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Chapter 1

Solving System of Equations

1.1 Introduction
In this chapter we consider numerical methods for solving a system of linear equations Ax = b.
We assume that the given matrix A is real, n × n, and nonsingular and that b is a given real
vector in Rn, and we seek a solution x that is necessarily also a vector in Rn. Such problems
arise frequently in virtually any branch of science, engineering, economics, or finance.

There is really no single technique that is best for all cases. Nonetheless, the many available
numerical methods can generally be divided into two classes: direct methods and iterative
methods. The present chapter is devoted to this two methods. In the absence of roundoff error,
direct method would yield the exact solution within a finite number of steps.
An example of a problem in electrical engineering that requires a solution of a system of
equations is shown in Fig.1.1. Using Kirchhoff’s law, the currents i1, i2, i3,&i4 can be determined
by solving the following system of four equations:

9i1 − 4i2 − 2i3 = 24
−4i1 + 17i2 − 6i3 − 3i4 = −16
−2i1 − 6i2 + 14i3 − 6i4 = 0

−3i2 − 6i3 + 1li4 = 18

(1.1)

Figure 1.1: Electrical circuit.
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1.1. INTRODUCTION AMU

Definition 1.1

linear equation in the variables x1, x2, · · · , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where the coefficients a1, a2, · · · , an and b are constant real or complex numbers. The
constant ai is called the coefficient of xi; and b is called the constant term of the
equation.

A system of linear equations (or linear system) is a finite collection of linear equations in
same variables. For instance, a linear system of m equations in n variables x1, x2, · · · , xn can
be written as 

a11x1 +a12x2 + · · · +a1nxn = b1
a21x1 +a22x2 + · · · +a2nxn = b2

...
am1x1 +am2x2 + · · · +amnxn = bm

(1.2)

where x1, x2, . . . , xn are the unknowns, a11, a12, . . . , amn are the coefficients of the system, and
b1, b2, . . . , bm the constant terms.

1.1.1 Vector equation
One extremely helpful view is that each unknown is a weight for a column vector in a linear
combination.

x1


a11
a21
...
am1

+ x2


a12
a22
...
am2

+ · · ·+ xn


a1n
a2n
...

amn

 =


b1
b2
...
bm

 (1.3)

1.1.2 Matrix equation
The vector equation is equivalent to a matrix equation of the form

Ax = b

where A is an m×n matrix, x is a column vector with n entries, and b is a column vector with
m entries.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

, x =


x1
x2
...
xn

, b =


b1
b2
...
bm

 (1.4)

A solution of a linear system (1.2) is a tuple (s1, s2, · · · , sn) of numbers that makes each
equation a true statement when the values (s1, s2, · · · , sn) are substituted forx1, x2, · · · , xn,
respectively. The set of all solutions of a linear system is called the solution set of the system.

c© Dejen K. 2019 3



1.1. INTRODUCTION AMU

Theorem 1.1

Any system of linear equations has one of the following exclusive conclusions.

(a) No solution.

(b) Unique solution.

(c) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution; and is said to be
inconsistent if it has no solution.

1.1.3 Geometric interpretation
For a system involving two variables (x and y), each linear equation determines a line on the
xy-plane. Because a solution to a linear system must satisfy all of the equations, the solution
set is the intersection of these lines, and is hence either a line, a single point, or the empty set.

For three variables, each linear equation determines a plane in three-dimensional space, and
the solution set is the intersection of these planes. Thus the solution set may be a plane, a line,
a single point, or the empty set.

For n variables, each linear equation determines a hyperplane in n-dimensional space. The
solution set is the intersection of these hyperplanes, which may be a flat of any dimension.

Figure 1.2: The equations 3x+ 2y = 6 and 3x+ 2y = 12 are (inconsistent ).

c© Dejen K. 2019 4



1.2. DIRECT METHOD AMU

Figure 1.3: The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly depen-
dent(consistent ).

1.2 Direct method

1.2.1 Cramer’s rule
Consider a system of n linear equations for n unknowns, represented in matrix multiplication
form as follows:

Ax = b

where the n × n matrix A has a nonzero determinant, and the vector x = (x1, . . . , xn)T is the
column vector of the variables. Then the theorem states that in this case the system has a
unique solution, whose individual values for the unknowns are given by:

xi = det(Ai)
det(A) i = 1, . . . , n

where Ai is the matrix formed by replacing the i− th column of A by the column vector b.

A more general version of Cramer’s rule considers the matrix equation

AX = B

where the n × n matrix A has a nonzero determinant, and X, B are n ×m matrices. Given
sequences 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ m , let XI,J be the k × k
submatrix of X with rows in I := (i1, . . . , ik) and columns in J := (j1, . . . , jk). Let AB(I, J)
be the n × n matrix formed by replacing the is column of A by the js column of B, for all
s = 1, . . . , k. Then

detXI,J = det(AB(I, J))
det(A) .

In the case k = 1, this reduces to the normal Cramer’s rule.

c© Dejen K. 2019 5



1.2. DIRECT METHOD AMU

1.2.2 Explicit formulas for small systems
Consider the linear system {

a1x+ b1y = c1
a2x+ b2y = c2

which in matrix format is [
a1 b1
a2 b2

][
x
y

]
=
[
c1
c2

]
.

Assume a1b2 − b1a2 nonzero. Then, with help of determinants, x and y can be found with
Cramer’s rule as

x =

∣∣∣∣∣c1 b1
c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= c1b2 − b1c2

a1b2 − b1a2
, y =

∣∣∣∣∣a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= a1c2 − c1a2

a1b2 − b1a2
.

The rules for 3× 3 matrices are similar. Given
a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

which in matrix format is a1 b1 c1
a2 b2 c2
a3 b3 c3


xy
z

 =

d1
d2
d3

.
Then the values of x, y and z can be found as follows:

x =

∣∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
, y =

∣∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
, and z =

∣∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
.

c© Dejen K. 2019 6



1.2. DIRECT METHOD AMU

Example 1.1

Solve the following system by Cramer’s rule.
2x1 + 3x2 + 4x3 = 19
x1 + 2x2 + x3 = 4
3x1 − x2 + x3 = 9

Solution: The coefficient matrix is A =

2 3 4
1 2 1
3 −1 1

 and column matrix b =

19
4
9

, then

det(A) =

∣∣∣∣∣∣∣
2 3 4
1 2 1
3 −1 1

∣∣∣∣∣∣∣ = 4 + 9 − 4 − 24 − 3 + 2 = −16 6= 0 then the system has unique

solution.

A1 =

19 3 4
4 2 1
9 −1 1

 & det(A1) =

∣∣∣∣∣∣∣
19 3 4
4 2 1
9 −1 1

∣∣∣∣∣∣∣ = 38 + 27− 16− 72− 12 + 19 = −16

A2 =

2 19 4
1 4 1
3 9 1

 & det(A2 =

∣∣∣∣∣∣∣
2 19 4
1 4 1
3 9 1

∣∣∣∣∣∣∣ = 8 + 57 + 36− 48− 19− 18 = 16

A3 =

2 3 19
1 2 4
3 −1 9

 & det(A3) =

∣∣∣∣∣∣∣
2 3 19
1 2 4
3 −1 9

∣∣∣∣∣∣∣ = 36 + 36− 19− 114− 27 + 8 = −80

∴ x1 = det(A1)
det(A) = −16

−16 = 1

x2 = det(A2)
det(A) = 16

−16 = −1

x3 = det(A3)
det(A) = −80

−16 = 5.

This is the solution of the system.

Exercise 1.1

Use Cramer’s Rule to solve each for each of the variables.

(a) x − y = 4
−x + 2y = −7 (b) −2x + y = −2

x − 2y = −2 (c)
2x + y + z = 1
3x + z = 4
x − y − z = 2

1.2.3 Inverse Matrix Method
Let AX = b is a system of n linear equations with n unknowns and A is invertible, then the
system has unique solution given by inversion method X = A−1b.

A−1 = adj(A)
det(A)

c© Dejen K. 2019 7



1.2. DIRECT METHOD AMU

Note:- When A is not square or is singular, the system may not have a solution or may have
more than one solution.

Example 1.2

Use the inverse of the coefficient matrix to solve the following system

3x1 + x2 = 6
−x1 + 2x2 + 2x3 = −7

5x1 − x3 = 10

Solution: Okay, let’s first write down the matrix form of this system. 3 9 0
−1 2 2
5 0 −1


x1
x2
x3

 =

 6
−7
10


Now, we found the inverse of the coefficient matrix by using methods of finding Inverses
and is the following;

Example

A =

 3 1 0
−1 2 2
5 0 −1

 =⇒ CA =

−2 9 −10
1 3 5
2 −6 7

 =⇒ adj(A) =

 2 −1 2
9 −3 −6
−10 5 7


and det(A) = 3(−2) + 1(9) + 0(−10) = −6 + 9 = 3, then

A−1 = 1/3

 2 −1 2
9 −3 −6
−10 5 7

 =

 2/3 −1/3 2/3
3 −1 −2

−10/3 5/3 7/3



∴

x1
x2
x3

 =

 2/3 −1/3 2/3
3 −1 −2

−10/3 5/3 7/3


 6
−7
10

 =

 1/3
5

−25/3


Now each of the entries of X are x1 = 1/3, x2 = 5 and x3 = −25/3

1.2.4 Gaussian Elimination Method
In this section we show the following:

• How to solve linear equations when A is in upper triangular form. The algorithm is called
backward substitution.

• How to transform a general system of linear equations into an upper triangular form, to
which backward substitution can be applied. The algorithm is called Gaussian elimina-
tion.

A triangular matrix is a special kind of square matrix. A square matrix is called lower trian-
gular if all the entries above the main diagonal are zero. Similarly, a square matrix is called
upper triangular if all the entries below the main diagonal are zero. A triangular matrix is
one that is either lower triangular or upper triangular. A matrix that is both upper and lower

c© Dejen K. 2019 8



1.2. DIRECT METHOD AMU

triangular is called a diagonal matrix.

A matrix of the form

L =



`1,1 0
`2,1 `2,2

`3,1 `3,2
. . .

... ... . . . . . .
`n,1 `n,2 . . . `n,n−1 `n,n


is called a lower triangular matrix or left triangular matrix, and analogously a matrix of the

form

U =



u1,1 u1,2 u1,3 . . . u1,n
u2,2 u2,3 . . . u2,n

. . . . . . ...
. . . un−1,n

0 un,n


is called an upper triangular matrix or right triangular matrix.

Forward and back substitution

A matrix equation in the form Lx = b or Ux = b is very easy to solve by an iterative process
called forward substitution for lower triangular matrices and analogously back substi-
tution for upper triangular matrices. The process is so called because for lower triangular
matrices, one first computes x1, then substitutes that forward into the next equation to solve
for x2, and repeats through to xn. In an upper triangular matrix, one works backwards, first
computing xn, then substituting that back into the previous equation to solve for xn−1, and
repeating through x1. Notice that this does not require inverting the matrix.

Forward substitution The matrix equation Lx = b can be written as a system of linear
equations

`1,1x1 = b1
`2,1x1 + `2,2x2 = b2

... ... . . . ...
`m,1x1 + `m,2x2 + · · ·+ `m,mxm = bm

Observe that the first equation (`1,1x1 = b1 only involves x1, and thus one can solve for x1
directly. The second equation only involves x1 and x2, and thus can be solved once one substi-
tutes in the already solved value for x1. Continuing in this way, the k-th equation only involves
x1, . . . , xk, and one can solve for xk using the previously solved values for x1, . . . , xk−1.
The resulting formulas are:

x1 = b1

`1,1
,

x2 = b2 − `2,1x1

`2,2
,

...

xm = bm −
∑m−1
i=1 `m,ixi
`m,m

.

c© Dejen K. 2019 9



1.2. DIRECT METHOD AMU

A matrix equation with an upper triangular matrix U can be solved in an analogous way, only
working backwards.

