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Chapter 1

Solving System of Equations

In this chapter we consider numerical methods for solving a system of linear equations Ax = b.
We assume that the given matrix A is real, n × n, and nonsingular and that b is a given real
vector in Rn, and we seek a solution x that is necessarily also a vector in Rn. Such problems
arise frequently in virtually any branch of science, engineering, economics, or finance.

There is really no single technique that is best for all cases. Nonetheless, the many available
numerical methods can generally be divided into two classes: direct methods and iterative
methods. The present chapter is devoted to this two methods. In the absence of roundoff error,
direct method would yield the exact solution within a finite number of steps.
An example of a problem in electrical engineering that requires a solution of a system of
equations is shown in Fig.1.1. Using Kirchhoff’s law, the currents i1, i2, i3,&i4 can be determined
by solving the following system of four equations:

9i1 − 4i2 − 2i3 = 24
−4i1 + 17i2 − 6i3 − 3i4 = −16
−2i1 − 6i2 + 14i3 − 6i4 = 0

−3i2 − 6i3 + 1li4 = 18

(1.1)

Figure 1.1: Electrical circuit.
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1.1. DIRECT METHOD AMU

1.1 Direct method
Definition 1.1

linear equation in the variables x1, x2, · · · , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where the coefficients a1, a2, · · · , an and b are constant real or complex numbers. The
constant ai is called the coefficient of xi; and b is called the constant term of the
equation.

A system of linear equations (or linear system) is a finite collection of linear equations in
same variables. For instance, a linear system of m equations in n variables x1, x2, · · · , xn can
be written as 

a11x1 +a12x2 + · · · +a1nxn = b1
a21x1 +a22x2 + · · · +a2nxn = b2

...
am1x1 +am2x2 + · · · +amnxn = bm

(1.2)

where x1, x2, . . . , xn are the unknowns, a11, a12, . . . , amn are the coefficients of the system, and
b1, b2, . . . , bm the constant terms.

1.1.1 Vector equation
One extremely helpful view is that each unknown is a weight for a column vector in a linear
combination.

x1


a11
a21
...
am1

+ x2


a12
a22
...
am2

+ · · ·+ xn


a1n
a2n
...

amn

 =


b1
b2
...
bm

 (1.3)

1.1.2 Matrix equation
The vector equation is equivalent to a matrix equation of the form

Ax = b

where A is an m×n matrix, x is a column vector with n entries, and b is a column vector with
m entries.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

, x =


x1
x2
...
xn

, b =


b1
b2
...
bm

 (1.4)

A solution of a linear system (1.2) is a tuple (s1, s2, · · · , sn) of numbers that makes each
equation a true statement when the values (s1, s2, · · · , sn) are substituted forx1, x2, · · · , xn,
respectively. The set of all solutions of a linear system is called the solution set of the system.

c© Dejen K. 2019 3



1.1. DIRECT METHOD AMU

Theorem 1.1

Any system of linear equations has one of the following exclusive conclusions.

(a) No solution.

(b) Unique solution.

(c) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution; and is said to be
inconsistent if it has no solution.

1.1.3 Geometric interpretation
For a system involving two variables (x and y), each linear equation determines a line on the
xy-plane. Because a solution to a linear system must satisfy all of the equations, the solution
set is the intersection of these lines, and is hence either a line, a single point, or the empty set.

For three variables, each linear equation determines a plane in three-dimensional space, and
the solution set is the intersection of these planes. Thus the solution set may be a plane, a line,
a single point, or the empty set.

For n variables, each linear equation determines a hyperplane in n-dimensional space. The
solution set is the intersection of these hyperplanes, which may be a flat of any dimension.

Figure 1.2: The equations 3x+ 2y = 6 and 3x+ 2y = 12 are (inconsistent ).

1.1.4 Cramer’s rule
Consider a system of n linear equations for n unknowns, represented in matrix multiplication
form as follows:

Ax = b

where the n × n matrix A has a nonzero determinant, and the vector x = (x1, . . . , xn)T is the
column vector of the variables. Then the theorem states that in this case the system has a
unique solution, whose individual values for the unknowns are given by:

xi = det(Ai)
det(A) i = 1, . . . , n

c© Dejen K. 2019 4



1.1. DIRECT METHOD AMU

Figure 1.3: The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly depen-
dent(consistent ).

where Ai is the matrix formed by replacing the i− th column of A by the column vector b.

A more general version of Cramer’s rule considers the matrix equation

AX = B

where the n × n matrix A has a nonzero determinant, and X, B are n ×m matrices. Given
sequences 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ m , let XI,J be the k × k
submatrix of X with rows in I := (i1, . . . , ik) and columns in J := (j1, . . . , jk). Let AB(I, J)
be the n × n matrix formed by replacing the is column of A by the js column of B, for all
s = 1, . . . , k. Then

detXI,J = det(AB(I, J))
det(A) .

In the case k = 1, this reduces to the normal Cramer’s rule.

1.1.5 Explicit formulas for small systems
Consider the linear system {

a1x+ b1y = c1
a2x+ b2y = c2

which in matrix format is [
a1 b1
a2 b2

][
x
y

]
=
[
c1
c2

]
.

Assume a1b2 − b1a2 nonzero. Then, with help of determinants, x and y can be found with
Cramer’s rule as

x =

∣∣∣∣∣c1 b1
c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= c1b2 − b1c2

a1b2 − b1a2
, y =

∣∣∣∣∣a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= a1c2 − c1a2

a1b2 − b1a2
.

The rules for 3× 3 matrices are similar. Given
a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

c© Dejen K. 2019 5



1.1. DIRECT METHOD AMU

which in matrix format is a1 b1 c1
a2 b2 c2
a3 b3 c3


xy
z

 =

d1
d2
d3

.
Then the values of x, y and z can be found as follows:

x =

∣∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
, y =

∣∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
, and z =

∣∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣
.

Example 1.1

Solve the following system by Cramer’s rule.
2x1 + 3x2 + 4x3 = 19
x1 + 2x2 + x3 = 4
3x1 − x2 + x3 = 9

Solution: The coefficient matrix is A =

2 3 4
1 2 1
3 −1 1

 and column matrix b =

19
4
9

, then

det(A) =

∣∣∣∣∣∣∣
2 3 4
1 2 1
3 −1 1

∣∣∣∣∣∣∣ = 4 + 9 − 4 − 24 − 3 + 2 = −16 6= 0 then the system has unique

solution.

