmetric difference, defined for
sets A, B as

AAB=(A\B)U(B\ A).

AAB=ANB

Example 1.2.15. |, the symmetric difference of {7,8,9,10} and {9, 10, 11,12} is the set {7,8,11,12}.

Some Properties of Union and Intersection Based on the preceding definitions, we can
derive some useful properties for the operations on sets. The proofs of these properties are left as

11
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an exercise to the reader. The union and intersection operations are commutative. That is, for
sets A, B

AUB=BUA
ANB=BNA

Furthermore, they are associative. That is, for sets A, B,C

(AUB)UC = AU (BUCQ)
(ANB)NC=AN(BNC)

Furthermore, union distributes over intersection and intersection distributes over union. That
is, for sets A, B,C

Theorem: De Morgan’s laws

Two important propositions for sets are De Morgan’s laws. They state that, for sets A, B,C

A\ (BUC)=(A\B)Nn(A\C)
A\ (BNC) = (A\B)U(A\C)
When A is a universe to which B and C belong, De Morgan’s laws can be stated more simply

as,
(BuC)’ =B°nce

(BNO)° =BUc”

In words:
"The complement of a union is the intersection of the complements.” "The complement of

an intersection is the union of the complements.”

Proof

12
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Families of sets

A set of sets is usually referred to as a family or collection of sets. Often, families of sets
are written with either a script or Fraktur font to easily distinguish them from other sets.
For a family of sets A , define the union and intersection of the family by,

U= A={z: 2 isin some A € A}
Aen

(A=) A={z:zisinal AcA}
A

For a family of sets, we say that it is pairwise disjoint if any two distinct sets we choose
from the family are disjoint.

1.2.2 Ordered Pairs

Definition 1.2.8. (ordered pair): An ordered pair is a pair of objects with an order associated
with them.

If objects are represented by x and y, then we write the ordered pair as < x,y >.

Two ordered pairs < a,b > and < c,d > are equal if and only if a = c and b = d.

Example 1.2.16. The ordered pair < 1,2 > is not equal to the ordered pair < 2,1 >.

Definition 1.2.9. (Cartesian product): A new set can be constructed by associating every element
of one set with every element of another set.

The set of all ordered pairs (a,b), where a is an element of A and b is an element of B, is called
the Cartesian product of A and B and is denoted by A X B. The concept of Cartesian product
can be extended to that of more than two sets. First we are going to define the concept of ordered
n—tuple.

Example 1.2.17.

{1,2} x {red, white, green} = {(1,red), (1, white), (1, green), (2,red), (2, white), (2, green)}.

(1,2} % {1,2} = {(1,1),(1,2), (2, 1), (2.2)}.
{a,b,c} x{d, e, f} = {(a,d), (a,€), (a, f), (b,d), (b, €), (b, f), (¢, d), (¢, €), (¢, [}

Exercise 1.2.3. Let A ={a,b,c}, B={d,e}, C ={a,d}. Find
(i) Ax B (ii)) Bx A (1)) A x (BUC)
(iv) (ANC) x B (v) (ANB)xC  (vi) Ax (B\C).

Definition 1.2.10. (ordered n—tuple): An ordered n—tuple is a set of n objects with an order
associated with them (rigorous definition to be filled in). If n objects are represented by 1, xa, ..., Ty,
then we write the ordered n—tuple as (1, T2, ..., Tp) -

Example 1.2.18. The ordered 3—tuple (1,2, 3) is not equal to the ordered n—tuple (2,3,1).

13
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Definition 1.2.11. (Cartesian product): Let Ay, ..., A, be n sets. Then the set of all ordered
n—tuples (x1,...,x,) , where x; € A; for all i, 1 < i < n , is called the Cartesian product of
Ay, ..., A, and is denoted by Ay X ... X A, .

Basic Properties Cartisian Product

Let A, B and C' be sets. Then
o AXx(=0.
e AX (BUC)=(AxB)U(AXxC).
e (AUB)x(C=(AxC)U(BxC().
o IfA, or B=0orA=B=0,then Ax B=BxA=1.

If A and B are finite sets; then the cardinality of the Cartesian product is the product of
the cardinalities:
|Ax B|=|B x A| = |A| x |B|.

1. In a class of 40 students, 15 like to play cricket and football and 20 like to play cricket. How
many like to play football only but not cricket?
Solution: Let C = Students who like cricket

F = Students who like football

C N F = Students who like cricket and football both
C — F = Students who like cricket only

F — C = Students who like football only.

Given: Required:
n(C) =20, n(CNF)=15 n(CUF)=40 n(F)=?

=n(CUF)=n(C)+n(F)—n(CNF)

= 40 = 20 + n(F) — 15 = 40 = 5 + n(F) = 40-5 = n(F)

=n(F)=35
=n(F—C)=n(F)—n(CNF)=35-15=20.

14
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Therefore, Number of students who like football only but not cricket = 20.

There is a group of 80 persons who can drive scooter or car or both. Qut of these, 35 can
drive scooter and 60 can drive car. Find how many can drive both scooter and car? How
many can drive scooter only? How many can drive car only?

Solution:

Let S = { Persons who drive scooter }

C = { Persons who drive car}
Given, n(SUC) = 80, n(S) =35 n(C) = 60.
Therefore,

n(SUC)=n(S)+n(C)—n(SNC)
= 80 =35+ 60— n(SNC)
= 80=195—n(SNC)
Therefore, n(SNC) =95-80 = 15

Therefore, 15 persons drive both scooter and car.

Therefore, the number of persons who drive a scooter only = n(S)—n(SNC) = 35—15 = 20.
Also, the number of persons who drive car only = n(C) —n(SNC)=60— 15 =45

It was found that out of 45 girls, 10 joined singing but not dancing and 24 joined singing.
How many joined dancing but not singing? How many joined both?