Backward Substitution.

Given an upper triangular matrix A and a right-hand-side b,

for k = n : −1 : 1

xk = bk −
∑n
j=k+1 akjxj

akk

end

Gauss elimination method is used to solve system of linear equations. In this method the linear
system of equation is reduced to an upper triangular system by using successive elementary
row operations. Finally we solve the value variables by using back ward substitution method.
This method will be fail if any of the pivot element aii, i = 1, 2, · · · , n becomes zero. In
such case we re-write equation in such manner so that pivots are non zero. This procedure is
called pivoting.
Consider system AX = b

Algorithm

Step 1: Form the augmented matrix [A|b]

Step 2: Transform [A|b] to row echelon form [U |d] using row operations.

Step 3: Solve the system UX = d by back substitution.

The following row operations on the augmented matrix of a system produce the augmented
matrix of an equivalent system, i.e., a system with the same solution as the original one.

• Interchange any two rows.

• Multiply each element of a row by a nonzero constant.

• Replace a row by the sum of itself and a constant multiple of another row of the matrix.

For these row operations, we will use the following notations.

• Ri ↔ Rj means: Interchange row i and row j.

• αRi means: Replace row i with α times row i.

• Ri + αRj means: Replace row i with the sum of row i and α times row j.

c© Dejen K. 2019 10



1.2. DIRECT METHOD AMU

Example 1.3

Solve the following system using Gauss elimination method.

2x1 − 3x2 + x3 = 5
4x1 + 14x2 + 12x3 = 10

6x1 + x2 + 5x3 = 9
Solution: The augmented matrix of the system is2 −3 1 5

4 14 12 10
6 1 5 9


Applying, elementary row operations on this matrix to change into its echelon form.2 −3 1 5

4 14 12 10
6 1 5 9

 R2 −→ R2 − 2R1
R3 −→ R3 − 3R1

2 −3 1 5
0 20 10 0
0 10 2 −6



R3 −→ R3 − 1/2R2

2 −3 1 5
0 20 10 0
0 0 −3 −6


Since rank(A)

¯
= rank(A) = 3 = n the solution exists and is unique.

2x1 −3x2 +x3 = 5
20x2 +10x3 = 0

−3x3 = −6
From this we get x3 = 2. And using back substitution we have x2 = −1 and x1 = 0
Hence (0,−1, 2) is the solution of the system.

Exercise 1.2

Solve the following system of four equations using the Gauss elimination method.

4x1 − 2x2 − 3x3 + 6x4 = 12
−6x1 + 7x2 + 6.5x3 − 6x4 = −6.5
x1 + 7.5x2 + 6.25x3 + 5.5x4 = 16
−12x1 + 22x2 + 15.5x3 − x4 = 17

1.2.5 NAIVE GAUSSIAN ELIMINATION
Consider the system (1.2) in matrix form

Ax = b.

Let us denote the original system by A(1)x = b(1). That is,

A =


a

(1)
11 a

(1)
12 · · · a

(1)
1n

a
(1)
21 a

(1)
22 · · · a

(1)
2n

... ... . . . ...
a

(1)
n1 a

(1)
n2 · · · a(1)

nn

, x =


x1
x2
...
xn

, b =


b

(1)
1

b
(1)
2
...
b(1)
n

 (1.5)

c© Dejen K. 2019 11



1.2. DIRECT METHOD AMU

The Gaussian elimination consists of reducing the system (1.5) to an equivalent system Ux = d,
in which U is an upper triangular matrix. This new system can be easily solved by back
substitution.
Algorithm:

Step 1: Assume a(1)
11 6= 0. Define the row multipliers by

mi1 = a
(1)
i1

a
(1)
11

Multiply the first row by mi1 and subtract from the ith row (i = 2, · · · , n) to get

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j , j = 2, 3, · · · , n

b
(2)
i = b

(1)
i −mi1b

(1)
1 .

Here, the first rows of A and b are left unchanged, and the entries of the first column of
A below a

(1)
11 are set to zeros. The result of the transformed system is

a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

... ... . . . ...
0 a

(2)
n2 · · · a(2)

nn

, x =


x1
x2
...
xn

, b =


b

(1)
1

b
(2)
2
...
b(2)
n


We continue in this way. At the kth step we have

Step k: Assume a(k)
kk 6= 0. Define the row multipliers by

mik = a
(k)
ik

a
(k)
kk

Multiply the kth row by mik and subtract from the ith row (i = k + 1, · · · , n) to get

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj , j = k + 1, · · · , n

b
(k+1)
i = b

(k)
i −mikb

(k)
k .

At this step, the entries of column k below the diagonal element are set to zeros, and the
rows 1 through k are left undisturbed. The result of the transformed system is

a
(1)
11 a

(1)
12 · · · a

(1)
1k a

(1)
1,k+1 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
1k a

(2)
1,k+1 · · · a

(2)
2n

... ... . . . ... ... . . . ...
0 0 · · · a

(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

0 0 · · · 0 a
(k+1)
k+1,k+1 · · · a

(k+1)
k+1,n

... ... . . . ... ... . . . ...
0 0 · · · 0 a

(k+1)
n,k+1 · · · a(k+1)

nn


, x =



x1
x2
...
xk
xk+1
· · ·
xn


, b =



b
(1)
1

b
(2)
2
...
b

(k)
k

b
(k+1)
k+1

...
b(k+1)
n


At k = n− 1, we obtain the final triangular system

a
(1)
11 x1 + a

(1)
12 x2 + · · ·+ a

(1)
1nxn = b

(1)
1

a
(2)
22 x2 + · · ·+ a

(2)
2nxn = b

(2)
2

· · · = · · ·
a

(n−1)
n−1,n−1xn−1 + a

(n−1)
n−1,nxn = b

(n−1)
n−1

a(n)
nnxn = b(n)

n .
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Using back substitution, we obtain the following solution of the system

xn = b(n)
n

a
(n)
nn

xn−1 =
b

(n−1)
n−1 − a

(n−1)
n−1,nxn

a
(n−1)
n−1,n−1

xi =
b

(i)
i − (a(i)

i,i+1xi+1 + · · ·+ a
(i)
inxn)

a
(i)
ii

=
b

(i)
i −

∑n
j=i+1 a

(i)
ij xj

a
(i)
ii

, i = n− 2, n− 3, · · · , 1.

Remarks: In the Gaussian elimination algorithm described above, we used the equations in
their natural order and we assumed at each step that the pivot element a(k)

kk 6= 0. So the
algorithm fails if the pivot element becomes zero during the elimination process. In order to
avoid an accidental zero pivot, we use what is called Gaussian elimination with scaled partial
pivoting.

Theorem 1.2

The total number of multiplications and divisions required to obtain the solution of an
n× n linear system using naive Gaussian elimination is

n3

3 + n2 − n

3 .

Hence, for n large the total number of operations is approximately n3/3.

Example 1.4

Solve the system of equations
1 1 1 1
2 3 1 5
−1 1 −5 3
3 1 7 −2



x1
x2
x3
x4




10
31
−2
18


Solution: The augmented matrix along with the row multipliers mi1 are

pivotal element→
m21 = 2
m31 = −1
m41 = 3


1 1 1 1 | 10
2 3 1 5 | 31
−1 1 −5 3 | −2
3 1 7 −2 | 18

 .
Subtracting multiples of the first equation from the three others gives

pivotal element→
m32 = 2
m42 = −2


1 1 1 1 | 10
0 1 −1 3 | 11
0 2 −4 4 | 8
0 −2 4 −5 | −12

 .
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Example

Subtracting multiples, of the second equation from the last two, gives

pivotal element→
m43 = −1


1 1 1 1 | 10
0 1 −1 3 | 11
0 0 −2 −2 | −14
0 0 2 1 | 10

 .

Subtracting multiples, of the third equation from the last one, gives the upper triangular
system 

1 1 1 1 | 10
0 1 −1 3 | 11
0 0 −2 −2 | −14
0 0 0 −1 | −4

 .
The process of the back substitution algorithm applied to the triangular system produces
the solution

x4 = −4
−1 = 4

x3 = −14 + 2x4

−2 = −6
−2 = 3

x2 = 11 + x3 − 3x4 = 11 + 3− 12 = 2
x1 = 10− x2 − x3 − x4 = 10− 2− 3− 4 = 1

Example: Matlab Solution

A=[1 1 1 1;2 3 1 5;-1 1 -5 3;3 1 7 -2];
b=[10 31 -2 18]’;
ngaussel(A,b)

The augmented matrix is
augm =

1 1 1 1 10
2 3 1 5 31

-1 1 -5 3 -2
3 1 7 -2 18

The transformed upper triangular augmented matrix C is =
C =

1 1 1 1 10
0 1 -1 3 11
0 0 -2 -2 -14
0 0 0 -1 -4

The vector solution is =
x =

1
2
3
4
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1.2.6 GAUSS ELIMINATION WITH PIVOTING
Having a zero pivot element is not the only source of trouble that can arise when we apply naive
Gaussian elimination. Under certain circumstances, the pivot element can become very small in
magnitude compared to the rest of the elements in the pivot row. This can dramatically increase
the round-off error, which can result in an inaccurate solution vector. To illustrate some of the
effects of round-off error in the elimination process, we apply naive Gaussian elimination to the
system

0.0002x1 + 1.471x2 = 1.473
0.2346x1 − 1.317x2 = 1.029

using four-digit floating-point arithmetic with rounding. The exact solution of this system is
x1 = 10.00 and x2 = 1.000. The multiplier for this system is

m21 = 0.2346
0.0002 = 1173.

Applying naive Gaussian elimination and performing the appropriate rounding gives

0.0002x1 + 1.471x2 = 1.473
−1726x2 = −1727.

Hence,

x2 = −1727
−1726 = 1.001

x1 = 1.473− (1.471)(1.001)
0.0002

= 1.473− 1.472
0.0002

= 5.000.

As one can see, x2 is a close approximation of the actual value. However, the relative error
in the computed solution for x1 is very large: 50%. The failure of naive Gaussian elimination
in this example results from the fact that |a11| = 0.0002 is small compared to |a12|. Hence, a
relatively small error due to round-off in the computed value, x2, led to a relatively large error
in the computed solution, x1.

A useful strategy to avoid the problem of having a zero or very small pivot element is to use
Gaussian elimination with scaled partial pivoting. In this method, the equations of the system
(1.5) are used in a different order, and the pivot equation is selected by looking for the absolute
largest coefficient of xk relative to the size of the equation. The basic idea in elimination with
partial pivoting is to avoid small pivots and control the size of the multipliers. The order in
which the equations would be used as pivot equations is determined by the index vector that
we call d = [d1, d2, · · · , dn]. At the beginning we set d = [1, 2, · · · , n]. We then define the scale
vector

c = [c1, c2, · · · , cn]
where

ci = max1≤j≤n|aij|, i = 1, 2, · · · , n.
The elimination with scaled partial pivoting consists of choosing the pivot equation such that
the ratio |ai,1|/ci is greatest. To do that we define the ratio vector

r = [r1, r2, · · · , rn]
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where
ri = |ai1|/ci, i = 1, 2, · · · , n.