A1 =

19 3 4
4 2 1
9 −1 1

 & det(A1) =

∣∣∣∣∣∣∣
19 3 4
4 2 1
9 −1 1

∣∣∣∣∣∣∣ = 38 + 27− 16− 72− 12 + 19 = −16

A2 =

2 19 4
1 4 1
3 9 1

 & det(A2 =

∣∣∣∣∣∣∣
2 19 4
1 4 1
3 9 1

∣∣∣∣∣∣∣ = 8 + 57 + 36− 48− 19− 18 = 16

A3 =

2 3 19
1 2 4
3 −1 9

 & det(A3) =

∣∣∣∣∣∣∣
2 3 19
1 2 4
3 −1 9

∣∣∣∣∣∣∣ = 36 + 36− 19− 114− 27 + 8 = −80

∴ x1 = det(A1)
det(A) = −16

−16 = 1

x2 = det(A2)
det(A) = 16

−16 = −1

x3 = det(A3)
det(A) = −80

−16 = 5.

This is the solution of the system.

c© Dejen K. 2019 6



1.1. DIRECT METHOD AMU

Exercise 1.1

Use Cramer’s Rule to solve each for each of the variables.

(a)
x − y = 4
−x + 2y = −7

(b)
−2x + y = −2
x − 2y = −2

(c)
2x + y + z = 1
3x + z = 4
x − y − z = 2

1.1.6 Inverse Matrix Method
Let AX = b is a system of n linear equations with n unknowns and A is invertible, then the
system has unique solution given by inversion method X = A−1b.

A−1 = adj(A)
det(A)

Note:- When A is not square or is singular, the system may not have a solution or may have
more than one solution.

Example 1.2

Use the inverse of the coefficient matrix to solve the following system

3x1 + x2 = 6
−x1 + 2x2 + 2x3 = −7

5x1 − x3 = 10

Solution: Okay, let’s first write down the matrix form of this system. 3 9 0
−1 2 2
5 0 −1


x1
x2
x3

 =

 6
−7
10


Now, we found the inverse of the coefficient matrix by using methods of finding Inverses
and is the following;

c© Dejen K. 2019 7



1.1. DIRECT METHOD AMU

Example

A =

 3 1 0
−1 2 2
5 0 −1

 =⇒ CA =

−2 9 −10
1 3 5
2 −6 7

 =⇒ adj(A) =

 2 −1 2
9 −3 −6
−10 5 7


and det(A) = 3(−2) + 1(9) + 0(−10) = −6 + 9 = 3, then

A−1 = 1/3

 2 −1 2
9 −3 −6
−10 5 7

 =

 2/3 −1/3 2/3
3 −1 −2

−10/3 5/3 7/3



∴

x1
x2
x3

 =

 2/3 −1/3 2/3
3 −1 −2

−10/3 5/3 7/3


 6
−7
10

 =

 1/3
5

−25/3


Now each of the entries of X are x1 = 1/3, x2 = 5 and x3 = −25/3

1.1.7 Gaussian Elimination Method
In this section we show the following:

• How to solve linear equations when A is in upper triangular form. The algorithm is called
backward substitution.

• How to transform a general system of linear equations into an upper triangular form, to
which backward substitution can be applied. The algorithm is called Gaussian elimina-
tion.

A triangular matrix is a special kind of square matrix. A square matrix is called lower trian-
gular if all the entries above the main diagonal are zero. Similarly, a square matrix is called
upper triangular if all the entries below the main diagonal are zero. A triangular matrix is
one that is either lower triangular or upper triangular. A matrix that is both upper and lower
triangular is called a diagonal matrix.

A matrix of the form

L =



`1,1 0
`2,1 `2,2

`3,1 `3,2
. . .

... ... . . . . . .
`n,1 `n,2 . . . `n,n−1 `n,n


is called a lower triangular matrix or left triangular matrix, and analogously a matrix of the

form

U =



u1,1 u1,2 u1,3 . . . u1,n
u2,2 u2,3 . . . u2,n

. . . . . . ...
. . . un−1,n

0 un,n


c© Dejen K. 2019 8



1.1. DIRECT METHOD AMU

is called an upper triangular matrix or right triangular matrix.

Forward and back substitution

A matrix equation in the form Lx = b or Ux = b is very easy to solve by an iterative process
called forward substitution for lower triangular matrices and analogously back substi-
tution for upper triangular matrices. The process is so called because for lower triangular
matrices, one first computes x1, then substitutes that forward into the next equation to solve
for x2, and repeats through to xn. In an upper triangular matrix, one works backwards, first
computing xn, then substituting that back into the previous equation to solve for xn−1, and
repeating through x1. Notice that this does not require inverting the matrix.

Forward substitution The matrix equation Lx = b can be written as a system of linear
equations

`1,1x1 = b1
`2,1x1 + `2,2x2 = b2

... ... . . . ...
`m,1x1 + `m,2x2 + · · ·+ `m,mxm = bm

Observe that the first equation (`1,1x1 = b1 only involves x1, and thus one can solve for x1
directly. The second equation only involves x1 and x2, and thus can be solved once one substi-
tutes in the already solved value for x1. Continuing in this way, the k-th equation only involves
x1, . . . , xk, and one can solve for xk using the previously solved values for x1, . . . , xk−1.
The resulting formulas are:

x1 = b1

`1,1
,

x2 = b2 − `2,1x1

`2,2
,

...

xm = bm −
∑m−1
i=1 `m,ixi
`m,m

.

A matrix equation with an upper triangular matrix U can be solved in an analogous way, only
working backwards.

Backward Substitution.

Given an upper triangular matrix A and a right-hand-side b,

for k = n : −1 : 1

xk = bk −
∑n
j=k+1 akjxj

akk

end

Gauss elimination method is used to solve system of linear equations. In this method the linear
system of equation is reduced to an upper triangular system by using successive elementary
row operations. Finally we solve the value variables by using back ward substitution method.
This method will be fail if any of the pivot element aii, i = 1, 2, · · · , n becomes zero. In

c© Dejen K. 2019 9



1.1. DIRECT METHOD AMU

such case we re-write equation in such manner so that pivots are non zero. This procedure is
called pivoting.
Consider system AX = b

Step 1: Form the augmented matrix [A|b]

Step 2: Transform [A|b] to row echelon form [U |d] using row operations.

Step 3: Solve the system UX = d by back substitution.
The following row operations on the augmented matrix of a system produce the augmented
matrix of an equivalent system, i.e., a system with the same solution as the original one.
• Interchange any two rows.

• Multiply each element of a row by a nonzero constant.

• Replace a row by the sum of itself and a constant multiple of another row of the matrix.
For these row operations, we will use the following notations.
• Ri ↔ Rj means: Interchange row i and row j.

• αRi means: Replace row i with α times row i.

• Ri + αRj means: Replace row i with the sum of row i and α times row j.

Example 1.3

Solve the following system using Gauss elimination method.

2x1 − 3x2 + x3 = 5
4x1 + 14x2 + 12x3 = 10

6x1 + x2 + 5x3 = 9
Solution: The augmented matrix of the system is2 −3 1 5

4 14 12 10
6 1 5 9


Applying, elementary row operations on this matrix to change into its echelon form.2 −3 1 5

4 14 12 10
6 1 5 9

 R2 −→ R2 − 2R1
R3 −→ R3 − 3R1

2 −3 1 5
0 20 10 0
0 10 2 −6



R3 −→ R3 − 1/2R2

2 −3 1 5
0 20 10 0
0 0 −3 −6


Since rank(A)

¯
= rank(A) = 3 = n the solution exists and is unique.