Solution:
Let S = {Girls who joined singing}

D = {Girls who joined dancing}.

Number of girls who joined dancing but not singing = Total number of girls - Number of girls
who joined singing

45 — 24 = 21.

Now, n(S — D) =10, n(S) =24
Therefore, n(S — D) = n(S) —n(SN D)
= n(SND)=n(S)—n(S—D)
=24 —10
=14

Therefore, number of girls who joined both singing and dancing is 14.

15
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Set identities

There are a number of set identities that the set operations of union, intersec-

tion, and set difference satisfy. They are very useful in calculations with sets. Below we give a
table of such set identities, where U is a universal set and A, B, and C are subsets of U.

Commutative Laws
Associative Laws
Distributive Laws
Idempotent Laws
Absorption Laws
Identity Laws
Universal Bound Laws
DeMorgan’s Laws
Complement Laws
Complents of U and ()
Double Complement Law
Set Difference Law

AUB=BUA
(AUB)UC =AU (BUC(C)
AN(BUC)=(ANB)U(ANC)
ANA=A

AN(AUB)=A

AUubh=A

AUU =U
(ANB)¢ = A°U B
Ue=10

Uue=10

(A=A
A-B=ANDB"

ANB=BNA
(ANB)NC=An(BNCQC)
AUu(BNC)=(AUB)N(AUC)
ANA=A
AU(ANB)=A
AuU=A

ANnP=10

(AN B)¢ = A°U B¢
ANAc =0

)c=U

)c=U

Proof

Set theory is seen as the foundation from which virtually all of mathematics can be derived. For
example, structures in abstract algebra, such as groups, fields and rings, are sets closed under one

or more operations.

One of the main applications of naive set theory is constructing relations.

Summary

e U is Union: is in either set or both sets.

°

°

1.3

1.3.1 Relation

N is Intersection: only in both sets.

— s Difference: in one set but not the other.

A€ is the Complement of A: everything that is not in A.
A is symmetric difference: is in each set but not both.
Empty Set: the set with no elements. Shown by {}.

Universal Set: all things we are interested in.

Relations and functions

Definition 1.3.1. A relation

1. is an association between objects.

16
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2. from a set A to B is a set of ordered pairs {(a,b):a € Ab€ B}. We write aRb, say that a
is related to b by R and R C A x B.

If A and B are two sets then a relation R from A to B is a sub set of A x B. If

1. R=10, R is called a void relation.

2. R=AXx B, R is called a universal relation.

3. If R is a relation defined from A to A, it is called a relation defined on A.
4. R={(a,a) Ya € A} , is called the identity relation.

Definition 1.3.2. Domain: Let R C A X B be a relation. The domain of R is the set
dom(R)={x € A:Jy(y € BA(x,y) € R)},

of the given relation, and the range of R is the set
ran(R) ={y € B:3x(x € AN (z,y) € R)}.

Example 1.3.1. If R ={(1,3),(2,4),(2,5)}, then dom(R) = {1,2} and ran(R) = {3,4,5}.

Example 1.3.2. Let S = {(z,y) : |z| = y Ax,y € R}. Notice that both (2,2) and (—2,2) are
elements of S. Furthermore, dom(S) = R and range(S) = [0, 00).

Example 1.3.3. Given that A = {2,4,5,6,7}, B = {2,3}. R is a relation from A to B defined
by
R={(a,b):a€ A, b€ B and a is divisible by b}
find (i) R in the roster form (i) Domain of R (iii) Range of R.
(iv) Repersent R diagramatically.
Solution :

(i) R ={(2,2),(4,2),(6,2),(6,3)}.
(i) Domain of R = {2,4,6}.
(iii) Range of R = {2,3}.

Exercise 1.3.1. If R is a relation ’is greater than’ from A to B, where A = {1,2,3,4,5} and
B ={1,2,6}. Find (i) R in the roster form. (i) Domain of R  (iii) Range of R.

Example 1.3.4. State the domain and range using the relation: {(—1,2),(0,4), (0,-=3), (1, —3)}.
(Hint: To list the domain and range you list them from least to greatest in set notation.)
Solution:

Domain {—1,0,1} ; Range {—3,2,4}

Definition 1.3.3. A binary relation R on sets X and Y is a definite relation between elements
of X and elements of Y . We write xRy if v € X and y € Y are related. One can also define
relations on more than two sets, but we shall consider only binary relations and refer to them
simply as relations. If X =Y, then we call R a relation on X.
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Definition 1.3.4. A set R is an (n-ary) relation if there exist sets Ag, Ay, -+, An_1 such that
RCA()XAl X"'XAn_l.

In particular, R is a unary relation if n = 1 and a binary relation if n = 2. If R C AX A for some
set A, then R is a relation on A and we write (A, R).

Example 1.3.5. The less-than relation on 7 is defined as
L={(a,b):a,b€ZNa<Db}.
Another approach is to use membership in the set of positive integers as our condition. That is,
L={(a,b:a,beZNb—acZ"}.

Hence, (4,7) € L because 7T — 4 € Z+.

Representation of Relations using Graph

A relation can be represented using a directed graph.

The number of vertices in the graph is equal to the number of elements in the set from which the
relation has been defined.

For each ordered pair (x,y) in the relation R, there will be a directed edge from the vertex ‘x’ to
vertex ‘.

If there is an ordered pair (x,x), there will be self- loop on vertex ‘x’.

Types of Relation When we are looking at relations, we can observe some special properties
different relations can have.

1. The Full Relation between sets X and Y is the set

X xY.

2. The Inverse Relation R of a relation R is defined as

R = {(b,a)|(a,b) € R}.