If rj is the largest element in r, we interchange d1 and dj in the index vector d to get the
starting index vector

d = [dj, d2, · · · , d1, · · · , dn].
This means that row j is the pivot equation in step 1. The Gaussian elimination is then used to
get an equivalent system of equation with zeros below and above the pivot element. Note that
during the elimination process, only elements in the index vector d have been interchanged and
not the equations. The process continues in this way until the end of step (n− 1) where a final
index vector is obtained containing the order in which the pivot equations were selected. The
solution of the system of equation is then obtained by performing a back substitution, reading
the entries of the index vector from the last to the first.

Example 1.5

Solve the system of equation using Gaussian elimination with scaled partial pivoting
1 3 −2 4
2 −3 3 −1
−1 7 −4 2
3 −1 6 2



x1
x2
x3
x4



−11

6
−9
15


Solution:

A=[1 3 -2 4;2 -3 3 -1;-1 7 -4 2;3 -1 6 2];
b=[-11 6 -9 15]’;
gaussel(A,b)

The augmented matrix is =
augm =

1 3 -2 4 -11
2 -3 3 -1 6

-1 7 -4 2 -9
3 -1 6 2 15

The scale vector =
c =

4 3 7 6
The index vector =
d = 2 1 4 3
The transformed upper triangular augmented matrix C is =

C =
2.0000 -3.0000 3.0000 -1.0000 -14.0000

0 4.5000 -3.5000 4.5000 6.0000
0 0 4.2222 0 4.0000
0 0 0 -4.0000 16.8889

The vector solution is =
x =

-2
1
4

-1
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Example 1.6

Solve the system of equation using Gaussian elimination with scaled partial pivoting[
0.0002 1.471
0.2346 −1.317

] [
x1
x2

]
=
[
1.473
1.029

]
.

Solution: x1 = 10 and x2 = 1.

Ill-conditioning
A linear system is said to be ill-conditioned if the coefficient matrix tends to be singular, that
is, small perturbations in the coefficient matrix will produce large changes in the solution of
the system. For example, consider the following system in two equations:[

1.00 2.00
0.49 0.99

] [
x1
x2

]
=
[
3.00
1.47

]
.

The exact solution of this system is x = [30]′. Now consider the system[
1.00 2.00
0.48 0.99

] [
x1
x2

]
=
[
3.001.47

]
obtained by changing the entry a21 = 0.49 of the previous system to 0.48.

The exact solution of this new system is x = [11]′ which differs significantly from the
first one. Then it is realized that ill-conditioning is present. The difficulty arising from ill-
conditioning cannot be solved by simple refinements in the Gaussian elimination procedure. To
find out if a system of equations Ax = b is ill-conditioned, one has to compute the so-called
condition number of the matrix A.

Example 1.7

Using the four decimal places computer, solve the linear system

0.729x1 + 0.81x2 + 0.9x3 = 0.6867
x1 + x2 + x3 = 0.8338

1.331x1 + 1.21x2 + 1.1x3 = 1.0000

Its exact solution rounded to four decimal places, is x1 = 0.2245;x2 = 0.2814&x3 =
0.3279
Solution without pivoting:0.729 0.81 0.9 | 0.6867

1 1 1 | 0.8338
1.331 1.21 1.1 | 1.0000

 =⇒
m21 = a21

a11
= 1.372|R2 ← R2 −m21R1

m31 = a31

a11
= 1.826|R3 ← R3 −m31R1

0.729 0.81 0.9 | 0.6867
0.0 −0.1110 −0.2350 | −0.1084
0.0 −0.2690 −0.430 | −0.2540

 =⇒ m32 = a
(2)
21

a
(2)
22

= 2.423|R3 ← R3 −m32R2

0.729 0.81 0.9 | |0.6867
0.0 .0.1110 −0.2350 | −0.1084
0.0 0.0 0.0264 | 0.0087


Using back substitution the solution becomes, x1 = 0.2251, x2 = 0.2790,&x3 = 0.3295.

c© Dejen K. 2019 17



1.2. DIRECT METHOD AMU
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Solution with pivoting:
To interchange 0 the rows i&j we will use the notation Ri ⇔ Rj .
0.729 0.81 0.9 | 0.6867

1 1 1 | 0.8338
1.331 1.21 1.1 | 1.0000

 =⇒ R1 ⇔ R3&
m21 = a21

a11
= 0.7513|R2 ← R2 −m21R1

m31 = a31

a11
= 0.5477|R3 ← R3 −m31R1

1.331 1.21 1.1 | 1.0000
0.0 0.0909 0.1736 | 0.0825
0.0 0.1473 0.2975 | 0.1390

 =⇒ m32 = a
(2)
21

a
(2)
22

= 0.6171|R3 ← R3 −m32R2

1.331 1.21 1.1 | 1.0000
0.0 0.0909 0.1736 | 0.0825
0.0 0.0 −0.010 | −0.0033


The solution using backward substitution is x1 = 0.2246, x2 = 0.2812&x3 = 0.3280.
Comparing solution with and without pivoting to the exact solution rounded to four
decimal places, we observe that solution with pivoting is much accurate solution than
the solution without pivoting.

1.2.7 Gauss-Jordan Elimination Method
The Gauss-Jordan elimination method to solve a system of linear equations is described in the
following steps.

1. Write the augmented matrix of the system.

2. Use row operations to transform the augmented matrix in the form described below,
which is called the reduced row echelon form (RREF).

(a) The rows (if any) consisting entirely of zeros are grouped together at the bottom of
the matrix.

(b) In each row that does not consist entirely of zeros, the leftmost nonzero element is
a 1 (called a leading 1 or a pivot).

(c) Each column that contains a leading 1 has zeros in all other entries.
(d) The leading 1 in any row is to the left of any leading 1’s in the rows below it.

3. Stop process in step 2 if you obtain a row whose elements are all zeros except the last one
on the right. In that case, the system is inconsistent and has no solutions. Otherwise,
finish step 2 and read the solutions of the system from the final matrix.

Note: When doing step 2, row operations can be performed in any order. Try to choose
row operations so that as few fractions as possible are carried through the computation. This
makes calculation easier when working by hand.
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Example 1.8

Given the following linear system with corresponding augmented matrix:

3x2 − 6x3 + 6x4 + 4x5 = −5
3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 150 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15


To solve this system, the matrix has to be reduced into reduced echelon form.

Step 1: Switch row 1 and row 3. All leading zeros are now below non-zero leading entries.3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5


Step 2: Set row 2 to row 2 plus (-1) times row 1. In other words, subtract row 1 from row

2. This will eliminate the first entry of row 2.3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5


Step 3: Multiply row 2 by 3 and row 3 by 2. This will eliminate the first entry of row 3.3 −9 12 −9 6 15

0 6 −12 12 6 −18
0 6 −12 12 8 −10


Step 4: Set row 3 to row 3 plus (-1) times row 2. In other words, subtract row 2 from row

3. This will eliminate the second entry of row 3.3 −9 12 −9 6 15
0 6 −12 12 6 −18
0 0 0 0 2 8


Step 5: Multiply each row by the reciprocal of its first non-zero value. This will make every

row start with a1. 1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4


The matrix is now in row echelon form: All nonzero rows are above any rows of all zeros
(there are no zero rows), each leading entry of a row is in a column to the right of the
leading entry of the row above it and all entries in a column below a leading entry are
zeros.

c© Dejen K. 2019 19



1.2. DIRECT METHOD AMU

Example

As can and will be shown later, from this form one can observe that the system has
infinitely many solutions. To get those solutions, the matrix is further reduced into
reduced echelon form.

Step 6: Set row 2 to row 2 plus (-1) times row 3 and row 1 to row 1 plus (-2) times row 3.
This will eliminate the entries above the leading entry of row 3.1 −3 4 −3 0 −3

0 1 −2 2 0 −7
0 0 0 0 1 4


Step 7: Set row 1 to row 1 plus 3 times row 2. This eliminates the entry above the leading

entry of row 2. 1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4


This is a reduced echelon form, since the leading entry in each nonzero row is 1 and each
leading 1 is the only nonzero entry in its column.
From this the solution of the system can be read:

x1 − 2x3 + 3x4 = −24
x2 − 2x3 + 2x4 = −7

x5 = 4

Those equations can be solved for x1, x2 and x5:

x1 = 2x3 − 3x4 − 24
x2 = 2x3 − 2x4 − 7

x5 = 4

This is the solution of the system. The variables x3 and x4 can take any value and are
so called free variables. The solution is valid for any x3 and x4.

Exercise 1.3

Solve the following system by using the Gauss-Jordan elimination method.

1. x+ y + z = 5
2x+ 3y + 5z = 8
4x+ 5z = 2

2. x+ 2y − 3z = 2
6x+ 3y − 9z = 6
7x+ 14y − 21z = 13

3. 4y + z = 2
2x+ 6y − 2z = 3
4x+ 8y − 5z = 4

4 Ava invests a total of $10, 000 in three accounts, one paying 5 interest, another
paying 8 interest, and the third paying 9 interest. The annual interest earned on
the three investments last year was $770 . The amount invested at 9 was twice the
amount invested at 5 . How much was invested at each rate?
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Exercise 1.4

1. Solve the following linear system of equation by using Cramer’s rule, Gaussian
elimination method, and inverse method.

(a)
2x1 + 5x2 + 3x3 = 9
3x1 + x2 + 2x3 = 3
x1 + 2x2 − x3 = 6

(b)
x+ z = 1

2x+ y + z = 0
x+ y + 2z = 1

(c)
x+ 2y + z = 3

2x+ 5y − z = −4
3x− 2y − z = 5

2. Use rank of matrix to determine the values of a, b and c so that the following system
has:
a) no solution b) more than one solution c) a unique solution and solve it.

i)
1x+ y − bz = 1

2x+ 3y + az = 3
x+ ay + 3z = 2

ii)
x+ 2y − 3z = a

2x+ 6y − 11z = b
x− 2y + 7z = c

iii)
x− 2y + bz = 3
ax+ 2z = 2
5x+ 2y = 2

3. An electrical network has two voltage sources and six resistors. By applying both
Ohm’s law and Kirchhoff’s Current law, we get the following linear system of equa-
tions: R1 +R3 +R4 R3 R4

R3 R2 +R3 +R5 −R5
R4 −R5 R4 +R5 +R6


i1i2
i3

 =

V1
V2
0

 .
solve the linear system for the current i1, i2, and i3 if

(a) R1 = 1, R2 = 2, R3 = 1, R4 = 2, R5 = 1, R6 = 6, and V1 = 20, V2 = 30,
(b) R1 = 1, R2 = 1, R3 = 1, R4 = 2, R5 = 2, R6 = 4, and V1 = 12.5, V2 = 22.5,
(c) R1 = 2, R2 = 2, R3 = 4, R4 = 1, R5 = 4, R6 = 3, and V1 = 40, V2 = 36.

4. Use both naive Gaussian elimination and Gaussian elimination with scaled par-
tial pivoting to solve the following linear system using four-decimal floating point
arithmetic

0.0003x1 + 1.354x2 = 1.357
0.2322x1 − 1.544x2 = 0.7780

5. Solve the following set of four equations using the Gauss-Jordan elimination
method.

4x1 − 2x2 − x3 + 6x4 = 12
−6x1 + 7x2 + 6.5x3 − 6x4 = −6.5
x1 + 7.52 + 6.25x3 + 5.5x4 = 16
−12x1 + 22x2 + 15.5x3 − x4 = 17

1.3 LU Decomposition Method
Consider the system of equations

Ax = b.