2x1 −3x2 +x3 = 5
20x2 +10x3 = 0

−3x3 = −6
From this we get x3 = 2. And using back substitution we have x2 = −1 and x1 = 0
Hence (0,−1, 2) is the solution of the system.

c© Dejen K. 2019 10



1.1. DIRECT METHOD AMU

Exercise 1.2

Solve the following system of four equations using the Gauss elimination method.

4x1 − 2x2 − 3x3 + 6x4 = 12
−6x1 + 7x2 + 6.5x3 − 6x4 = −6.5
x1 + 7.5x2 + 6.25x3 + 5.5x4 = 16
−12x1 + 22x2 + 15.5x3 − x4 = 17

1.1.8 Gauss-Jordan Elimination Method
The Gauss-Jordan elimination method to solve a system of linear equations is described in the
following steps.

1. Write the augmented matrix of the system.

2. Use row operations to transform the augmented matrix in the form described below,
which is called the reduced row echelon form (RREF).

(a) The rows (if any) consisting entirely of zeros are grouped together at the bottom of
the matrix.

(b) In each row that does not consist entirely of zeros, the leftmost nonzero element is
a 1 (called a leading 1 or a pivot).

(c) Each column that contains a leading 1 has zeros in all other entries.
(d) The leading 1 in any row is to the left of any leading 1’s in the rows below it.

3. Stop process in step 2 if you obtain a row whose elements are all zeros except the last one
on the right. In that case, the system is inconsistent and has no solutions. Otherwise,
finish step 2 and read the solutions of the system from the final matrix.

Note: When doing step 2, row operations can be performed in any order. Try to choose
row operations so that as few fractions as possible are carried through the computation. This
makes calculation easier when working by hand.

c© Dejen K. 2019 11



1.1. DIRECT METHOD AMU

Example 1.4

Given the following linear system with corresponding augmented matrix:

3x2 − 6x3 + 6x4 + 4x5 = −5
3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 150 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15


To solve this system, the matrix has to be reduced into reduced echelon form.

Step 1: Switch row 1 and row 3. All leading zeros are now below non-zero leading entries.3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5


Step 2: Set row 2 to row 2 plus (-1) times row 1. In other words, subtract row 1 from row

2. This will eliminate the first entry of row 2.3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5



c© Dejen K. 2019 12



1.1. DIRECT METHOD AMU

Example

Step 3: Multiply row 2 by 3 and row 3 by 2. This will eliminate the first entry of row 3.3 −9 12 −9 6 15
0 6 −12 12 6 −18
0 6 −12 12 8 −10


Step 4: Set row 3 to row 3 plus (-1) times row 2. In other words, subtract row 2 from row

3. This will eliminate the second entry of row 3.3 −9 12 −9 6 15
0 6 −12 12 6 −18
0 0 0 0 2 8


Step 5: Multiply each row by the reciprocal of its first non-zero value. This will make every

row start with a 1. 1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4


The matrix is now in row echelon form: All nonzero rows are above any rows of
all zeros (there are no zero rows), each leading entry of a row is in a column to the
right of the leading entry of the row above it and all entries in a column below a
leading entry are zeros.
As can and will be shown later, from this form one can observe that the system
has infinitely many solutions. To get those solutions, the matrix is further reduced
into reduced echelon form.

Step 6: Set row 2 to row 2 plus (-1) times row 3 and row 1 to row 1 plus (-2) times row 3.
This will eliminate the entries above the leading entry of row 3.1 −3 4 −3 0 −3

0 1 −2 2 0 −7
0 0 0 0 1 4



c© Dejen K. 2019 13
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Example

Step 7: Set row 1 to row 1 plus 3 times row 2. This eliminates the entry above the leading
entry of row 2. 1 0 −2 3 0 −24

0 1 −2 2 0 −7
0 0 0 0 1 4


This is a reduced echelon form, since the leading entry in each nonzero row is 1 and each
leading 1 is the only nonzero entry in its column.
From this the solution of the system can be read:

x1 − 2x3 + 3x4 = −24
x2 − 2x3 + 2x4 = −7

x5 = 4

Those equations can be solved for x1, x2 and x5:

x1 = 2x3 − 3x4 − 24
x2 = 2x3 − 2x4 − 7

x5 = 4

This is the solution of the system. The variables x3 and x4 can take any value and are
so called free variables. The solution is valid for any x3 and x4.

Exercise 1.3

Solve the following system by using the Gauss-Jordan elimination method.

1. x+ y + z = 5
2x+ 3y + 5z = 8
4x+ 5z = 2

2. x+ 2y − 3z = 2
6x+ 3y − 9z = 6
7x+ 14y − 21z = 13

3. 4y + z = 2
2x+ 6y − 2z = 3
4x+ 8y − 5z = 4

4. Ava invests a total of $10, 000 in three accounts, one paying 5 interest, another
paying 8 interest, and the third paying 9 interest. The annual interest earned on
the three investments last year was $770 . The amount invested at 9 was twice the
amount invested at 5 . How much was invested at each rate?

1.1.9 Tri-diagonal Matrix
A tridiagonal system for n unknowns may be written as

aixi−1 + bixi + cixi+1 = di,

c© Dejen K. 2019 14



1.2. LU DECOMPOSITION METHOD AMU

where a1 = 0 and cn = 0 . 

b1 c1 0
a2 b2 c2

a3 b3
. . .

. . . . . . cn−1
0 an bn





x1
x2
x3
...
xn

 =



d1
d2
d3
...
dn

.

Exercise 1.4

1. Solve the following linear system of equation by using Cramer’s rule, Gaussian
elimination method, and inverse method.

(a)
2x1 + 5x2 + 3x3 = 9
3x1 + x2 + 2x3 = 3
x1 + 2x2 − x3 = 6

(b)
x+ z = 1

2x+ y + z = 0
x+ y + 2z = 1

(c)
x+ 2y + z = 3

2x+ 5y − z = −4
3x− 2y − z = 5

2. Use rank of matrix to determine the values of a, b and c so that the following system
has:
a) no solution b) more than one solution c) a unique solution and solve it.

i)
1x+ y − bz = 1

2x+ 3y + az = 3
x+ ay + 3z = 2

ii)
x+ 2y − 3z = a

2x+ 6y − 11z = b
x− 2y + 7z = c

iii)
x− 2y + bz = 3
ax+ 2z = 2
5x+ 2y = 2

1.2 LU Decomposition Method
Definition 1.2

A permutation matrix is a square binary matrix that has exactly one entry of 1 in each
row and each column and 0’s elsewhere.