3. A relation R on set A is called Reflexive if V € A is related to a (aRa holds).

4. A relation R on set A is called Irreflexive if no a € A is related to a (aRa does not hold).
The relation of equality, “ =7 is reflexive. Observe that for, say, all numbers a (the domain
is R): a=a so*“ =7 is reflexive.

In a reflexive relation, we have arrows for all values in the domain pointing back to them-
selves:

Note that < is also reflexive (a < a for any a € R). On the other hand, the relation < is
not (a < a is false for any a € R).

18
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5. Symmetric
A relation is symmetric if, we observe that for all values of a and b: aRb implies bRa.
The relation of equality again is symmetric. If x =y, we can also write that y = x also.
In a symmetric relation, for each arrow we have also an opposite arrow, i.e. there is either
no arrow between x and y, or an arrow points from x to y and an arrow back from y to x:

Neither < nor < is symmetric (2 < 3 and 2 < 3 but neither 3 < 2 nor 3 < 2 is true).

6. Antisymmetric A relation is antisymmetric if we observe that for all values a and b: aRb
and bRa implies that a = b.
Notice that antisymmetric is not the same as “not symmetric.”
Take the relation greater than or equal to, “ > 7 If x >y, and y > x, then y must be equal
to x. a relation is anti-symmetric if and only if a € A, (a,a) € R.

7. Transitive
A relation is transitive if for all values a,b,c: aRb and bRc implies aRc.
The relation greater-than “ > 7 is transitive. If x >y, and y > z, then it is true that x > z.
This becomes clearer when we write down what is happening into words. x is greater than y
and vy is greater than z. So x is greater than both y and z.
The relation is-not-equal “ # 7 is not transitive. If x # y and y # z then we might have
r=2zorxr+#z.

8. Trichotomy
A relation satisfies trichotomy if we observe that for all values a and b it holds true that:
aRb or bRa The relation is-greater-or-equal satisfies since, given 2 real numbers a and b, it
is true that whether a > b or b > a (both if a = ).

Example 1.3.6. [/

e If R=1{(1,2),(2,3)}, then R will be {(2,1),(3,2)}.

e The relation R = {(a,a), (b,b)} on set X = {a,b} is reflexive.

e The relation R = {(a,b), (b,a)} on set X = {a,b} is irreflexive.

e The relation R = {(1,2),(2,1),(3,2),(2,3)} on set A= {1,2,3} is symmetric.

e The relation R = {(x,y) — Nz < y} is anti-symmetric since © < y and y < x implies
T =1.

e The relation R = {(1,2),(2,3),(3,4),(4,1)} on set A ={1,2,3,4} is transitive.
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INPUT oUTPUT

=

1.3.2 Function

This relation f from set A to B where every element of A has a unique image in B is defined as
a function from A to B. So we observe that in a function no two ordered pairs have the same first
element.

INPUT OUTPUT

~

This leads us to the following definition.
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Function

Definition 1.3.5. A function or mapping (Defined as f : X — Y ) is a special type of
relation in which each input has exactly one output. It is a relationship from elements of one
set X to elements of another set' Y (X and Y are non-empty sets). X is called Domain
and Y is called Codomain of function ‘f’.

Function ‘ " is a relation on X and Y such that for each x € X, there exists a unique y € Y
such that (x,y) € R. ‘a’ is called pre-image and ‘y' is called image of function f.

A function relates an input to an output.

Example 1.3.7. Tree grows 20 cm every year, so the height of the tree is related to its age
using the function
h : h(age) = age x 20

So, if the age is 10 years, the height is:

h(10) = 10 x 20 = 200cm.

Special rule [t must work for every possible input value.

And it has only one relationship for each input value

Functions can be represented in several different ways; ordered pairs, table of values, mapping
diagrams, graphs and in function notation.

So from the above example and the definition we observe that in a function no two ordered pairs
have the same first element.
We also see that 3 an element € B. Thus here:
(i) the set B will be termed as co-domain and
(ii) the set {1,2,3} is called the range.
And we can conclude that range is a subset of co-domain. Symbolically, this function can be written

as
f:A—)BorAI}B

Example 1.3.8. Which of the following relations are functions from A to B.
Write their domain and range. If it is not a function give reason ?

(a). {
(b). {(1,0),(1,-1),(2,3),(4,10)}, A= {1,2,4}, B =1{0,-1,3,10}.

(1,-2),(3,7),(4,-6), (3, )} , A={1,3,4,8} ,B={-2,7,-6,1,2}.
(1,0), (
(¢). {(a,),(b,¢), (¢,b),(d, )}, A={a,b,c,d e}, B={bc}.
(2,4), (
(1,-1)

(d). {(2,4),(3,9),(4,16),(5,25), (6,36)}, A={2,3,4,5,6}, B={4,9,16,25,36}.

(e). {(1,-1),(2,-2),(3,=3),(4,—4),(5,—5)}, A={0,1,2,3,4,5}, B={-1,-2,—3,—4, —5}.

Solution :
(a) It is a function. Domain= {1,3,4,8} , Range = {—2,7,—6, 1}.
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(b) It is not a function. Because first two ordered pairs have same first elements.

(¢c) It is not a function. Domain= {a,b,c,d} # A, Range = {b, c}.

(d) It is a function. — Domain = {2,3,4,5,6}, Range = {4, 9,16, 25,36}.

(e) It is not a function . Domain = {1,2,3,4,5} # A, Range = {—1, -2, -3, —4, —5}.

Let us consider some functions which are only defined for a certain subset of the set of real numbers.