The LU decomposition consists of transforming the coefficient matrix A into the product of two
matrices, L and U , where L is a lower triangular matrix and U is an upper triangular matrix
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having 1’s on its diagonal.
LU Decomposition Algorithm:

Given a real nonsingular matrix A, apply LU decomposition first:

A = LU.

Given also a right-hand-side vector b:

1. Forward substitution: solve
Ly = b.

2. Backward substitution: solve
Ux = y.

Two types of factorizations will now be presented, the first one uses Crout’s and Cholesky’s
methods and the second one uses the Gaussian elimination method.

1.3.1 Crout and Doolittle’s decomposition method
We shall illustrate the method of finding L and U in the case of a 4-by-4 matrix: We wish to
find L, having nonzero diagonal entries, and U such that

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

.
Multiplying the rows of L by the first column of U , one gets

li1 = ai1, i = 1, 2, 3, 4.

Hence, the first column of L is given by the first column of A. Next, multiply the columns of
U by the first row of L to get

l11u1i = a1i, i = 2, 3, 4.

Thus,
u1i = a1i

l11
, i = 2, 3, 4,

which give the first row of U . We continue in this way by getting alternatively a column of L
and a row of U . The result is

li2 = ai2 − li1u12, i = 2, 3, 4.

u2i = a2i − l21u1i

l22
, i = 3, 4.

li3 = ai3 − li1u13 − li2u23, i = 3, 4.

u34 = a34 − l31u14 − l32u24

l33
,

l44 = a44 − l41u14 − l42u24 − l43u34.
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In algorithmic form, the factorization may be presented as follows for an n× n matrix:

lij = aij −
j−1∑
k=1

likukj, j ≤ i, i = 1, 2, · · · , n. (1.6)

uij = aij −
∑i−1
k=1 likukj
lii

, i ≤ j, j = 2, 3, · · · , n. (1.7)

Note that this algorithm can be applied if the diagonal elements lii, for each i = 1, · · · , n, of L,
are nonzero.

The LU factorization that we have just described, requiring the diagonal elements of U to
be one, is known as Crout’s method. If instead the diagonal of L is required to be one, the
factorization is called Doolittle’s method.

• lii = 1, (i = 1, 2, 3, · · · , n) the method is called Doolittle’s method.

• Uii = 1, (i = 1, 2, 3, · · · , n) the method is called Crout’s method.

Example 1.9

Use Crout’s method to solve the system
1 1 1 1
2 3 1 5
−1 1 −5 3
3 1 7 −2



x1
x2
x3
x4

 =


10
31
−2
18

 .

Solution: If A has a direct factorization LU , then

A =


1 1 1 1
2 3 1 5
−1 1 −5 3
3 1 7 −2

 =


l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

.

By multiplying L with U and comparing the elements of the product matrix with those of A,
we obtain:

1. Multiplication of the first row of L with the columns of U gives

l11 = 1,
l11u12 = 1 =⇒ u12 = 1,
l11u13 = 1 =⇒ u13 = 1,
l11u14 = 1 =⇒ u14 = 1.

2. Multiplication of the second row of L with the columns of U gives

l21 = 2,
l21u12 + l22 = 3 =⇒ l22 = 3− l21u12 = 1,
l21u13 + l22u23 = 1 =⇒ u23 = (1− l21u13)/l22 = −1,
l21u14 + l22u24 = 5 =⇒ u24 = (5− l21u14)/l22 = 3.
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3. Multiplication of the third row ofL with the columns of U gives

l31 = −1,
l31u12 + l32 = 1 =⇒ l32 = 1− l31u12 = 2,
l31u13 + l32u23 + l33 = −5 =⇒ l33 = −5− l31u13l32u23 = −2,
l31u14 + l32u24 + l33u34 = 3 =⇒ u34 = (3− l31u14 − l32u24)/l33 = 1.

4. Multiplication of the fourth row of L with the columns of U gives

l41 = 3,
l41u12 + l42 = 1 =⇒ l42 = 1− l41u12 = −2,
l41u13 + l42u23 + l43 = 7 =⇒ l43 = 7− l41u13 − l42u23 = 2,
l41u14 + l42u24 + l43u34 + l44 = −2 =⇒ l44 = −2− l41u14 − l42u24 − l43u34 = −1.

Hence,

L =


1 0 0 0
2 1 0 0
−1 2 −2 0
3 −2 2 −1

 andU =


1 1 1 1
0 1 −1 3
0 0 1 1
0 0 0 1

 .
By applying the forward substitution to the lower triangular system Ly = b, we get

y1 = 10
y2 = 31− 2(10) = 11
y3 = [−2 + 10− 2(11)]/(−2) = 7
y4 = −[18− 3(10) + 2(11)− 2(7)] = 4.

Finally, by applying the back substitution to the upper triangular system Ux = y, we get

x1 = 10− 4− 3− 2 = 1
x2 = −[11− 4− 3(3)] = 2
x3 = 7− 4 = 3
x4 = 4.

Computed results with MATLAB output

A=[1 1 1 1;2 3 1 5;-1 1 -5 3;3 1 7 -2];
b=[10 31 -2 18];

[L, U]=LUdecompCrout(A)
y=ForwardSub(L,b)
x=BackwardSub(U,y)
L =

1 0 0 0
2 1 0 0

-1 2 -2 0
3 -2 2 -1

U =
1 1 1 1
0 1 -1 3
0 0 1 1
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0 0 0 1
The forward substitution gives
y =

10
11
7
4

The Backward substitution gives
x =

1
2
3
4

Exercise 1.5

Find the solution of system of linear equation using Crout’s and Doolittle’s method?

x1 + x2 + x3 = 1
4x1 + 3x2 − x3 = 6

3x1 + 5x2 + 3x3 = 4

1.3.2 Cholesky Decomposition
Definition 1.2

Symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix
A is symmetric if

A = AT.

Definition 1.3

A symmetric n × n real matrix A is said to be positive definite if the scalar XTAX
is positive for every non-zero column vector z of n real numbers. Here XT denotes the
transpose of X.

This factorization is known as Cholesky’s method, and A can be factored in the form

A = LLT

where L is a lower triangular matrix. The construction of L is similar to the one used for
Crout’s method.

If we write out the equation

A = LLT =

L11 0 0
L21 L22 0
L31 L32 L33


L11 L21 L31

0 L22 L32
0 0 L33



=

 L2
11 (symmetric)

L21L11 L2
21 + L2

22
L31L11 L31L21 + L32L22 L2

31 + L2
32 + L2

33

,
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L =


√
A11 0 0

A21/L11

√
A22 − L2

21 0
A31/L11 (A32 − L31L21) /L22

√
A33 − L2

31 − L2
32


and therefore the following formulae for the entries of L:

Lj,j =

√√√√Aj,j − j−1∑
k=1

L2
j,k,

Li,j = 1
Lj,j

Ai,j − j−1∑
k=1

Li,kLj,k

 for i > j.

The expression under the square root is always positive if A is real and positive-definite.
Example 1.10

Here is the Cholesky decomposition of a symmetric real matrix: 4 12 −16
12 37 −43
−16 −43 98

 =

 2 0 0
6 1 0
−8 5 3


 2 6 −8

0 1 5
0 0 3

 .
And here is its LDLT decomposition: 4 12 −16

12 37 −43
−16 −43 98

 =

 1 0 0
3 1 0
−4 5 1


 4 0 0

0 1 0
0 0 9


 1 3 −4

0 1 5
0 0 1

 .

Example 1.11

Solve the system of equations 1 2 3
2 8 22
3 22 82


x1
x2
x3

 =

 5
6
−10


Using the cholesky method. We write1 2 3

2 8 22
3 22 82

 =

l11 0 0
l21 l22 0
l31 l32 l33


l11 l21 l31

0 l22 l32
0 0 l33

 =

 l211 l11l21 l11l31
l21l11 l221 + l222 l21l31 + l22l32
l31l11 l31l21 + l32l22 l231 + l232 + l233


Comparing the corresponding elements on both sides, we get

l211 = 1, or l11 = 1
l211 = 1, or l11 = 1

l11l31 = 3, or l31 = 3
l221 + l222 = 8, or l22 = 2

l31l21 + l32l22 = 22 or l32 = 8
l231 + l232 + l233 = 82 or l33 = 3

c© Dejen K. 2019 26



1.4. INDIRECT ITERATION METHOD AMU

Example

Hence we get A = LLT Where L =

1 0 0
2 2 0
3 8 3


We write the given system of equations as

LLTx = b

Ly = b and LTx = y.

From Ly = b, we obtain1 0 0
2 2 0
3 8 3


y1
y2
y3

 =

 5
6
−10

 =⇒

y1
y2
y3

 =

 5
−2
−3


From LTx = y, we obtained1 2 3

0 2 8
0 0 3


x1
x2
x3

 =

 5
−2
−3

 =⇒

x1
x2
x3

 =

 2
3
−1



Exercise 1.6

Determine if the following matrix is hermitian positive definite. Also find its Cholessky
factorization if possible

A =

1 2 1
2 3 3
1 3 2

 &B =

1 2 2
2 8 0
2 0 24



1.4 Indirect Iteration Method

1.4.1 Introduction
There are occasions when direct methods (like Gaussian Elimination or the use of an LU
decomposition) are not the best way to solve a system of equations. An alternative approach
is to use an iterative method.
Because of round-off errors, direct methods become less efficient than iterative methods when
they are applied to large systems, sometimes with as many as 100,000 variables. Examples
of these large systems arise in the solution of partial differential equations. In these cases,
an iterative method is preferable. In addition to round-off errors, the amount of storage space
required for iterative solutions on a computer is far less than the one required for direct methods
when the coefficient matrix of the system is sparse, that is, matrices that contain a high
proportion of zeros. Thus, for sparse matrices, iterative methods are more attractive than
direct methods.
An iterative scheme for linear systems consists of converting the system (1.2) to the form

x = b′ −Bx.
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After an initial guess, x(0) is selected, the sequence of approximation solution vectors is gener-
ated by computing x(k) = b′ −Bx(k−1) for each k = 1, 2, 3, · · · .