P =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

.
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Definition 1.3

Let A be a square matrix. An LU factorization refers to the factorization of A,
with proper row and/or column orderings or permutations, into two factors, a unit lower
triangular matrix L and an upper triangular matrix U ,

A = LU,

For example, for a 3-by-3 matrix A, its LU decomposition looks like this:a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33


u11 u12 u13

0 u22 u23
0 0 u33

.
Without a proper ordering or permutations in the matrix, the factorization may fail to material-
ize. For example, it is easy to verify (by expanding the matrix multiplication) that a11 = l11u11.
If a11 = 0, then at least one of l11 and u11 has to be zero, which implies either L or U is singu-
lar. This is impossible if A is nonsingular (invertible). This is a procedural problem. It can be
removed by simply reordering the rows of A so that the first element of the permuted matrix
is nonzero. The same problem in subsequent factorization steps can be removed the same way;
see the basic procedure below.
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Example 1.5

We factorize the following 2-by-2 matrix:[
4 3
6 3

]
=
[
l11 0
l21 l22

][
u11 u12
0 u22

]
.

One way to find the LU decomposition of this simple matrix would be to simply solve
the linear equations by inspection. Expanding the matrix multiplication gives

l11 · u11 + 0 · 0 = 4
l11 · u12 + 0 · u22 = 3
l21 · u11 + l22 · 0 = 6

l21 · u12 + l22 · u22 = 3.

This system of equations is under determined. In this case any two non-zero elements
of L and U matrices are parameters of the solution and can be set arbitrarily to any
non-zero value. Therefore, to find the unique LU decomposition, it is necessary to put
some restriction on L and U matrices. For example, we can conveniently require the
lower triangular matrix L to be a unit triangular matrix (i.e. set all the entries of its
main diagonal to ones). Then the system of equations has the following solution:

l21 = 1.5
u11 = 4
u12 = 3
u22 = −1.5

Substituting these values into the LU decomposition above yields[
4 3
6 3

]
=
[

1 0
1.5 1

][
4 3
0 −1.5

]
.

Factorization is particularly useful in the repetitive solution of the linear system

Ax = b

where we vary the r.h.s column vector b, but keep A fixed. For example b may represent a signal
that we want to process to get x. If we are handed a whole series of vectors b, it is useful to
have an efficient way to get the output series of vectors x. With LU factorization, the solution
is found in two steps:

LUx = b (1)

implies
Ly = b (2)

and
Ux = y.

Since L and U are triangular, these two problems are very easy to solve: First solve (1) to get
y. Then solve (2) to get x.
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LU Decomposition Algorithm:

Given a real nonsingular matrix A, apply LU decomposition first:

A = LU.

Given also a right-hand-side vector b:

1. Forward substitution: solve
Ly = b.

2. Backward substitution: solve
Ux = y.

Definition 1.4

An LDU decomposition is a decomposition of the form

A = LDU,

where D is a diagonal matrix and L and U are unit triangular matrices, meaning that
all the entries on the diagonals of L and U are one.

1.2.1 Crout, Doolittle’s decomposition method
The Crout matrix decomposition algorithm differs slightly from the Doolittle method.
Doolittle’s method returns a unit lower triangular matrix and an upper triangular matrix,
while the Crout method returns a lower triangular matrix and a unit upper triangular matrix.

So, if a matrix decomposition of a matrix A is such that:

A = LDU

being L a unit lower triangular matrix, D a diagonal matrix and U a unit upper triangular
matrix, then Doolittle’s method produces

A = L(DU)

and Crout’s method produces
A = (LD)U.

being L a lower triangular matrix, D a diagonal matrix and U a normalised upper triangular
matrix.

1.2.2 Cholesky Decomposition
Definition 1.5

Symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix
A is symmetric if

A = AT.
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Definition 1.6

A symmetric n × n real matrix M is said to be positive definite if the scalar zTMz
is positive for every non-zero column vector z of n real numbers. Here zT denotes the
transpose of z.

This factorization is known as Cholesky’s method, and A can be factored in the form

A = LLT

where L is a lower triangular matrix. The construction of L is similar to the one used for
Crout’s method. Multiplying L by LT and setting the result equal to A gives

lii =
[
aii −

i−1∑
k=1

l2ik

]1/2

, i = 1, 2, 3, · · · , n

lij = aij −
∑j−1
k=1 likljk
ljj

, i = j + 1, j + 2, · · · , j + n, j = 1, 2, 3, · · · , n

Example 1.6

Here is the Cholesky decomposition of a symmetric real matrix: 4 12 −16
12 37 −43
−16 −43 98

 =

 2 0 0
6 1 0
−8 5 3


 2 6 −8

0 1 5
0 0 3

 .
And here is its LDLT decomposition: 4 12 −16

12 37 −43
−16 −43 98

 =

 1 0 0
3 1 0
−4 5 1


 4 0 0

0 1 0
0 0 9


 1 3 −4

0 1 5
0 0 1

 .
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Example 1.7

Solve the system of equations 1 2 3
2 8 22
3 22 82


x1
x2
x3

 =

 5
6
−10


Using the cholesky method. We write1 2 3

2 8 22
3 22 82

 =

l11 0 0
l21 l22 0
l31 l32 l33


l11 l21 l31

0 l22 l32
0 0 l33

 =

 l211 l11l21 l11l31
l21l11 l221 + l222 l21l31 + l22l32
l31l11 l31l21 + l32l22 l231 + l232 + l233


Comparing the corresponding elements on both sides, we get First row l211 = 1, or l11 = 1
l11l21 = 2, or l21 = 2
l11l31 = 3, or l31 = 3
second row l221 + l222 = 8, or l22 = 2
l31l21 + l32l22 = 22 or l32 = 8
Third row l231 + l232 + l233 = 82 or l33 = 3
Hence we get A = LLT

Where L =

1 0 0
2 2 0
3 8 3


We write the given system of equations as

LLTx = b

Ly = b and LTx = y.

From Ly = b, we obtain 1 0 0
2 2 0
3 8 3


y1
y2
y3

 =

 5
6
−10



or

y1
y2
y3

 =

 5
−2
−3


From LTx = y, we obtained1 2 3

0 2 8
0 0 3


x1
x2
x3

 =
[
5 −2 −3

]
.

or

x1
x2
x3

 =

 2
3
−1
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Exercise 1.5

Determine if the following matrix is hermitian positive definite. Also find its Cholessky
factorization if possible

A =

1 2 1
2 3 3
1 3 2

 & B =

1 2 2
2 8 0
2 0 24



1.3 Indirect Iteration Method

Learning Outcomes
After studying this notebook you should be able to

• Give the motivation for using iterative methods to solve linear equations, as opposed to
direct solver like Gaussian Elimination.

• Describe the algorithm for the Jacobi Iteration method

• Describe the algorithm for the Gauss-Seider and relaxed Gauss-Seider methods.