Example 1.3.9. Find the domain of each of the following functions :

8 |=
&
<

I

a. y= =2 Y= e

Solution

a. The functiony = % can be described by the following set of ordered pairs. {---, (=2, _71), (—1,—1),(1,1), ¢
Here we can see that x can take all real values except 0 because the corresponding image, i.e.,
% is not defined.
.. Domain = R — {0}.

b. x can take all real values except 2 because the corresponding image, i.e., ﬁ does not exist.
.. Domain = R — {2}.

c) Value of y does not exist for t = =2 and x = 3.
. Domain = R — {—2,3}.

Classification of Functions

e Injective / One-to-one function. A function f: A — B is injective or one-to-one
function if for every b € B, there exists at most one a € A such that f(a) = b.
This means a function f is injective if ay # ao implies f(a1) # f(a2).

e Surjective / Onto function A function f : A — B is surjective (onto) if the image
of f equals its range. Equivalently, for every b € B, there exists some a € A such that
f(a) =b. This means that for any y in B, there exists some x in A such thaty = f(x).

e Bijective / One-to-one Correspondent
A function f: A — B is bijective or one-to-one correspondent if and only if f is both
injective and surjective.

e Inverse of a Function The inverse of a one-to-one corresponding function f: A —
B, is the function g : B — A, holding the following property

f@)=yegly) ==z

The function f is called invertible, if its inverse function g ewists.
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Example 1.3.10. Without using graph prove that the function f : R — R defiend by f(x) = 4+ 3x
15 one-to-one.
Solution : For a function to be one-one function

flz1) = f(xe) = 21 = 29, V1,29 € R.

Now, f(z1) = f(xs) gives 4 4+ 3x1 = 4 4 39 or x1 = xo.

. f is a one-one function.

Pigeonhole Principle

Suppose X is a finite set with m elements, Y is a finite set with n elements, and f : X — Y isa
function.

1) If m = n; then f is injective iff i is surjective iff f is bijective.
2) If m > n; then f is not injective.
3) If m < n; then fis not surjective.

Exercise 1.3.2. Prove that f : R — R defined by f(x) = 42* — 5 is a bijection.
Solution : Now f(x1) = f(xs), Vxi, 9 € Domain.
codad —5=4da3 -5

= 23 =13

=18 — 13 =0= (v, — x9) (2} + 1119 + 23) = 0.

= Ty = Ty or T+ T179 + 3 = 0 (rejected). It has no real value of 1 and xo . . f is a one-one
function.

Again let y = (x) where y € codomain, x € domain.
We have y = 42* — 5 or x = (X2)5

.. For each y € codomain x € domain such that f(x) = y.
Thus f is onto function.

. f is a bijection.

Exercise 1.3.3. Prove that F : R — R defined by F(x) = x* + 3 is neither one-one nor onto
function.

e Monotonic Function
Let F : A — B be a function then F is said to be monotonic on an interval (a,b) if it is
either increasing or decreasing on that interval.
For function to be increasing on an interval (a,b)

) < x9 = F(x)) < F(12) Yy, 29 € (a,b)
and for function to be decreasing on (a,b)
1 < T9 = F(x1) > F(23) Y21, 73 € (a,b)

A function may not be monotonic on the whole domain but it can be on different intervals of
the domain.
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Example 1.3.11. Consider the function F : R — R defined by f(z) = 22 .
Now, Vxq, x4 € [0, 00,

11 < xg = F(x1) < F(x2)

= F is a Monotonic Function on [0,00) . It is only increasing function on this interval).
But Yy, x4 € (—0,0),

T < Ty = F(xl) > F(I‘Q)

= F is a Monotonic Function on (—o0,0].
(It is only a decreasing function on this interval) Therefore if we talk of the whole domain
given function is not monotonic on R but it is monotonic on (—00,0) and (0, 00).

FEven Function
A function is said to be an even function if for each x of domain

Example 1.3.12. , each of the following is an even function.
(i) If F(x) = 22, then F(—x2) = (—x)? = 2® = F(x).

(ii) If F(x) = cosz, then F(—x) = cos(—x) = cosx = F(x).
(iii) If F(z) = |z|, then F(—x) =| —z| =z = F(x).

Odd Function
A function is said to be an odd function if for each x
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cont.

e Greatest Integer Function (Step Function)
f(x) = [z] which is the greatest integer less than or equal to x and f(x) is called
Greatest Integer Function or Step Function.
Domain of the step function is the set of real numbers.
Range of the step function is the set of integers.

Polynomial Function Note : Functions of the type f (x ) =k, where k is a constant
1s also called a constant function.

Rational Function Function of the type f(x) = %; glx) #

0 and g(x), h(x) are polynomial functions. are called rational functions.

°

Reciprocal Function
Functions of the type y = %, x # 0 is called a reciprocal function.

°

The function f(x) = e* , where x is any real number is called an Exponential Func-
tion.

Logarithmic Functions Consider now the function

y=e".
We write it equivalently as
x = loge?

Thus, y = loge® is the inverse function of y = e*.

The base of the logarithm is not written if it is e and so loge® is usually written as
logz.

The corresponding laws of logarithms are

(mn)

loga = loga™ + loga™

(m/n

loga™™ = loga™loga™

loga'm™) = nloga™

loga™

logh™ =
Y loga®

or
logh™ = loga™ .logh"

Here a,b>0,a# 1, b# 1.
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cont.

o Composition of Functions

Two functions f: A— B and g: B — C can be composed to give a composition gof.
This is a function from A to C defined by

(gof)(x) = g(f(x)).

Example 1.3.14. If f(z) =z + 1 and g(x) = 2°> + 2 , calculate fog and gof.
Solution :

fog(x) = f(g(z))

= f(z* +2)

=22 +2+41

=22+ 3,

(gof)(z) = g(f(z)) = g(z +1)
=(r+1)2+2

=xr+1+2

=+ 3.