1.4.2 Jacobi Method

Suppose that x(0) =


x

(0)
1

x
(0)
2
...
x(0)
n

 is an initial approximation to the solution x of the following system

of n equations in n unknowns:

E(1) : a11x1 + a12x2 + · · · + a1nxn = b1
E(2) : a21x1 + a22x2 + · · · + a2nxn = b2

... ... ... . . . ... ...
E(n) : an1x1 + an2x2 + · · · + annxn = bn

(1.8)

Solving of the system of equations, we assume that the quantities aii in the system are pivot
elements. The the system equation may be written as:

a11x1 = b1 − (a12x2 + a13x3 + · · ·+ a1nxn)
a22x2 = b2 − (a21x1 + a23x3 + · · ·+ a2nxn)
a33x3 = b3 − (a31x1 + a32x2 + · · ·+ a3nxn)

...
annxn = bn − (an1x1 + an2x2 + · · ·+ ann−1xn−1)

(1.9)

For the Jacobi Iteration method, from the ith equation in the system Ax = b we isolate for the
each variable xi. Provided that aii 6= 0 for i = 1, 2, · · · , n we get that:

x1 = b1 − [a12x2 + a13x3 + ...+ a1nxn]
a11

x2 = b2 − [a21x1 + a23x3 + ...+ a2nxn]
a22

...

xn = bn − [an1x1 + an2x2 + ...+ an,n−1xn−1]
ann

in sigma notation, for each i = 1, 2, · · · , n, we have that:

xi =
bi −

∑n
j=1,j 6=i aijxj

aii
(1.10)

To obtain our first approximation x(1) of the solution x using the Jacobi Iteration Method, we
take the isolated equations above and input the values of our initial approximation x(0) to get:

x
(1)
1 =

b1 −
[
a12x

(0)
2 + a13x

(0)
3 + ...+ a1nx

(0)
n

]
a11

x
(1)
2 =

b2 −
[
a21x

(0)
1 + a23x

(0)
3 + ...+ a2nx

(0)
n

]
a22

...

x(1)
n =

bn −
[
an1x

(0)
1 + an2x

(0)
2 + ...+ an,n−1x

(0)
n−1

]
ann

(1.11)
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Or in sigma notation, for i = 1, 2, · · · , n :

x
(1)
i =

bi −
∑n
j=1,j 6=i aijx

(0)
j

aii
(1.12)

We can then use our approximation x(1) in a similar manner to obtain another approximation,
x(2), and so forth in the hopes that these successive approximations converge to the actual
solution x of Ax = b. For each k ≥ 1, the (k + 1)th iteration of the Jacobi Iteration Method
yields: 

xk+1
1 = 1

a11
(b1 − a12x

k
2 + a13x

k
3 + · · ·+ a1nx

k
n)

xk+1
2 = 1

a22
(b2 − a21x

k
1 + a23x

k
3 + · · ·+ a2nx

k
n)

xk+1
3 = 1

a33
(b3 − a31x

k
1 + a32x

k
2 + · · ·+ a3nx

k
n)

...
xk+1
n = 1

ann
(bn − an1x

k
1 + an2x

k
2 + · · ·+ ann−1x

k
n−1)

(1.13)

Matrix form

Let
Ax = b

be a square system of n linear equations, where:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
an1 an2 · · · ann

, x =


x1
x2
...
xn

, b =


b1
b2
...
bn

.

Then A can be decomposed into a diagonal component D, and the remainder R:

A = D +R where D =


a11 0 · · · 0
0 a22 · · · 0
... ... . . . ...
0 0 · · · ann

 and R =


0 a12 · · · a1n
a21 0 · · · a2n
... ... . . . ...
an1 an2 · · · 0

.

The solution is then obtained iteratively via

x(k+1) = D−1(b−Rx(k)),

where x(k) is the kth approximation or iteration of x and x(k+1) is the next or k + 1 iteration
of x. The element-based formula is thus:

x
(k+1)
i = 1

aii

bi −∑
j 6=i

aijx
(k)
j

 , i = 1, 2, . . . , n.

The computation of x(k+1)
i requires each element in x(k) except itself.

Convergence

The standard convergence condition (for any iterative method) is when the spectral radius of
the iteration matrix is less than 1:

ρ(D−1R) < 1.
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A sufficient (but not necessary) condition for the method to converge is that the matrix A is
strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each
row, the absolute value of the diagonal term is greater than the sum of absolute values of other
terms:

|aii| >
∑
j 6=i
|aij|.

The Jacobi method sometimes converges even if these conditions are not satisfied.
The iterative process is terminated when a convergence criterion is satisfied. One commonly

used stopping criterion, known as the relative change criteria, is to iterate until

|x(k) − x(k−1)|
|x(k)|

, x(k) = (x(k)
1 , · · · , x(k)

n )T

is less than a prescribed tolerance ε > 0. Contrary to Newton?s method for finding the roots of
an equation, the convergence or divergence of the iterative process in the Jacobi method does
not depend on the initial guess, but depends only on the character of the matrices themselves.
However, a good first guess in case of convergence will make for a relatively small number of
iterations.

Example 1.12

Suppose we are given the following linear system:

10x1 − x2 + 2x3 = 6,
−x1 + 11x2 − x3 + 3x4 = 25,

2x1 − x2 + 10x3 − x4 = −11,
3x2 − x3 + 8x4 = 15.

If we choose (0, 0, 0, 0) as the initial approximation, then the first approximate solution
is given by

x1 = (6 + 0− 0)/10 = 0.6,
x2 = (25− 0− 0)/11 = 25/11 = 2.2727,
x3 = (−11− 0− 0)/10 = −1.1,
x4 = (15− 0− 0)/8 = 1.875.

Using the approximations obtained, the iterative procedure is repeated until the desired
accuracy has been reached. The following are the approximated solutions after five
iterations.

x1 x2 x3 x4
0.6 2.27272 -1.1 1.875

1.04727 1.7159 -0.80522 0.88522
0.93263 2.05330 -1.0493 1.13088
1.01519 1.95369 -0.9681 0.97384
0.98899 2.0114 -1.0102 1.02135

The exact solution of the system is (1, 2,−1, 1).
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Example 1.13

A linear system of the form Ax = b with initial estimate x(0) is given by

A =
[
2 1
5 7

]
, b =

[
11
13

]
and x(0) =

[
1
1

]
.

We use the equation x(k+1) = D−1(b−Rx(k)), described above, to estimate x. First,
we rewrite the equation in a more convenient form D−1(b−Rx(k)) = Tx(k) + C, where
T = −D−1R and C = D−1b. Note that R = L+ U where L and U are the strictly lower
and upper parts of A. From the known values

D−1 =
[
1/2 0
0 1/7

]
, L =

[
0 0
5 0

]
and U =

[
0 1
0 0

]
.

we determine T = −D−1(L+ U) as

T =
[
1/2 0
0 1/7

]{[
0 0
−5 0

]
+
[
0 −1
0 0

]}
=
[

0 −1/2
−5/7 0

]
.

Further, C is found as

C =
[
1/2 0
0 1/7

][
11
13

]
=
[
11/2
13/7

]
.

With T and C calculated, we estimate x as x(1) = Tx(0) + C:

x(1) =
[

0 −1/2
−5/7 0

][
1
1

]
+
[
11/2
13/7

]
=
[

5.0
8/7

]
≈
[

5
1.143

]
.

The next iteration yields

x(2) =
[

0 −1/2
−5/7 0

][
5.0
8/7

]
+
[
11/2
13/7

]
=
[

69/14
−12/7

]
≈
[

4.929
−1.714

]
.

This process is repeated until convergence (i.e., until ‖Ax(n) − b‖ is small). The solution
after 25 iterations is

x =
[

7.111
−3.222

]
.

1.4.3 Gauss-Seidel Method
We recently saw The Jacobi Iteration Method for solving a system of linear equations Ax = b
where A is an n × n matrix. We will now look at another method known as the Gauss-Seidel
Iteration Method that is somewhat of an improvement of the Jacobi Iteration Method.

We will now obtain a first approximation to the solution x(1) of the actual solution x by using
the Gauss-Seidel Iteration Method. We compute x(1)

1 by plugging in the values of our initial
solution approximation x(0). We then obtain an approximation to the entry x

(1)
1 of x(1)

1 . We
use this entry and the remaining entries from x(0) to obtain an approximation of the entry
x

(1)
2 . We then use both x

(1)
1 and x

(1)
2 as well as the remaining entries from x(0) to obtain an
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approximation of the entry x(1)
3 and so forth, and thus:

x
(1)
1 =

b1 −
[
a12x

(0)
2 + a13x

(0)
3 + a14x

(0)
4 + ...+ a1nx

(0)
n

]
a11

x
(1)
2 =

b2 −
[
a21x

(1)
1 + a23x

(0)
3 + a24x

(0)
4 + ...+ a2nx

(0)
n

]
a22

x
(1)
3 =

b3 −
[
a31x

(1)
1 + a32x

(1)
2 + a34x

(0)
4 + ...+ a3nx

(0)
n

]
a33

...

x(1)
n =

bn −
[
an1x

(1)
1 + an2x

(1)
2 + an3x

(1)
3 + ...+ an,n−1x

(1)
n−1

]
ann

In sigma notation we have that each component x(1)
i for i = 1, 2, · · · , n of x(1) is given by:

x
(1)
i =

bi −
[∑i−1

j=1 aijx
(1)
j +∑n

j=i+1 aijx
(0)
j

]
aii

To obtain the second approximation x(2) of x using the Gauss-Seidel method, we would have
that:

x
(2)
1 =

b1 −
[
a12x

(1)
2 + a13x

(1)
3 + a14x

(1)
4 + ...+ a1nx

(1)
n

]
a11

x
(2)
2 =

b2 −
[
a21x

(2)
1 + a23x

(1)
3 + a24x

(1)
4 + ...+ a2nx

(1)
n

]
a22

x
(2)
3 =

b3 −
[
a31x

(2)
1 + a32x

(2)
2 + a34x

(1)
4 + ...+ a3nx

(1)
n

]
a33

...

x(2)
n =

bn −
[
an1x

(2)
1 + an2x

(2)
2 + an3x

(2)
3 + ...+ an,n−1x

(2)
n−1

]
ann

In sigma notation we have that each component x(2)
i for i = 1, 2, · · · , n of x(2) is given by:

x
(2)
i =

bi −
[∑i−1

j=1 aijx
(2)
j +∑n

j=i+1 aijx
(1)
j

]
aii

We can continue approximating x with these solutions in the hopes that the sequence of ap-
proximations with the Gauss-Seidel method converges to the true solution. Thus for k ≥ 1 and
for i = 1, 2, · · · , n, the (k + 1)th iteration of the Gauss-Seidel method can be defined as:

xk+1
1 = 1

a11
(b1 − a12x

k
2 + a13x

k
3 + · · ·+ a1nx

k
n)

xk+1
2 = 1

a22
(b2 − a21x

k+1
1 + a23x

k
3 + · · ·+ a2nx

k
n)

xk+1
3 = 1

a33
(b3 − a31x

k+1
1 + a32x

k+1
2 + · · ·+ a3nx

k
n)

...
xk+1
n = 1

ann
(bn − an1x

k+1
1 + an2x

k+1
2 + · · ·+ ann−1x

k+1
n−1)

(1.14)

The Gauss-Seidel method is an iterative technique for solving a square system of n linear
equations with unknown x:

Ax = b.
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It is defined by the iteration
L∗x(k+1) = b− Ux(k),

where x(k) is the kth approximation or iteration of x, x(k+1) is the next or k + 1 iteration of x
, and the matrix A is decomposed into a lower triangular component L∗, and a strictly upper
triangular component U : A = L∗ + U
In more detail, write out A, x and b in their components:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
an1 an2 · · · ann

, x =


x1
x2
...
xn

, b =


b1
b2
...
bn

.

Then the decomposition of A into its lower triangular component and its strictly upper trian-
gular component is given by:

A = L∗ + U where L∗ =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...
an1 an2 · · · ann

, U =


0 a12 · · · a1n
0 0 · · · a2n
... ... . . . ...
0 0 · · · 0

.

The system of linear equations may be rewritten as:

L∗x = b− Ux

The Gauss-Seidel method now solves the left hand side of this expression for x, using previous
value for x on the right hand side. Analytically, this may be written as:

x(k+1) = L−1
∗ (b− Ux(k)).

However, by taking advantage of the triangular form of L∗, the elements of x(k+1) can be
computed sequentially using forward substitution:

x
(k+1)
i = 1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, 2, . . . , n.

The procedure is generally continued until the changes made by an iteration are below some
tolerance, such as a sufficiently small residual.

The element-wise formula for the Gauss-Seidel method is extremely similar to that of the Jacobi
method. The computation of x(k+1)

i uses only the elements of x(k+1) that have already been
computed, and only the elements of x(k) that have not yet to be advanced to iteration k + 1.
This means that, unlike the Jacobi method, only one storage vector is required as elements can
be overwritten as they are computed, which can be advantageous for very large problems.
However, unlike the Jacobi method, the computations for each element cannot be done in
parallel. Furthermore, the values at each iteration are dependent on the order of the original
equations.