• Test whether a given linear equation can be solved by using the Jacobi or Gauss-Seider
methods.

1.3.1 Introduction
There are occasions when direct methods (like Gaussian Elimination or the use of an LU
decomposition) are not the best way to solve a system of equations. An alternative approach
is to use an iterative method. In this section we will discuss some of the issues involved with
iterative methods.

1.3.2 Jacobi Method
Solving of the system of equations, we assume that the quantities aii in the system are pivot
elements. The the system equation may be written as:

a11x1 = b1 − (a12x2 + a13x3 + · · ·+ a1nxn)
a22x2 = b2 − (a21x1 + a23x3 + · · ·+ a2nxn)
a33x3 = b3 − (a31x1 + a32x2 + · · ·+ a3nxn)

...
annxn = bn − (an1x1 + an2x2 + · · ·+ ann−1xn−1)

(1.5)

The Jacobi iteration method can be defined as:

xk+1
1 = 1

a11
(b1 − a12x

k
2 + a13x

k
3 + · · ·+ a1nx

k
n)

xk+1
2 = 1

a22
(b2 − a21x

k
1 + a23x

k
3 + · · ·+ a2nx

k
n)

xk+1
3 = 1

a33
(b3 − a31x

k
1 + a32x

k
2 + · · ·+ a3nx

k
n)

...
xk+1
n = 1

ann
(bn − an1x

k
1 + an2x

k
2 + · · ·+ ann−1x

k
n−1)

(1.6)
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Matrix form

Let
Ax = b

be a square system of n linear equations, where:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
an1 an2 · · · ann

, x =


x1
x2
...
xn

, b =


b1
b2
...
bn

.

Then A can be decomposed into a diagonal component D, and the remainder R:

A = D +R where D =


a11 0 · · · 0
0 a22 · · · 0
... ... . . . ...
0 0 · · · ann

 and R =


0 a12 · · · a1n
a21 0 · · · a2n
... ... . . . ...
an1 an2 · · · 0

.

The solution is then obtained iteratively via

x(k+1) = D−1(b−Rx(k)),

where x(k) is the kth approximation or iteration of x and x(k+1) is the next or k + 1 iteration
of x. The element-based formula is thus:

x
(k+1)
i = 1

aii

bi −∑
j 6=i

aijx
(k)
j

 , i = 1, 2, . . . , n.

The computation of xi(k + 1) requires each element in x(k) except itself.

Convergence

The standard convergence condition (for any iterative method) is when the spectral radius
of the iteration matrix is less than 1:

ρ(D−1R) < 1.

A sufficient (but not necessary) condition for the method to converge is that the matrix A is
strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each
row, the absolute value of the diagonal term is greater than the sum of absolute values of other
terms:

|aii| >
∑
j 6=i
|aij|.

The Jacobi method sometimes converges even if these conditions are not satisfied.
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Example 1.8

A linear system of the form Ax = b with initial estimate x(0) is given by

A =
[
2 1
5 7

]
, b =

[
11
13

]
and x(0) =

[
1
1

]
.

We use the equation x(k+1) = D−1(b−Rx(k)), described above, to estimate x. First,
we rewrite the equation in a more convenient form D−1(b−Rx(k)) = Tx(k) + C, where
T = −D−1R and C = D−1b. Note that R = L+ U where L and U are the strictly lower
and upper parts of A. From the known values

D−1 =
[
1/2 0
0 1/7

]
, L =

[
0 0
5 0

]
and U =

[
0 1
0 0

]
.

we determine T = −D−1(L+ U) as

T =
[
1/2 0
0 1/7

]{[
0 0
−5 0

]
+
[
0 −1
0 0

]}
=
[

0 −1/2
−5/7 0

]
.

Further, C is found as

C =
[
1/2 0
0 1/7

][
11
13

]
=
[
11/2
13/7

]
.

With T and C calculated, we estimate x as x(1) = Tx(0) + C:

x(1) =
[

0 −1/2
−5/7 0

][
1
1

]
+
[
11/2
13/7

]
=
[

5.0
8/7

]
≈
[

5
1.143

]
.

The next iteration yields

x(2) =
[

0 −1/2
−5/7 0

][
5.0
8/7

]
+
[
11/2
13/7

]
=
[

69/14
−12/7

]
≈
[

4.929
−1.714

]
.

This process is repeated until convergence (i.e., until ‖Ax(n) − b‖ is small). The solution
after 25 iterations is

x =
[

7.111
−3.222

]
.
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Example 1.9

Suppose we are given the following linear system:

10x1 − x2 + 2x3 = 6,
−x1 + 11x2 − x3 + 3x4 = 25,

2x1 − x2 + 10x3 − x4 = −11,
3x2 − x3 + 8x4 = 15.

If we choose (0, 0, 0, 0) as the initial approximation, then the first approximate solution
is given by

x1 = (6 + 0− 0)/10 = 0.6,
x2 = (25− 0− 0)/11 = 25/11 = 2.2727,
x3 = (−11− 0− 0)/10 = −1.1,
x4 = (15− 0− 0)/8 = 1.875.

Using the approximations obtained, the iterative procedure is repeated until the desired
accuracy has been reached. The following are the approximated solutions after five
iterations.

x1 x2 x3 x4
0.6 2.27272 -1.1 1.875

1.04727 1.7159 -0.80522 0.88522
0.93263 2.05330 -1.0493 1.13088
1.01519 1.95369 -0.9681 0.97384
0.98899 2.0114 -1.0102 1.02135

The exact solution of the system is (1, 2,−1, 1).

1.3.3 Gauss-Seidel Method
The Gauss-Seidel iteration method can be defined as:

xk+1
1 = 1

a11
(b1 − a12x

k
2 + a13x

k
3 + · · ·+ a1nx

k
n)

xk+1
2 = 1

a22
(b2 − a21x

k+1
1 + a23x

k
3 + · · ·+ a2nx

k
n)

xk+1
3 = 1

a33
(b3 − a31x

k+1
1 + a32x

k+1
2 + · · ·+ a3nx

k
n)

...
xk+1
n = 1

ann
(bn − an1x

k+1
1 + an2x

k+1
2 + · · ·+ ann−1x

k+1
n−1)

(1.7)

The Gauss-Seidel method is an iterative technique for solving a square system of n linear
equations with unknown x:

Ax = b.

It is defined by the iteration
L∗x(k+1) = b− Ux(k),

where x(k) is the kth approximation or iteration of x, x(k+1) is the next or k + 1 iteration of x
, and the matrix A is decomposed into a lower triangular component L∗, and a strictly upper
triangular component U : A = L∗ + U
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In more detail, write out A, x and b in their components:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
an1 an2 · · · ann

, x =


x1
x2
...
xn

, b =


b1
b2
...
bn

.