Here , we see that (fog) # gof.
Some Fuacts about Composition
If f and g are one-to-one then the function (gof) is also one-to-one.
If f and g are onto then the function (gof) is also onto.
Composition always holds associative property but does not hold commutative property.

1.4 Equivalence relation

‘¢

A given binary relation “~” on a set X is said to be an equivalence relation if and only if it is
reflexive, symmetric and transitive (R-S-T). That is, for all a,b,c € X:

e a v a. (Reflexivity)
e Ifa b, then b~ a. (Symmetry)
e Ifawbandb ¢, then a c. (Transitivity)
X together with the relation ‘~’, (X, ) is called a setoid.

The equivalence class of a under «~, denoted [a] , is defined as [a] = {b € X | a ~ b}

Example 1.4.1. Let the set {a,b,c} have the equivalence relation {(a,a), (b, ), (¢, c), (b, c), (¢,b)}.
The following sets are equivalence classes of this relation: [a] = {a},  [b] = [¢] = {b,c}.
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The set of all equivalence classes for this relation is {{a}, {b, c}}.
This set is a partition of the set {a,b, c}.
The relation “>7 between real numbers is reflexive and transitive, but not symmetric.

Example 1.4.2. 7> 5 does not imply that 5 > 7.
The relation “has a common factor greater than 1 with” between natural numbers greater than 1,
is reflexive and symmetric, but not transitive.

Example 1.4.3. The natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3
have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1.
The empty relation R on a non-empty set X (i.e. aRb is never true) is vacuously symmetric and
transitive, but not reflexive. (If X is also empty then R is reflexive.)

The relation “is approximately equal to” between real numbers, even if more precisely defined, is
not an equivalence relation, because although reflexive and symmetric, it is not transitive, since
multiple small changes can accumulate to become a big change.

Example 1.4.4. Given the above information, determine which relations are reflexive, transi-

tive, symmetric, or antisymmetric on the following - there may be more than one characteristic.
(Answers follow.) xRy if

8
no

I

<

Answers

1. Symmetric, Reflexive,and transitive
2. Transitive, Trichotomy

3. Symmetric, Reflexive, and transitive (x* = y*is just a special case of equality, so all properties
that apply to x =y also apply to this case)

4. Reflexive, Transitive and Antisymmetric (and satisfying Trichotomy)

Theorem 1.4.1. Let R be an equivalence relation on a set A. Then the following are equivalent:

(1) aRb
(2) la] = [b].
(3) lal N [b] # 0
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Proof:

1 — 2. Suppose a,b € A and aRb. We must show that [a] = [b].
Suppose x € [a].
Then, by definition of [a|, aRx.
Since R is symmetric and aRb, bRa. Since R is transitive and we have both bRa and aRx, bRzx.
Thus, x € [b].
Suppose x € [b].
Then bRx. Since aRb and R is transitive, aRx. Thus, x € [a].
We have now shown that x € [a] if and only if x € [b].
Thus, [a] = [b].
2 — 3. Suppose a,b € A and [a] = [b].
Then [a] N [b] = [a]. Since R is reflexive, aRa; that is a € [a].
Thus [a] = [a] N [b] # 0 ;
3 — 1. Suppose [a] N [b] # 0;.
Then there is an x € [a] N [b]. By definition, aRx and bRx. Since R is symmetric, xRb and
transitive, aRx and xRb, aRD.

Partition

Definition 1.4.1. A partition of X is a set P of nonempty subsets of X, such that every element
of X is an element of a single element of P. Each element of P is a cell of the partition. Moreover,
the elements of P are pairwise disjoint and their union is X.

Here, every set partitioned into equivalence classes of its elements and is the union of of those sets.

1.5 Order relation

Remark 1.5.1. (partial order): A binary relation R on a non-empty set A is a partial order if
and only if it is

o (1) reflexive,

e (2) antisymmetric, and

e (3) transitive.

The ordered pair < A, R > is called a poset (partially ordered set) when R is a partial order.

Example 1.5.1. :

e The less-than-or-equal-to relation on the set of integers I is a partial order, and the set I with
this relation is a poset.

o I[f A={1,2,3} then
B={(1,1),(22),(3,3),(2,1),(3,1),(3,2)}
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is a partial order on A .
Do you recognize the order? It is the greater than or equal to relation 77
Note that the members in R are equivalent to the inequalities

1>1,2>23>3,2>1,3>1, 3>2.

e (The Divide Ordering) Let D denote the relation “divides” on the set of natural numbers N . For
example, 1 D7, 2D7, 3D9, 7D21 and so on. Show that D defines a partial order on the natural
numbers.

Solution:

Let notation "D” replaced by " |”.

e Reflexive: n | n, Vn € N. i.e., (n,n) € D.
e Antisymmitric (m|n) A (njm) = m =n, YVm,n € N.
e Transitive: (m|n) A (n|p) = ml|p, Vm,n,p € N.

Exercise 1.5.1. (Checking < )

1. Check to see if < is a partial order on the real numbers.

2. (Ordered Sets) The power set of A ={a,b,c} consists of the family of eight subsets:

P(A) ={0,{a}, {b},{c},{a, b} {a, c}, {b,c}, {a, b, c}}.

Show that set inclusion relation ” C 7 is a partial order on P(A).

3. The subset relation on the power set of a set, say {1,2} , is also a partial order, and the set
{1,2} with the subset relation (I,<) is a posel.

Definition 1.5.1. e (total/Lincar order): A binary relation R on a set A is a total order if
and only if it is
(1) a partial order, and
(2) for any pair of elements a and b of A, < a,b >€ R or < b,a >€ R.
(Every element of the set are comparable. (Dichotomy Law))
That is, every element is related with every an other element in the set.

7

Example 1.5.2. The partial order ” <7 on the real numbers is a total order, meaning that
every two real numbers x and y are comparable;

that is either x <y ory < x .