Convergence

The convergence properties of the Gauss-Seidel method are dependent on the matrix A. Namely,
the procedure is known to converge if either:

c© Dejen K. 2019 33



1.4. INDIRECT ITERATION METHOD AMU

• A is symmetric positive-definite, or

• A is strictly or irreducibly diagonally dominant.

The Gauss-Seidel method sometimes converges even if these conditions are not satisfied.
Example 1.14

A linear system shown as Ax = b is given by: A =
[
16 3
7 −11

]
and b =

[
11
13

]
. We want

to use the equation x(k+1) = L−1
∗ (b− Ux(k)) in the form x(k+1) = Tx(k) + C where:

T = −L−1
∗ U and C = L−1

∗ b. We must decompose A into the sum of a lower trian-

gular component L∗ and a strict upper triangular component U : L∗ =
[
16 0
7 −11

]
and

U =
[
0 3
0 0

]
. The inverse of L∗ is:

L−1
∗ =

[
16 0
7 −11

]−1

=
[
0.0625 0.0000
0.0398 −0.0909

]

Now we can find:

T = −
[
0.0625 0.0000
0.0398 −0.0909

]
×
[
0 3
0 0

]
=
[
0.000 −0.1875
0.000 −0.1193

]
,

C =
[
0.0625 0.0000
0.0398 −0.0909

]
×
[
11
13

]
=
[

0.6875
−0.7443

]
.

Now we have T and C and we can use them to obtain the vectors x iteratively. First
of all, we have to choose x(0): we can only guess. The better the guess, the quicker the

algorithm will perform. We suppose: x(0) =
[
1.0
1.0

]
. We can then calculate:

x(1) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[
1.0
1.0

]
+
[

0.6875
−0.7443

]
=
[

0.5000
−0.8636

]
.

x(2) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.5000
−0.8636

]
+
[

0.6875
−0.7443

]
=
[

0.8494
−0.6413

]
.

x(3) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8494
−0.6413

]
+
[

0.6875
−0.7443

]
=
[

0.8077
−0.6678

]
.

x(4) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8077
−0.6678

]
+
[

0.6875
−0.7443

]
=
[

0.8127
−0.6646

]
.

x(5) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8127
−0.6646

]
+
[

0.6875
−0.7443

]
=
[

0.8121
−0.6650

]
.

x(6) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8121
−0.6650

]
+
[

0.6875
−0.7443

]
=
[

0.8122
−0.6650

]
.

As expected, the algorithm converges to the exact solution: x = A−1b ≈
[

0.8122
−0.6650

]
. In

fact, the matrix A is strictly diagonally dominant (but not positive definite).

c© Dejen K. 2019 34



1.4. INDIRECT ITERATION METHOD AMU

Example 1.15

Another linear system shown as Ax = b is given by: A =
[
2 3
5 7

]
and b =

[
11
13

]
. We want

to use the equation
x(k+1) = L−1

∗ (b− Ux(k))

in the form
x(k+1) = Tx(k) + C

where: T = −L−1
∗ U and C = L−1

∗ b. We must decompose A into the sum of a lower

triangular component L∗ and a strict upper triangular component U : L∗ =
[
2 0
5 7

]
and

U =
[
0 3
0 0

]
. is:

L−1
∗ =

[
2 0
5 7

]−1

=
[

0.500 0.000
−0.357 0.143

]
Now we can find:

T = −
[

0.500 0.000
−0.357 0.143

]
×
[
0 3
0 0

]
=
[
0.000 −1.500
0.000 1.071

]
,

C =
[

0.500 0.000
−0.357 0.143

]
×
[
11
13

]
=
[

5.500
−2.071

]
.

Now we have T and C and we can use them to obtain the vectors x iteratively.
First of all, we have to choose x(0): we can only guess. The better the guess, the quicker
will perform the algorithm.
We suppose:

x(0) =
[
1.1
2.3

]
.

We can then calculate:

x(1) =
[
0 −1.500
0 1.071

]
×
[
1.1
2.3

]
+
[

5.500
−2.071

]
=
[
2.050
0.393

]
.

x(2) =
[
0 −1.500
0 1.071

]
×
[
2.050
0.393

]
+
[

5.500
−2.071

]
=
[

4.911
−1.651

]
.

x(3) = · · · .

If we test for convergence we’ll find that the algorithm diverges. In fact, the matrix
A is neither diagonally dominant nor positive definite. Then, convergence to the exact
solution

x = A−1b =
[
−38
29

]
is not guaranteed and, in this case, will not occur.
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Example 1.16

Suppose given k equations where xn are vectors of these equations and starting point x0.
From the first equation solve for x1 in terms of xn+1, xn+2, . . . , xn.. For the next equations
substitute the previous values of xs.
To make it clear let’s consider an example.

10x1 −x2 +2x3 = 6,
−x1 +11x2 −x3 +3x4 = 25,
2x1 −x2 +10x3 −x4 = −11,

3x2 −x3 +8x4 = 15.

Solving for x1, x2, x3 and x4 gives:

x1 = x2/10− x3/5 + 3/5,
x2 = x1/11 + x3/11− 3x4/11 + 25/11,
x3 = −x1/5 + x2/10 + x4/10− 11/10,
x4 = −3x2/8 + x3/8 + 15/8.

Suppose we choose (0, 0, 0, 0) as the initial approximation, then the first approximate
solution is given by

x1 = 3/5 = 0.6,
x2 = (3/5)/11 + 25/11 = 3/55 + 25/11 = 2.3272,
x3 = −(3/5)/5 + (2.3272)/10− 11/10 = −3/25 + 0.23272− 1.1 = −0.9873,
x4 = −3(2.3272)/8 + (−0.9873)/8 + 15/8 = 0.8789.

Using the approximations obtained, the iterative procedure is repeated until the desired
accuracy has been reached. The following are the approximated solutions after four
iterations.

x1 x2 x3 x4
0.6 2.32727 −0.987273 0.878864
1.03018 2.03694 −1.01446 0.984341
1.00659 2.00356 −1.00253 0.998351
1.00086 2.0003 −1.00031 0.99985

The exact solution of the system is (1, 2,−1, 1).

1.5 Eigenvalue Problem
The calculation of eigenvalues and eigenvectors is a problem that plays an important part in a
large number of applications, both theoretical and practical. They touch most areas in science,
engineering, and economics. Some examples are the solution of the Schrödinger equation in
quantum mechanics, the various eigenvalues representing the energy levels of the resulting
orbital, the solution of ordinary equations, space dynamics, elasticity, fluid mechanics, and
many others.
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1.5.1 Basic Introduction
Le A be a real square, n × n matrix and let x be a vector of dimension n. We want to find
scalars λ for which there exists a nonzero vector x such that

Ax = λx. (1.15)

When this occurs, we call λ an eigenvalue and x an eigenvector that corresponds to λ. Together
they form an eigenpair (λ, x) of A. Note that Eqn. (1.15) will have a nontrivial solution only if

p(λ) = det(A− λI) = 0. (1.16)

The function p(λ) is a polynomial of degree n and is known as the characteristic polynomial.
The determinant in Eqn. (1.16) can be written in the form∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
... ... . . . ...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
= 0

It is known that p is an nth degree polynomial with real coefficients and has at most n distinct
zeros not necessarily real. Each root λ can be substituted into Eqn. (1.15) to obtain a system
of equations that has a nontrivial solution vector x. We now state the following definitions and
theorems necessary for the study of eigenvalues.

Definition 1.4

The spectral radius ρ(A) of an n× n matrix A is defined by

ρ(A) = max1≤i≤n|λi|

where λi are the eigenvalues of A.

Theorem 1.3

1. The eigenvalues of a symmetric matrix are all real numbers.

2. For distinct eigenvalues λ there exists at least one eigenvector v corresponding to
λ.

3. If the eigenvalues of an n × n matrix A are all distinct, then there exists n eigen-
vectors vj , for j = 1, 2, · · · , n.
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Example 1.17

Find the eigenpairs for the matrix 2 −3 6
0 3 −4
0 2 −3

 .
Solution: The characteristic equation det(A− λI) = 0is

−λ3 + 2λ2 + λ− 2 = 0.

The roots of the equation are the three eigenvalues λ1 = 1, λ2 = 2, and λ3 = −1. To find
the eigenvector x1 corresponding to λ1, we substitute λ1 = 1 to Eqn. (1.15) to get the
system of equations

x1 − 3x2 + 6x3 = 0
2x2 − 4x3 = 0

2x2 − 4x3 = 0.

Since the last two equations are identical, the system is reduced to two equations in three
unknowns. Set x3 = α, where α is an arbitrary constant, to get x2 = 2α and x1 = 0.
Hence, by setting α = 1, the first eigenpair is λ1 = 1 and x1 = (0, 2, 1)T . To find x2,
substitute λ2 = 2 to Eqn. (1.15) to get the system of equations

−3x2 + 6x3 = 0
x2 − 4x3 = 0

2x2 − 5x3 = 0.

The solution of this system is x1 = α, x2 = x3 = 0. Hence, by setting α = 1, the second
eigenpair is λ2 = 2 and x2 = (1, 0, 0)T . Finally, to find x3 substitute λ3 = −1 to Eqn.
(1.15) to get the system of equations

3x1 − 3x2 + 6x3 = 0
4x2 − 4x3 = 0
2x2 − 2x3 = 0.

The solution of this system is x1 = −α, x2 = x3 = α. Hence, by setting α = 1 the third
eigenpair is λ3 = −1 and x3 = (−1, 1, 1)T .
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Example 1.18

Consider the matrixA =
[
2 1
1 2

]
. Taking the determinant to find characteristic polynomial

of A,

|A− λI| =
∣∣∣∣∣
[
2 1
1 2

]
− λ

[
1 0
0 1

]∣∣∣∣∣ =
∣∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣∣,
= 3− 4λ+ λ2.

Setting the characteristic polynomial equal to zero, it has roots at λ = 1 and λ = 3,
which are the two eigenvalues of A.
For λ = 1, the cxc equation becomes,

(A− I)vλ=1 =
[
1 1
1 1

][
v1
v2

]
=
[
0
0

]
.

Any non-zero vector with v1 = −v2 solves this equation. Therefore,

vλ=1 =
[

1
−1

]

is an eigenvector of A corresponding to λ = 1, as is any scalar multiple of this vector.
For λ = 3, CXC Equation becomes

(A− 3I)vλ=3 =
[
−1 1
1 −1

][
v1
v2

]
=
[
0
0

]
.

Any non-zero vector with v1 = v2 solves this equation. Therefore,

vλ=3 =
[
1
1

]

is an eigenvector of A corresponding to λ = 3, as is any scalar multiple of this vector.
Thus, the vectors vλ=1 and vλ=3 are eigenvectors of A associated with the eigenvalues
λ = 1 and λ = 3, respectively.

As mentioned above, the eigenvalues and eigenvectors of an n × n matrix where n ≥ 4 must
be found numerically instead of by hand. The essence of all these methods is captured in the
Power method, which we now introduce.

Definition 1.5

Let λ1, λ2, λ3, · · · , λn be the eigenvalues of an matrix A. λ1 is called the dominant eigen-
value of A if |λ1| > |λi| for i = 2, 3, 4, · · · , n. The eigenvectors corresponding to λ1 are
called dominant eigenvectors of A.