Then the decomposition of A into its lower triangular component and its strictly upper trian-
gular component is given by:

A = L∗ + U where L∗ =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...
an1 an2 · · · ann

, U =


0 a12 · · · a1n
0 0 · · · a2n
... ... . . . ...
0 0 · · · 0

.

The system of linear equations may be rewritten as:

L∗x = b− Ux

The Gauss-Seidel method now solves the left hand side of this expression for x, using previous
value for x on the right hand side. Analytically, this may be written as:

x(k+1) = L−1
∗ (b− Ux(k)).

However, by taking advantage of the triangular form of L∗, the elements of x(k+1) can be
computed sequentially using forward substitution:

x
(k+1)
i = 1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , i = 1, 2, . . . , n.

The procedure is generally continued until the changes made by an iteration are below some
tolerance, such as a sufficiently small residual.

The element-wise formula for the Gauss-Seidel method is extremely similar to that of the Jacobi
method. The computation of x(k+1)

i uses only the elements of x(k+1) that have already been
computed, and only the elements of x(k) that have not yet to be advanced to iteration k + 1.
This means that, unlike the Jacobi method, only one storage vector is required as elements can
be overwritten as they are computed, which can be advantageous for very large problems.
However, unlike the Jacobi method, the computations for each element cannot be done in
parallel. Furthermore, the values at each iteration are dependent on the order of the original
equations.

Convergence The convergence properties of the Gauss-Seidel method are dependent on the
matrix A. Namely, the procedure is known to converge if either:

• A is symmetric positive-definite, or

• A is strictly or irreducibly diagonally dominant.

The Gauss-Seidel method sometimes converges even if these conditions are not satisfied.
Algorithm Since elements can be overwritten as they are computed in this algorithm, only

one storage vector is needed, and vector indexing is omitted. The algorithm goes as follows:
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Example 1.10: A

inear system shown as Ax = b is given by: A =
[
16 3
7 −11

]
and b =

[
11
13

]
. We want to

use the equation
x(k+1) = L−1

∗ (b− Ux(k))

in the form
x(k+1) = Tx(k) + C

where: T = −L−1
∗ U and C = L−1

∗ b. We must decompose A into the sum of a lower
triangular component L∗ and a strict upper triangular component U :

L∗ =
[
16 0
7 −11

]
and U =

[
0 3
0 0

]
. The inverse of L∗ is:

L−1
∗ =

[
16 0
7 −11

]−1

=
[
0.0625 0.0000
0.0398 −0.0909

]
Now we can find:

T = −
[
0.0625 0.0000
0.0398 −0.0909

]
×
[
0 3
0 0

]
=
[
0.000 −0.1875
0.000 −0.1193

]
,

C =
[
0.0625 0.0000
0.0398 −0.0909

]
×
[
11
13

]
=
[

0.6875
−0.7443

]
.

C Now we have T and C and we can use them to obtain the vectors x iteratively.
First of all, we have to choose x(0): we can only guess. The better the guess, the quicker
the algorithm will perform.
We suppose:

x(0) =
[
1.0
1.0

]
.

We can then calculate:

x(1) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[
1.0
1.0

]
+
[

0.6875
−0.7443

]
=
[

0.5000
−0.8636

]
.

x(2) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.5000
−0.8636

]
+
[

0.6875
−0.7443

]
=
[

0.8494
−0.6413

]
.

x(3) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8494
−0.6413

]
+
[

0.6875
−0.7443

]
=
[

0.8077
−0.6678

]
.

x(4) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8077
−0.6678

]
+
[

0.6875
−0.7443

]
=
[

0.8127
−0.6646

]
.

x(5) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8127
−0.6646

]
+
[

0.6875
−0.7443

]
=
[

0.8121
−0.6650

]
.

x(6) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8121
−0.6650

]
+
[

0.6875
−0.7443

]
=
[

0.8122
−0.6650

]
.

x(7) =
[
0.000 −0.1875
0.000 −0.1193

]
×
[

0.8122
−0.6650

]
+
[

0.6875
−0.7443

]
=
[

0.8122
−0.6650

]
.

x As expected, the algorithm converges to the exact solution:

x = A−1b ≈
[

0.8122
−0.6650

]
.

In fact, the matrix A is strictly diagonally dominant (but not positive definite).
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Example 1.11

Another linear system shown as Ax = b is given by:

A =
[
2 3
5 7

]
and b =

[
11
13

]
. We want to use the equation

x(k+1) = L−1
∗ (b− Ux(k))

in the form
x(k+1) = Tx(k) + C

where: T = −L−1
∗ U and C = L−1

∗ b. We must decompose A into the sum of a lower

triangular component L∗ and a strict upper triangular component U : L∗ =
[
2 0
5 7

]
and

U =
[
0 3
0 0

]
. is:

L−1
∗ =

[
2 0
5 7

]−1

=
[

0.500 0.000
−0.357 0.143

]
Now we can find:

T = −
[

0.500 0.000
−0.357 0.143

]
×
[
0 3
0 0

]
=
[
0.000 −1.500
0.000 1.071

]
,

C =
[

0.500 0.000
−0.357 0.143

]
×
[
11
13

]
=
[

5.500
−2.071

]
.

Now we have T and C and we can use them to obtain the vectors x iteratively.
First of all, we have to choose x(0): we can only guess. The better the guess, the quicker
will perform the algorithm.
We suppose:

x(0) =
[
1.1
2.3

]
.

x We can then calculate:

x(1) =
[
0 −1.500
0 1.071

]
×
[
1.1
2.3

]
+
[

5.500
−2.071

]
=
[
2.050
0.393

]
.

x(2) =
[
0 −1.500
0 1.071

]
×
[
2.050
0.393

]
+
[

5.500
−2.071

]
=
[

4.911
−1.651

]
.

x(3) = · · · .

If we test for convergence we’ll find that the algorithm diverges. In fact, the matrix
A is neither diagonally dominant nor positive definite. Then, convergence to the exact
solution

x = A−1b =
[
−38
29

]
is not guaranteed and, in this case, will not occur.
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Example 1.12

Suppose given k equations where xn are vectors of these equations and starting point x0.
From the first equation solve for x1 in terms of xn+1, xn+2, . . . , xn.. For the next equations
substitute the previous values of xs.
To make it clear let’s consider an example.

10x1 −x2 +2x3 = 6,
−x1 +11x2 −x3 +3x4 = 25,
2x1 −x2 +10x3 −x4 = −11,

3x2 −x3 +8x4 = 15.

Solving for x1, x2, x3 and x4 gives:

x1 = x2/10− x3/5 + 3/5,
x2 = x1/11 + x3/11− 3x4/11 + 25/11,
x3 = −x1/5 + x2/10 + x4/10− 11/10,
x4 = −3x2/8 + x3/8 + 15/8.