On the other hand” C 7 is not a total order on P(A) since there exists incomparable elements,
such as the sets {1,2} and {3,4} where {1,2} C {3,4} and {3,4} C {1,2}.
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Chain and anti-chain

Note: a subset of a partially ordered set which is totally ordered by the inherited
relation is called a chain (It is a totally ordered subset of a poset S.

An ant-chain is a subset of a poset in which any distinct elements are incomparable.
A certain chain C' is mazimal if there is no chain D such that C C D. (|C| < |D|.
Also for anti-chain. e.g., Let us consider the poset ({1,2,3,4,5,6,9,12,18},]),
recalling that alb is a is a divisor of b.

The corresponding chains are {1,2,4,12}, {1,3,6,12}, {1,3,9,18}, {1,2,6,12}, {1, 3,18
Here we may note that {1,2,4,12} is the maximum chain. There are no chains of
length greater than 4.

And {4,6,9,5} is our mazimum antichain.

Proposition 1.5.1. Equality is both an equivalence relation and a partial order. Equality is
also the only relation on a set that is reflexive, symmetric and anlisymmetric.

A strict partial order if it is irreflexive, transitive, and asymmetric.

A partial equivalence relation if it is transitive and symmetric. Transitive and symmetric
imply reflexive if and only if for all a € X, there exists a,b € X such that a ~ b.

A reflexive and symmetric relation is a dependency relation, if finite, and a tolerance
relation if infinite.
A preorder is reflexive and transitive.

A congruence relation if it is an equivalence relation whose domain X is also the under-
lying set for an algebraic structure?, and which respects the additional structure.

Any equivalence relation if it is the negation of an apartness relation, though the converse
statement only holds in classical mathematics (as opposed to constructive mathematics), since
it is equivalent to the law of excluded middle.

A serial relation ~ satisfies Va, b such that a ~ b.
Fvidently it is sufficient for a serial relation ~ to be symmetric and transitive for it also to
be reflexive.

Given our definitions, we can explore the connection between partial orders and strict orders. Based
on what we know of ordinary < and <, we expect the following result might be true. Which it is.

Proposition 1.5.2. (Strict and Partial Orders)
Let A be any set.

a)

b)

If < is a partial order on A, then the relation < defined by r < y <> x < yAzx #y. is a
strict order on A.

If < is a strict order on A, then the relation < defined by x < y <>z <yVax =y is a partial
order on A.

2algebraic structure
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Proof :

For part a), suppose < is a partial order with < defined by x <y iff vt <y and v # y.

To show that < is a strict order, we must show that it is irreflexive and transitive.

The relation < is clearly irreflexive: if x < y, then x # y according to the definition.

Now suppose x <y and y < z. Then by the transitivity of <, © < z.

But x < z; for if x = z, the antisymmetry of < would mean, for instance, that xr = y, which
contradicts the supposition x < y.

Thus x < z, which establishes that < is transitive.

Part b is left as an exercise.

Example 1.5.3. Discuss the meaning of the strict orders < associated with the following partial
orders:

a) if < is the partial order of divisibility on the set of natural numbers.

b) if < represents the subset ordering on a collection of sets.

Solution

a) If < denotes the relation “is a divisor of,” then < indicates proper divisibility: here m < n
means m is a proper divisor of n.

b) If < denotes “is a subset of,” then | indicates proper subset inclusion: here S < T denotes the
concrete relation S C T'.

Well-definedness under an equivalence relation

If ~ is an equivalence relation on X, and P(x) is a property of elements of X, such that whenever
x ~ vy, P(x) is true if P(y) is true, then the property P is said to be well-defined or a class
invariant under the relation ~.

Quotient set
The set of all possible equivalence classes of X by ~, denoted

X/~ = {[a] | = € X}

, is the quotient set of X by ~.

The strictly-less-than and proper-subset relations are mot partial order because they are not
reflexive. They are examples of some relation called quasi order.

Definition 1.5.2. (quasi order): A binary relation R on a set A is a quasi order if and only if it
]

(1) irreflexive, and

(2) transitive.

A quasi order is necessarily antisymmetric as one can easily verify.

Example 1.5.4. : The less-than relation on the set of integers I is a quasi order.
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Example 1.5.5. : The proper subset relation on the power set of a set, say {1,2} , is also a quasi
order. A digraph of a binary relation on a set can be simplified if the relation is a partial order.
Hasse diagrams defined as follows are such graphs.

Definition 1.5.3. (Hasse diagram): A Hasse diagram is a graph for a poset which does not
have loops and arcs implied by the transitivity. Further, it is drawn so that all arcs point upward
eliminating arrowheads.

To obtain the Hassse diagram of a poset, first remove the loops, then remove arcs < a,b > if
and only if there is an element ¢ that < a,c > and < ¢,b > exist in the given relation.

Exercise 1.5.2. Identify extreme elements in the following posets:

a) The divisors of 60, ordered by divisibility.
b) The set {a,b,c,d e, f,g,h}, ordered like the subsets of {0,1,2}.
Solution

The Hasse diagrams of these posets are given below. Note how the “dimensionality” of the first
diagram corresponds to the number of prime factors in the factorization of 60.

60

<X Vi
X XX

Extreme Elements in Posets In a totally ordered set, any two clements can be compared,
without exception. The concept of least/greatest number in a set of integers can be generalized for
a general poset. We start with the concepts of minimal/mazximal elements.