1.5.2 Power Method
The power method is a classical method of use mainly to determine the largest eigenvalue in
magnitude, called the dominant eigenvalue, and the corresponding eigenvector of the system

Ax = λx.
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Theorem 1.4

If A is an diagonalizable matrix with a dominant eigenvalue, then there exists a nonzero
vector x0 such that the sequence of vectors given by

Ax0, A
2x0, A

3x0, A
4x0, A

5x0, A
6x0, · · · , Anx0, · · ·

approaches a multiple of the dominant eigenvector of A.

Proof Because A is diagonalizable, you know that it has n linearly independent eigenvectors
x1, x2, , x3, · · · , xn with corresponding eigenvalues of λ1, λ2, λ3, · · · , λn. Assume that these
eigenvalues are ordered so that λ1 is the dominant eigenvalue (with a corresponding eigenvector
of x1). Because the n eigenvectors x1, x2, , x3, · · · , xn are linearly independent, they must
form a basis for Rn. For the initial approximation x0 choose a nonzero vector such that the
linear combination

x0 = c1x1 + c2x2 + · · ·+ cnxn

has nonzero leading coefficients. (If c1 = 0 the power method may not converge, and a different
x0 must be used as the initial approximation.) Now, multiplying both sides of this equation by
A produces

Ax0 = A(c1x1 + c2x2 + · · ·+ cnxn)
Ax0 = c1(Ax1) + c2(Ax2) + · · ·+ cn(Axn)
Ax0 = c1(λ1x1) + c2(λ2x2) + · · ·+ cn(λnxn)

Repeated multiplication of both sides of this equation by A produces

Akx0 = c1(λk1x1) + c2(λk2x2) + · · ·+ cn(λknxn)

which implies that
Akx0 = λk1[c1x1 + c2(λ2

λ1
)kx2 + · · ·+ cn(λn

λ1
)kxn]

Now, from the original assumption that λ1 is larger in absolute value than the other eigenvalues
it follows that each of the fractions

λ2

λ1
,
λ3

λ1
, · · · , λn

λ1

is less than 1 in absolute value. So each of the factors

(λ2

λ1
)k, (λ3

λ1
)k, · · · , (λn

λ1
)k

must approach 0 as k approaches infinity. This implies that the approximation

Akx0 ≈ c1λ1x1

improves as k increases. Because x1 is a dominant eigenvector, it follows that any scalar mul-
tiple of x1 is also a dominant eigenvector, so showing that Akx0 approaches a multiple of the
dominant eigenvector of A.
Note The power method will converge quickly if λi

λ1
, i = 2, 3, · · · , n is small, and slowly if

λi
λ1
, i = 2, 3, · · · , n is close to 1.
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Hence first assume that the matrix A has a dominant eigenvalue with corresponding domi-
nant eigenvectors. Then choose an initial approximation x0 of one of the dominant eigenvectors
of A. This initial approximation must be a nonzero vector in Rn Finally, form the sequence
given by

x1 = Ax0

x2 = Ax1 = A(Ax0) = A2x0

x3 = Ax2 = A(A2x0) = A3x0
...

xk = Axk−1 = A(Ak−1x0) = Akx0

For large powers of k, and by properly scaling this sequence, you will see that you obtain a good
approximation of the dominant eigenvector of A. This procedure is illustrated in the following
Example.

Example 1.19

Approximating a Dominant Eigenvector by the Power Method Complete six iterations of
the power method to approximate a dominant eigenvector of 4 2 −2

−2 8 1
2 4 −4


by the Power Method

Solution: Begin with an initial nonzero approximation of

x0 =

1
1
1


Then obtain the following approximations.

x1 = Ax0 =

 4 2 −2
−2 8 1
2 4 −4


1

1
1

 =

4
7
2

 =⇒ 7

0.5714
1

0.2857



x2 = Ax1 =

 4 2 −2
−2 8 1
2 4 −4


0.5714

1
0.2857

 =

3.7143
7.1429

4

 =⇒ 7.1429

0.52
1.00
0.56



x3 = Ax2 =

 4 2 −2
−2 8 1
2 4 −4


0.52

1.00
0.56

 =

2.96
7.52
2.8

 =⇒ 7.52

0.3936
1.000
0.3723



x4 = Ax3 =

 4 2 −2
−2 8 1
2 4 −4


0.3936

1.000
0.3723

 =

2.8298
7.5851
2.2979

 =⇒ 7.5851

0.3731
1.00

0.4348



x5 = Ax4 =

 4 2 −2
−2 8 1
2 4 −4


0.3731

1.00
0.4348

 =

2.6227
7.6886
3.0070

 =⇒ 7.6886

0.3411
1.00

0.3911


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Example

x6 = Ax5 =

 4 2 −2
−2 8 1
2 4 −4


0.3411

1.00
0.3911

 =

2.5197
7.7401
3.0760

 =⇒ 7.7401

0.3255
1.00

0.3974


The results show that the differences between the vector [xi] and the normalized vector
[xi+i] are getting smaller. The value of the multiplicative factor (7.7401) is an estimate
of the largest eigenvalue.

Theorem 1.5

Determining an Eigenvalue from an Eigenvector If x is an eigenvector of a matrix A, then
its corresponding eigenvalue is given by

λ = Axt ∗ x
xt ∗ x

This quotient is called the Rayleigh quotient

Proof Because x is an eigenvector of A, you know that Ax = λx and can write

(Ax) ∗ xt
x ∗ xt

= (λx) ∗ xt
x ∗ xt

= λ
x ∗ xt

x ∗ xt
= λ

In cases for which the power method generates a good approximation of a dominant eigen-
vector, the Rayleigh quotient provides a correspondingly good approximation of the dominant
eigenvalue

Example 1.20

Consider the eigenvalue problem−9 14 4
−7 12 4
0 0 1


x1
x2
x3

 = λ

x1
x2
x3


where the eigenvalues of A are λ1 = 5, λ2 = 1, and λ3 = −2.
Solution: As a first guess, we choose x0 = (1, 1, 1)T . Now compute−9 14 4

−7 12 4
0 0 1


1

1
1

 =

9
9
1

 = 9

 1
1

1/9

 = λ1x1.

We have normalized the vector by dividing through by its largest element. The next
iteration yields −9 14 4

−7 12 4
0 0 1


 1

1
1/9

 == 49/9

 1
1

1/49

 = λ2x2.

After 10 iterations, the sequence of vectors converges to

x = [1, 1, 1.02× 10−8]T ,

and the sequence λk of constants converges to λ = 5.
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Example 1.21

The Power Method with Scaling Calculate seven iterations of the power method with
scaling to approximate a dominant eigenvector of the matrix 1 2 0

−2 1 2
1 3 1


Use x0 = (1, 1, 1)tas the initial approximation.
Solution:
One iteration of the power method produces

Ax0 =

 1 2 0
−2 1 2
1 3 1


1

1
1

 =

3
1
5

 = 5

0.60
0.20
1.00


and by scaling you obtain the approximation

x1 = 1
5

3
1
5

 =

0.60
0.20
1.00


A second iteration yields

Ax1 =

 1 2 0
−2 1 2
1 3 1


0.60

0.20
1.00

 =

1.00
1.00
2.20

 = 2.2

0.45
0.45
1.00


and

x2 = 1
2.2

0.45
0.45
1.00

 =

0.45
0.45
1.00


Continuing this process, you obtain the sequence of approximations shown in the following
Table

x0 x1 x2 x3 x4 x5 x6 x71
1
1


0.6

0.2
1


0.45

0.45
1


0.48

0.55
1


0.51

0.51
1


0.50

0.49
1


0.50

0.50
1


0.50

0.50
1



From the Table above you can approximate a dominant eigenvector of A to be

0.50
0.50

1


Using the Rayleigh quotient, you can approximate the dominant eigenvalue of A to be
λ = 3 (For this example you can check that the approximations of x and λ are exact.)

x1 x2 x3 x4 x5 x6 x7
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

5.00 2.20 2.82 3.13 3.02 2.99 3.00

are approaching the dominant eigenvalue λ = 3
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1.5.3 Inverse Power Method
Inverse power method can give approximation to any eigenvalue. However, it is used usually to
find the smallest eigenvalue in magnitude and the corresponding eigenvector of a given matrix
A. The eigenvectors are computed very accurately by this method. Further, the method is
powerful to calculate accurately the eigenvectors, when the eigenvalues are not well separated.
In this case, power method converges very slowly.

If λ is an eigenvalue of A, then 1
λ

is an eigenvalue of A−1 corresponding to the same eigen-

vector. The smallest eigenvalue λ in magnitude of A is the largest eigenvalue 1
λ

in magnitude
of A−1. Then choose an initial approximation x0 of one of the dominant eigenvectors of A−1.
This initial approximation must be a nonzero vector in Rn Finally, Applying the power method
on A−1, we have

x1 = A−1x0

x2 = A−1x1 = A−1(A−1x0) = (A−1)2x0

x3 = A−1x2 = A−1((A−1)2x0) = (A−1)3x0
...

xk = A−1xk−1 = A−1((A−1)k−1x0) = (A−1)kx0

For large powers of k, and by properly scaling this sequence, you will see that you obtain a good
approximation of the dominant eigenvector of A. This procedure is illustrated in the following.
Then using Rayleigh quotient we can fined the dominant eigenvalue of A−1

1
λ

= A−1x ∗ xt

x ∗ xt

Example 1.22

Find the smallest eigenvalue in magnitude of the matrix 2 −1 0
−1 2 −1
0 −1 2


use four iteration of the inverse power method.
Solution:
The smallest eigenvalue in magnitude of A is the largest eigenvalue in magnitude of A−1.
We have

A−1 = 1
4

3 2 1
2 4 2
1 2 3

 .
Then use x0 = (1, 1, 1)t and apply inverse power method with scaling.
First approximation

A−1x0 = A−1 = 1
4

3 2 1
2 4 2
1 2 3


1

1
1

 =

1.5
2

1.5

 =⇒ x1 =

 1
1.333

1


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Example: Solution

Second Approximation

A−1x1 = 1
4

3 2 1
2 4 2
1 2 3


 1

1.333
1

 =

1.6667
2.3333
1.6667

 =⇒ x2 =

1.0000
1.4000
1.0000

 .
Third approximation

A−1x2 = 1
4

3 2 1
2 4 2
1 2 3


1.0000

1.4000
1.0000

 =

1.7000
2.4000
1.7000

 =⇒ x3 =

1.0000
1.4118
1.0000

 .
Fourth approximation

A−1x3 = 1
4

3 2 1
2 4 2
1 2 3


1.0000

1.4118
1.0000

 =

1.7059
2.4118
1.7059

 =⇒ x4 =

1.0000
1.4138
1.0000

 .

From the above we can approximate a dominant eigenvector of A−1 to be

1.0000
1.4138
1.0000

 . After

four iteration using the Rayleigh quotient, you can approximate the dominant eigenvalue
of A−1 is

1
λ

=

1
4


3 2 1

2 4 2
1 2 3


1.0000

1.4138
1.0000



t 1.0000

1.4138
1.0000


(
[
1.0000 1.4138 1.0000

]
)

1.0000
1.4138
1.0000


= 1.7071.

Therefore λ = 0.5858 is required eigenvalue. The corresponding eigenvector is[
1.0000 1.4138 1.0000

]t
.

The smallest eigenvalue of A is 2−
√

2 = 0.5858.