Suppose we choose (0, 0, 0, 0) as the initial approximation, then the first approximate
solution is given by

x1 = 3/5 = 0.6,
x2 = (3/5)/11 + 25/11 = 3/55 + 25/11 = 2.3272,
x3 = −(3/5)/5 + (2.3272)/10− 11/10 = −3/25 + 0.23272− 1.1 = −0.9873,
x4 = −3(2.3272)/8 + (−0.9873)/8 + 15/8 = 0.8789.

Using the approximations obtained, the iterative procedure is repeated until the desired
accuracy has been reached. The following are the approximated solutions after four
iterations.

x1 x2 x3 x4
0.6 2.32727 −0.987273 0.878864
1.03018 2.03694 −1.01446 0.984341
1.00659 2.00356 −1.00253 0.998351
1.00086 2.0003 −1.00031 0.99985

The exact solution of the system is (1, 2,−1, 1).

1.4 Eigenvalue Problem
Suppose that A is a square (n × n) matrix. We say that a nonzero vector v is an eigenvector
and a number λ is its eigenvalue if

Av = λv (1.8)

Geometrically this means that Av is in the same direction as v, since multiplying a vector by
a number changes its length, but not its direction.
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1.4.1 Finding Eigenvalues for 2× 2 and 3× 3
If A is 2 × 2 or 3 × 3 then we can find its eigenvalues and eigenvectors by hand. Notice that
Equation (1.8) can be rewritten as

Av − λv = 0.

It would be nice to factor out the v from the right-hand side of this equation, but we can’t
because A is a matrix and λ is a number. However, since Iv = v, we can do the following:

Av − λv = Av − λIv
= (A− λI)v
= 0

If v is nonzero, then the matrix (A − λI) must be singular. By the same theorem, we must
have

det(A− λI) = 0.

This is called the characteristic equation.
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Example 1.13

Consider the matrix

A =
[
2 1
1 2

]
.

Taking the determinant to find characteristic polynomial of A,

|A− λI| =
∣∣∣∣∣
[
2 1
1 2

]
− λ

[
1 0
0 1

]∣∣∣∣∣ =
∣∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣∣,
= 3− 4λ+ λ2.

Setting the characteristic polynomial equal to zero, it has roots at λ = 1 and λ = 3,
which are the two eigenvalues of A.
For λ = 1, the cxc equation becomes,

(A− I)vλ=1 =
[
1 1
1 1

][
v1
v2

]
=
[
0
0

]
.

Any non-zero vector with v1 = −v2 solves this equation. Therefore,

vλ=1 =
[

1
−1

]

is an eigenvector of A corresponding to λ = 1, as is any scalar multiple of this vector.
For λ = 3, CXC Equation becomes

(A− 3I)vλ=3 =
[
−1 1
1 −1

][
v1
v2

]
=
[
0
0

]
.

Any non-zero vector with v1 = v2 solves this equation. Therefore,

vλ=3 =
[
1
1

]

is an eigenvector of A corresponding to λ = 3, as is any scalar multiple of this vector.
Thus, the vectors vλ=1 and vλ=3 are eigenvectors of A associated with the eigenvalues
λ = 1 and λ = 3, respectively.

As mentioned above, the eigenvalues and eigenvectors of an n×n matrix where n ≥ 4 must
be found numerically instead of by hand. The numerical methods that are used in practice
depend on the geometric meaning of eigenvalues and eigenvectors which is equation (1.8). The
essence of all these methods is captured in the Power method, which we now introduce.

Definition 1.7: L

t λ1, λ2, λ3, · · · , λn be the eigenvalues of an matrix A. λ1 is called the dominant eigenvalue
of A if |λ1| > |λi| for i = 2, 3, 4, · · · , n. The eigenvectors corresponding to λ1 are
called dominant eigenvectors of A.
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1.4.2 Power Method
Like the Jacobi and Gauss-Seidel methods, the power method for approximating eigenvalues is
iterative.

Theorem 1.2

If A is an diagonalizable matrix with a dominant eigenvalue, then there exists a nonzero
vector x0 such that the sequence of vectors given by

Ax0, A
2x0, A

3x0, A
4x0, A

5x0, A
6x0, · · · , Anx0, · · ·

approaches a multiple of the dominant eigenvector of A.

Proof Because A is diagonalizable, you know that it has n linearly independent eigenvectors
x1, x2, , x3, · · · , xn with corresponding eigenvalues of λ1, λ2, λ3, · · · , λn. Assume that these
eigenvalues are ordered so that λ1 is the dominant eigenvalue (with a corresponding eigenvector
of x1). Because the n eigenvectors x1, x2, , x3, · · · , xn are linearly independent, they must
form a basis for Rn. For the initial approximation x0 choose a nonzero vector such that the
linear combination

x0 = c1x1 + c2x2 + · · ·+ cnxn

has nonzero leading coefficients. (If c1 = 0 the power method may not converge, and a different
x0 must be used as the initial approximation.) Now, multiplying both sides of this equation by
A produces

Ax0 = A(c1x1 + c2x2 + · · ·+ cnxn)
Ax0 = c1(Ax1) + c2(Ax2) + · · ·+ cn(Axn)
Ax0 = c1(λ1x1) + c2(λ2x2) + · · ·+ cn(λnxn)

Repeated multiplication of both sides of this equation by A produces

Akx0 = c1(λk1x1) + c2(λk2x2) + · · ·+ cn(λknxn)

which implies that
Akx0 = λk1[c1x1 + c2(λ2

λ1
)kx2 + · · ·+ cn(λn

λ1
)kxn]

Now, from the original assumption that λ1 is larger in absolute value than the other eigenvalues
it follows that each of the fractions

λ2

λ1
,
λ3

λ1
, · · · , λn

λ1

is less than 1 in absolute value. So each of the factors

(λ2

λ1
)k, (λ3

λ1
)k, · · · , (λn

λ1
)k

must approach 0 as k approaches infinity. This implies that the approximation

Akx0 ≈ c1λ1x1

improves as k increases. Because x1 is a dominant eigenvector, it follows that any scalar mul-
tiple of x1 is also a dominant eigenvector, so showing that Akx0 approaches a multiple of the
dominant eigenvector of A.
Note The power method will converge quickly if λi

λ1
, i = 2, 3, · · · , n is small, and slowly if
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λi
λ1
, i = 2, 3, · · · , n is close to 1.