Definition 1.5.4. (Extremal Elements)
Suppose (A, <) is a poset, M and m are elements of A, and S is a subset of A.
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e Upper bound: An element M € A is called an upper bound of S iff xt < S, Vo € S.

e Least Upper bound: An element lub(S) € A is called the least upper bound of S (or
supremum of S ) if it is an upper bound of S and if lub(S) < M for every upper bound M

e Lower Bound: An element m € A is called a lower bound of S iff s€ S, m <s .

e Greatest Lower Bound An element glb(S) < U is called the greatest lower bound of S (or
infimum) if it is a lower bound of S and if | < glb(S) for every lower bound I of S .

e Let P be a partially ordered set. An element x covers the element y in the partially ordered
set if x >y and there is no element z € P such that x > z > y.

e M is a maximal element of S iff M is in S and there is no x in S such that M < x;
M is a maximum of S iff M is in S and x < M for all z in S.

e m is a minimal element of S iff m is in S and there is no x in S such that x < m;
m is a mintmum of S iff m is in S and m < x for all x in S.

Two elements x and y in P are comparable if v < y ory < x; they are incomparable if neither
x<ynory <xz. A subset C C P isa chain if any two elements in C' are comparable. A subset
A C P is an antichain if any two elements in A are incomparable.

If C is a finite chain and |C| = n + 1, then the elements in C' can be linearly ordered, so that

To < T1 < Ty <: - < Ty

The length of the chain C is n, 1 less than the number of elements in C.
A chain
o<1 < -+ < 2y

in the partial order P is maximal or saturated if x;,, covers x; for 1 <1 <n.

A function r defined from P to the nonnegative integers is a rank function if r(x) = 0 for every
minimal element and r(y) = r(x) + 1 whenever y covers x. The partial order P is ranked if there
exists a rank function on P. The rank of the entire partially ordered set P is the mazimum

max{r(z) : xz € P}
. Ifx <y in P, the interval [x,y] is the set
{z:x <2<y}

Note: All these extremal elements belong to the set of elements they bound: that’s part of their
definition. Extrema (minimum, mazimum) may or may not exist for a given subset, but if they
do, they will be unique.

Example 1.5.6. (Multiples and Divisors of 24)
Given the set
A=1{1,2,3,4,6,8,12,24}
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of positive divisors of 24, define two partial orders on A by
aMb < ais a multiple of b

aDb < a divides b

Then find the minimal and mazimal element of the poset.
Solution

2/ 1
VAN RN
12 8 2 3
SN S SN S
6 4 4 6
SN S VN4
3 2 8 12
NS NS
1 24

Divide relation and multiple relation respectively.

In the first hasse diagram, 1 is minimal element, 24 is mazimal, whereas in the secoond 1 is
mazimal and 24 is minimal.

Example 1.5.7. : The set of {{1},{2},{1,2}} with has two minimal elements {1} and {2}.
Note that {1}, and {2} are not related to each other in . Hence we can not say which is "smaller
than” which, that is, they are not comparable.

Note that the least element of a poset is unique if one exists because of the antisymmetry of .

Example 1.5.8. : The poset of the set of natural numbers with the less-than-or-equal-to relation
has the least element 0.

Example 1.5.9. : The poset of the powerset of {1,2} with has the least element .

Every non-empty subset S of the given posets will have mazximal and minimal elements (nothing
above them or below them respectively), though they need not have either a mazimum or a minimum.
The set S = {b,d} from the second poset is such an example; both elements are maximal as well
as minimal for S, but S has no maximum or minimum.

Example 1.5.10. : Let A = {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} with the partial order .
This given A has three minimal elements {1},{2}, and {3}.

Select {2} and remove it from A. Let A denote the resultant set i.e. A = A —{2}. The new A
has two minimal elements {1}, and {3}.

Select {1} and remove it from A. Denote by A the resultant set, that is

A= {{3}7 {17 2}7 {17 3}7 {27 3}7 {17 2, 3}}
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This new A has two minimal elements {3} and {1,2}.
Select {1,2} and remove it from A.
Proceeding in like manner, we can obtain the following linear order:

{21 {13 {123, {35, {1, 33, {2, 3}, {1, 2,3} }.

{1,2,3}

{1,2} {1,3} {2,3}

XX
NI

A certain poset may or mayn’t have mazximal and/or minimal element.

{1} 2 {3}

{}

Example 1.5.11. :

2 9
/SN S
4 6
N
8 12

NS
24

Here, 2 and 3 are upper bounds but they are not comparable as well as there is element of the set
exceeds both elements.
Hence the poset doesn’t have mazimal element, minimal element 24.

Topological Sorting  The elements in a finite poset can be ordered linearly in a number of ways
while preserving the partial order. For ezample {,{1},{2},{1,2}} with the partial order , can be
ordered linearly as , {1},{2},{1,2}, or, {2},{1},{1,2}.

In these orders a set appears before (to the left of) another set if it is a subset of the other.

In real life, tasks for manufacturing goods in general can be partially ordered based on the prereq-
wisite relation, that is certain tasks must be completed before certain other tasks can be started.
For example the arms of a chair must be carved before the chair is assembled. Scheduling those
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tasks is essentially the same as arranging them with a linear order (ignoring here some possible
concurrent processing for simplicity’s sake).

The topological sorting is a procedure to find from a partial order on a finite set a linear order
that does mot violate the partial order.
It is based on the fact that a finite poset has at least one minimal element. The basic idea of the
topological sorting is to first remove a minimal element from the given poset, and then repeat that
for the resulting set until no more elements are left.
The order of removal of the minimal elements gives a linear order.
The following algorithm formally describes the topological sorting.

Algorithm Topological Sort
Input: A finite poset < A, R >.
Output: A sequence of the elements of A preserving the order R.

integer i;
1:=1;
while (A )
{pick a minimal element b from A;
A:=A—{b};
=1+ 1;
output b

}

Definition 1.5.5. Let P and QQ be partially ordered sets.
A function f : P — @ is order preserving if for elements x and y in P, x <p y implies

f(x) <q fly) or f(x) <q f(y).
A subset I C P is an (order) ideal of P if it is “down-closed;” that is, y < x and x € I imply
yel.