1.6 System of Non-linear Equations
Recall that at the end of Chap. 2 we presented an approach to solve two nonlinear equations
with one unknowns. This approach can be extended to the general case of solving n simultaneous
nonlinear equations.

f1(x1, x2, · · · , xn) = 0
f2(x1, x2, · · · , xn) = 0
f3(x1, x2, · · · , xn) = 0

...
fn(x1, x2, · · · , xn) = 0

The solution of this system consists of the set of x values that simultaneously result in all the
equations equaling zero.
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1.6.1 Newton Raphson method
Newton’s Method for Solving Systems of Two Nonlinear Equations

Recall from the Newton’s Method for Approximating Roots section that if we have a
function y = f(x) and α is a root of this function, then if we have an initial approximation x0
of this root, then we can define the tangent line of the point (x0, f(x0)) as:

p1(x) = f(x0) + f ′(x0)(x− x0) (1.17)

We then take the root of this line which we denote as x1 = x0− f(x0)
f ′(x0) . Under ideal circumstances,

this value of x1 will be a better approximation of the root x0. We then repeat the process to
obtain a sequence of approximations {x0, x1, · · · , xn, · · · } that once again, under ideal circum-
stances, will converge to the root α. The general formula for the x-intercept approximations
is:

xn+1 = f(xn)− f(xn)
f ′(xn) (1.18)

We will now look at a slightly modified form of Newton’s Method in approximating the solutions
to a system of two nonlinear equations with two unknowns. Consider the following system of
two nonlinear equations of the two variables x and y:{

f(x, y) = 0
g(x, y) = 0 (1.19)

Now suppose that a solution (α, β) to this system exists and that (x0, y0) is an initial approx-
imation to this solution. Now note that z = f(x, y) and z = g(x, y) will represent surfaces in
R3. The best approximation of these surfaces at the point (x0, y0, f(x0, y0)) will be the tangent
plane that passes through this point. The general equation for this tangent plane is given by:

p1(x, y) = f(x0, y0) + (x− x0) ∂
∂x
f(x0, y0) + (y − y0) ∂

∂y
f(x0, y0) (1.20)

Provided that f(x0, y0) is close enough to 0 (such as to be close enough to satisfy f(x,y)=0)
then the level curve,p1(x, y) = 0 which actually represents a straight line in R2 can be used to
approximate the level curve f(x, y) = 0 for points (x, y) that are near (x0, y0).
Furthermore, we can apply the same procedure to the surface z = g(x, y). The best approxi-
mation to this surface at the point (x0, y0, g(x0, y0)) is the tangent plane that passes through
this point and given by the following equation:

q1(x, y) = g(x0, y0) + (x− x0) ∂
∂x
g(x0, y0) + (y − y0) ∂

∂y
g(x0, y0) (1.21)

Provided that g(x0, y0) is close enough to 0 then the level curve q1(x, y) = 0 (which represents
a straight line in R2) can be used to approximate the level curve g(x, y) = 0 for points (x, y)
near (x0, y0).
Now we can approximate the solution (α, β) of interest between the curves f(x, y) = 0 and
g(x, y) = 0 with the solution between the lines p1(x, y) = 0 and q1(x, y) = 0. Let (x1, y1) be

the solution to the now linear system,
{
p1(x, y) = 0
q1(x, y) = 0 . Then (x1, y1) will hopefully be a better

approximation to the solution (α, β) of the nonlinear system from earlier.
Now to find the intersection of p1(x, y) = 0 and q1(x, y) = 0 is simple. We only need to solve
the following system of equations:
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f(x0, y0) + (x− x0) ∂
∂x
f(x0, y0) + (y − y0) ∂

∂y
f(x0, y0) = 0

g(x0, y0) + (x− x0) ∂
∂x
g(x0, y0) + (y − y0) ∂

∂y
g(x0, y0) = 0

This system can be more nicely compressed using matrices. If we let x−x0 = δx and y−y0 = δy
then: [

∂
∂x
f(xn, yn) ∂

∂y
f(xn, yn)

∂
∂x
g(xn, yn) ∂

∂x
g(xn, yn)

] [
δx,n
δy,n

]
= −

[
f(xn, yn)
g(xn, yn)

]

The (hopefully) better approximation to the solution (α, β) will be (x1, y1) where x1 = x0 + δx
and y1 = y0 +δy. We can then repeat this process in hopes that the sequence of approximations
(x0, y0), (x1, y1), · · · , (xn, yn), · · · converges to the solution (α, β). More generally, each iteration
of this algorithm for n = 0, 1, 2, · · · can be computed in matrix form as:

[
∂
∂x
f(xn, yn) ∂

∂y
f(xn, yn)

∂
∂x
g(xn, yn) ∂

∂x
g(xn, yn)

] [
δx,n
δy,n

]
= −

[
f(xn, yn)
g(xn, yn)

]
And each successive approximation is given by xn+1 = xn + δx,n and yn+1 = yn + δy,n.

Example 1.23

Consider the following non-linear system of equations
{
x3 + y = 1
y3 − x = −1 . There exists a

solution (α, β) such that α, β > 0. Let (0.9, 0.9) be an initial approximation to this
system. Use Newton’s method with three iterations to approximate this solution.
It’s not hard to see that the solution of interest is (α, β) = (1, 1) which can be obtained
by substituting one of the equations into the other. Regardless, we will still use Newton’s
method to demonstrate the algorithm.
We first rewrite our system of equations as:{

f(x, y) = x3 + y − 1 = 0
g(x, y) = y3 − x+ 1 = 0

We now compute the partial derivatives of f and g. We have that:[∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
=
[
3x2 1
−1 3y2

]

We will use the matrix above for each iteration. For the first iteration, we need to solve
the following system of equations:[

3(0.9)2 1
−1 3(0.9)2

] [
δx,0
δy,0

]
=
[
f(0.9, 0.9)
g(0.9, 0.9)

]
[
2.43 1
−1 2.43

] [
δx,0
δy,0

]
=
[
0.629
0.829

]

In solving this system, we get that δx,1 = 0.101 and that δy,1 = 0.383. Therefore we have
that:

x1 = x0 + δx,0 = 0.9 + 0.101 = 1.001 y1 = y0 + δy,0 = 0.9 + 0.383 = 1.283
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Example

For the second iteration, we want to solve the following system of equations:[
3(1.001)2 1
−1 3(1.283)2

] [
δx,1
δy,1

]
=
[
f(1.001, 1.283)
g(1.001, 1.283)

]
[
3.006003 1
−1 4.938267

] [
δx,1
δy,1

]
=
[
1.286003
2.110932

]

When we solve this system, we get that δx,2 = 0.201143 and δy,2 = 0.400208. Therefore
we have that:

x2 = x1 + δx,1 = 1.001 + 0.201143 = 1.202173
y2 = y1 + δy,1 = 1.283 + 0.400208 = 1.683208

Newton’s Method for Solving Systems of Many Nonlinear Equations

One approach to solving such systems is based on a multidimensional version of the Newton-
Raphson method. Thus, a Taylor series expansion is written for each equation about the point
(xk1, xk2, · · · , xkn) we get,

f1(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f1(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f1(xk1, xk2, · · · , xkn)+

1
2! [M x1

∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]2f1(xk1, xk2, · · · , xkn) + · · · = 0

f2(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f2(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f2(xk1, xk2, · · · , xkn)+

1
2! [M x1

∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]2f2(xk1, xk2, · · · , xkn) + · · · = 0

· · ·
· · ·

fn(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = fn(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]fn(xk1, xk2, · · · , xkn)+

1
2! [M x1

∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]2fn(xk1, xk2, · · · , xkn) + · · · = 0

(1.22)

Neglecting 2nd and higher powers of 4x1, 4x2, · · · and 4xn, we obtain

f1(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f1(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f1(xk1, xk2, · · · , xkn)

f2(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f2(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f2(xk1, xk2, · · · , xkn)

· · ·
· · ·

fn(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = fn(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]fn(xk1, xk2, · · · , xkn)

(1.23)
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Since xk+1
1 = xk1 +4x1, x

k+1
2 = xk2 +4x2, · · · and xk+1

n = xkn +4xn writing the equation in
matrix form, we get

Jk4Xk = −F (Xk) (1.24)

where Jk =



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
· · ·
· · ·

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


at (xk1, xk2, · · · , xkn) ,4Xk =


xk+1

1 − xk1
xk+1

2 − xk2
·
·

xk+1
n − xkn

 and

F (Xk) =


f1(xk1, xk2, xk3, · · · , xkn)
f2(xk1, xk2, xk3, · · · , xkn)

·
·

fn(xk1, xk2, xk3, · · · , xkn)

 Therefore equation can be written as4Xk = −J−1
k F (Xk)

[
Xk+1

]
=
[
Xk
]
− J−1

k F (Xk) , k = 0, 1, 2, 3, · · · (1.25)

The convergence of the method depends on the initial approximation X0. A sufficient condition
for convergence is that for each k

‖J−1
k ‖ < 1.

whereas a necessary and sufficient condition for convergence is

ρ(J−1
k ) < 1

Where ‖.‖ is suitable norm and ρ(J−1
k ) is the spectral radius (large eigenvalue in magnitude)

of the matrix J−1
k

if the method converges, then its rate of convergence is two. The iterations stopped when

‖Xk+1 −Xk‖ < ε

Where ε is the given error tolerance.
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Example 1.24

perform three iterations of the Newton-Raphson Method to solve the system of equations

x2 + xy + y2 = 7
x3 + y3 = 9

Take initial approximation as x0 = 1.5 and y0 = 0.5. The exact solution is x = 2, y = 1
Solution: We have

f(x) = x2 + xy + y2 − 7 = 0
g(x) = x3 + y3 − 9 = 0

Jk =
[
fx(xk, yk) fy(xk, yk)
gx(xk, yk) gy(xk, yk)

]
=
[
2xk + yk xk + 2yk

3x2
k 3y2

k

]

J−1
k = 1

Dk

[
3y2

k −(xk + 2yk)
−3x2

k 2xk + yk

]
Where Dk = |Jk| = 3y2

k(2xk + yk)− 3x2
k(xk + 2yk). Know we can write the method as[

xk+1
yk+1

]
=
[
xk
yk

]
− 1
Dk

[
3y2

k −(xk + 2yk)
−3x2

k 2xk + yk

] [
x2
k + xkyk + y2

k − 7
x3
k + y3

k − 9

]
k = 0, 1, 2, 3, · · ·

Using (x0, y0) = (1.5, 0.5), we get[
x1
y1

]
=
[
1.5
0.5

]
− 1
−14.25

[
0.75 −2.5
−6.75 3.5

] [
−3.75
−5.5

]
=
[
2.2675
0.9254

]
[
x2
y2

]
=
[
2.2675
0.9254

]
− 1
−49.4951

[
2.5691 −4.1183
−15.4247 5.4604

] [
1.0963
3.4510

]
=
[
2.0373
0.9645

]
[
x3
y3

]
=
[
2.0373
0.9645

]
− 1
−35.3244

[
2.7908 −3.9663
−12.4518 5.0391

] [
0.0458
0.3532

]
=
[
2.0013
0.9987

]

Exercise 1.7

Multivariate Newton Examples

x2
1 + 2x2

2 − x2 − 2x3 = 0
x2

1 − 8x2
2 + 10x3 = 0

x2
1 − 7x2x3 = 0

Exercise 1.8

Three intersecting radius-1 spheres:

(x1 − 1)2 + (x2 − 1)2 + x3 = 1
(x1 − 1)2 + x2 + (x3 − 1)2 = 1
x1 + (x2 − 1)2 + (x3 − 1)2 = 1
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