Definition 1.5.6. (well order): A total/Linear order R on a set A is a well order if every non-
empty subset of A has the least element.

Lemma 1.5.1. If (W, <) is a well-ordered set and f : W — W is an increasing function, then
f(z) > x for each x € W.

Proof. Assume that the set X = {x € W : f(x) < z} is nonempty and let z be the least element
of X.

If w= f(z), then f(w) < w, a contradiction.

1.6 Cardinal and Ordinal Numbers

The idea is to define ordinal numbers so that o < B if and only if « € B, and o = {f: f < a}.

Definition 1.6.1. A set T is transitive if every element of T is a subset of T'.
(Equivalently,

36



MATH 1012 — FUNDAMENTAL CONCEPTS OF ALGEBRA(LECTURE NOTES) April 16, 2019

UT'cT, or T CP(T).

Colloquially, an ordinal number is a number that tells the position of something in a list. Such as
First, Second, Third, etc. This basic understanding extends to the meaning of ordinal numbers in
set theory. In an ordered set, that is a collection of objects placed in some order, ordinal numbers
(also called ordinals) are the labels for the positions of those ordered objects.

Ordinal numbers: which are obtainable by counting a given set. It is also an adjective which
describes the numerical position of an object. e.qg., first,second,..., (rank).

Definition 1.6.2. A set is an ordinal number (an ordinal ) if it is transitive and well-ordered by
€.

We shall denote ordinals by lowercase Greek letters a, 3,7, ... . The class of all ordinals is denoted
by Ord.

We define a < B if and only if o € «.

Definition 1.6.3. cardinal/counting numbers, or cardinals for short, are a generalization of
the natural numbers used to measure the cardinality (size) of sets.

The cardinality of a finite set is a matural number: the number of elements in the set. The
transfinite cardinal numbers describe the sizes of infinite sets.

A Cardinal number says “how many” of something there are, such as one, two, three,....
Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and
only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In
the case of finite sets, this agrees with the intuitive notion of size.

cardinal number is what is normally referred to as a counting number, provided that 0 is included:
0,1,2,---.

They may be identified with the natural numbers beginning with 0. The counting numbers are
exactly what can be defined formally as the finite cardinal numbers. Infinite cardinals only occur
in higher-level mathematics and logic.

Exercise 1.6.1. :

1. Let R be the relation on the set R real numbers defined by xRy iff x —y is an integer. Prove
that R is an equivalence relation on R.

2. (Testing for an Order Relation) Tell whether the following relations on A = {1,2,3} are
reflexive, antisymmetric, and transitive. Plot the points of the Cartesian product A x A and
denote the members of R C A x A. If the relation is an order relation, draw a Hasse diagram
and directed graph.

o) R={(1,1),(2,2),(3,3)}
b) R={(1,1),(1,2),(2,1)}
c) B ={(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)}
d) R={(1,2),(2,3),(1,3)}

3. (Graphing Order Relations) Sketch the points in each of the following relations R on the
given universe U .
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/.

5.

10.

a) R={(x,y):x¢ <y}, U=R

b) R={(v,y): x>y}, U=R

¢) R={(z,y):x <y}, U={1,2,3}

d) R={(z,y): x>y}, U={1,2,3}

(Finding Relations) Find a relation on the A = {1,2,3,4} with the following properties.

a) reflexive but not antisymmetric
b) antisymmetric and reflexive
c¢) not reflexive but transitive
d) not reflexive, not antisymmetric, not transitive.
(Upper and Lower Bounds) For the partially ordered set P(A) with order relation I in Ezam-

ple 6, find an upper bound, least upper bound, a lower bound, and the greatest lower bound
for the following subsets of P(A).

a) B = {{a},{a,b}}

b) B = {{a},{b}}

¢) B ={{a},{a,b},{a;b,c}}
d) B = {{a},{c} {a,c}}

¢) B={0,{a,b,c}}

/) B = {{a}, {0}, {c}}

(Divide Ordering). Prove that D is reflexive, antisymmetric, and transitive.

(Hasse Diagram) Draw the Hasse diagram for the power set P(A) with ordering C when
A={a,b,c d} .

(Hasse Diagram for Multiples) Let M be the order relation “ a is a multiple of b 7 defined on
the set of positive divisors of 15. Draw a Hasse diagram for M .

. (A Partial Order of Points in the Plane)

There are various ways to construct new orders from existing orders. A partial order can be
constructed on the Cartesian product of two partially ordered sets by defining

(a,x) 2 (b,y) & (a Zb) A (v 2 y)
Use this order to

a) Order the set A ={(-1,3),(3,0),(0,5),(0,0),(—2,9)}
b) Construct a Hasse diagram for the set A in part a).
¢) Draw a digraph for the set A .
(Equivalent form of Antisymmetry) State the contrapositive form of the antisymmetry con-
dition
@<yYAly<z)=z=y.
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11. (Ordering the Complex Numbers) Suppose you order the complex numbers z = a+bi according
to their magnitude |z| = y/(a)? + (b)? , that is z1 < 2o & |21] < |22 Is this a partial order ?

12. (Hasse Diagram) For the “starred” subset S = {C,F,G,I,J, H} of the partially ordered set
U={AB,C,D,E,F,G,H,1,J K, L} illustrated in Figure below, find (if they exist) the
following: find (if they exist) the following:

v
\C/ .,
.
[/F\J/\

\?K

a) upper bound(s)

b) lower bound(s)

c) the least upper bound
d) greatest lower bound
e) mazimal element(s)
f) minimal element(s)
g) mazximum

h) minimum
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