Hence first assume that the matrix A has a dominant eigenvalue with corresponding domi-
nant eigenvectors. Then choose an initial approximation x0 of one of the dominant eigenvectors
of A. This initial approximation must be a nonzero vector in Rn Finally, form the sequence
given by

x1 = Ax0

x2 = Ax1 = A(Ax0) = A2x0

x3 = Ax2 = A(A2x0) = A3x0

·
·
·

xk = Axk−1 = A(Ak−1x0) = Akx0

For large powers of k, and by properly scaling this sequence, you will see that you obtain a good
approximation of the dominant eigenvector of A. This procedure is illustrated in the following
Example

Example 1.14

Approximating a Dominant Eigenvector by the Power Method Complete six iterations of
the power method to approximate a dominant eigenvector of 4 2 −2

−2 8 1
2 4 −4


by the Power Method

Solution
Begin with an initial nonzero approximation of

x0 =

1
1
1


Then obtain the following approximations.

x1 = Ax0 =

 4 2 −2
−2 8 1
2 4 −4


1

1
1

 =

4
7
2

 =⇒ 7

0.5714
1

0.2857



x2 = Ax1 =

 4 2 −2
−2 8 1
2 4 −4


0.5714

1
0.2857

 =

3.7143
7.1429

4

 =⇒ 7.1429

0.52
1.00
0.56



x3 = Ax2 =

 4 2 −2
−2 8 1
2 4 −4


0.52

1.00
0.56

 =

2.96
7.52
2.8

 =⇒ 7.52

0.3936
1.000
0.3723



x4 = Ax3 =

 4 2 −2
−2 8 1
2 4 −4


0.3936

1.000
0.3723

 =

2.8298
7.5851
2.2979

 =⇒ 7.5851

0.3731
1.00

0.4348
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x5 = Ax4 =

 4 2 −2
−2 8 1
2 4 −4


0.3731

1.00
0.4348

 =

2.6227
7.6886
3.0070

 =⇒ 7.6886

0.3411
1.00

0.3911



x6 = Ax5 =

 4 2 −2
−2 8 1
2 4 −4


0.3411

1.00
0.3911

 =

2.5197
7.7401
3.0760

 =⇒ 7.7401

0.3255
1.00

0.3974


The results show that the differences between the vector [xi] and the normalized vector [xi+i]
are getting smaller. The value of the multiplicative factor (7.7401) is an estimate of the largest
eigenvalue.

Theorem 1.3

Determining an Eigenvalue from an Eigenvector If x is an eigenvector of a matrix A, then
its corresponding eigenvalue is given by

λ = Ax ∗ xt

x ∗ xt

This quotient is called the Rayleigh quotient

Proof Because x is an eigenvector of A, you know that Ax = λx and can write

(Ax) ∗ xt
x ∗ xt

= (λx) ∗ xt
x ∗ xt

= λ
x ∗ xt

x ∗ xt
= λ

In cases for which the power method generates a good approximation of a dominant eigen-
vector, the Rayleigh quotient provides a correspondingly good approximation of the dominant
eigenvalue

Example 1.15

The Power Method with Scaling Calculate seven iterations of the power method with
scaling to approximate a dominant eigenvector of the matrix 1 2 0

−2 1 2
1 3 1


Use x0 = (1, 1, 1)tas the initial approximation.

Solution:
One iteration of the power method produces

Ax0 =

 1 2 0
−2 1 2
1 3 1


1

1
1

 =

3
1
5

 = 5

0.60
0.20
1.00


and by scaling you obtain the approximation

x1 = 1
5

3
1
5

 =

0.60
0.20
1.00
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A second iteration yields

Ax1 =

 1 2 0
−2 1 2
1 3 1


0.60

0.20
1.00

 =

1.00
1.00
2.20

 = 2.2

0.45
0.45
1.00


and

x2 = 1
2.2

0.45
0.45
1.00

 =

0.45
0.45
1.00


Continuing this process, you obtain the sequence of approximations shown in the following
Table

x0 x1 x2 x3 x4 x5 x6 x71
1
1


0.6

0.2
1


0.45

0.45
1


0.48

0.55
1


0.51

0.51
1


0.50

0.49
1


0.50

0.50
1


0.50

0.50
1



From the Table above you can approximate a dominant eigenvector of A to be

0.50
0.50

1

 Using

the Rayleigh quotient, you can approximate the dominant eigenvalue of A to be λ = 3 (For
this example you can check that the approximations of x and λ are exact.)

x1 x2 x3 x4 x5 x6 x7
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

5.00 2.20 2.82 3.13 3.02 2.99 3.00

are approaching the dominant eigenvalue λ = 3

1.4.3 Inverse Power Method
Inverse power method can give approximation to any eigenvalue. However, it is used usually to
find the smallest eigenvalue in magnitude and the corresponding eigenvector of a given matrix
A. The eigenvectors are computed very accurately by this method. Further, the method is
powerful to calculate accurately the eigenvectors, when the eigenvalues are not well separated.
In this case, power method converges very slowly.

If λ is an eigenvalue of A, then 1
λ

is an eigenvalue of A−1 corresponding to the same eigen-

vector. The smallest eigenvalue λ in magnitude of A is the largest eigenvalue 1
λ

in magnitude
of A−1. Then choose an initial approximation x0 of one of the dominant eigenvectors of A−1.
This initial approximation must be a nonzero vector in Rn Finally, Applying the power method
on A−1, we have

x1 = A−1x0

x2 = A−1x1 = A−1(A−1x0) = (A−1)2x0

x3 = A−1x2 = A−1((A−1)2x0) = (A−1)3x0
...

xk = A−1xk−1 = A−1((A−1)k−1x0) = (A−1)kx0

For large powers of k, and by properly scaling this sequence, you will see that you obtain a good
approximation of the dominant eigenvector of A. This procedure is illustrated in the following.
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Then using Rayleigh quotient we can fined the dominant eigenvalue of A−1

1
λ

= A−1x ∗ xt

x ∗ xt

Example 1.16

Find the smallest eigenvalue in magnitude of the matrix 2 −1 0
−1 2 −1
0 −1 2


use four iteration of the inverse power method.

Solution:
The smallest eigenvalue in magnitude of A is the largest eigenvalue in magnitude of A−1. We
have

A−1 = 1
4

3 2 1
2 4 2
1 2 3

 .
Then use x0 = (1, 1, 1)t and apply inverse power method with scaling.
First approximation

A−1x0 = A−1 = 1
4

3 2 1
2 4 2
1 2 3


1

1
1

 =

1.5
2

1.5

 =⇒ x1 =

 1
1.333

1


Second Approximation

A−1x1 = 1
4

3 2 1
2 4 2
1 2 3


 1

1.333
1

 =

1.6667
2.3333
1.6667

 =⇒ x2 =

1.0000
1.4000
1.0000

 .
Third approximation

A−1x2 = 1
4

3 2 1
2 4 2
1 2 3


1.0000

1.4000
1.0000

 =

1.7000
2.4000
1.7000

 =⇒ x3 =

1.0000
1.4118
1.0000

 .
Fourth approximation

A−1x3 = 1
4

3 2 1
2 4 2
1 2 3


1.0000

1.4118
1.0000

 =

1.7059
2.4118
1.7059

 =⇒ x4 =

1.0000
1.4138
1.0000

 .

From the above we can approximate a dominant eigenvector of A−1 to be

1.0000
1.4138
1.0000

 . After four

iteration using the Rayleigh quotient, you can approximate the dominant eigenvalue of A−1 is

1
λ

=

1
4


3 2 1

2 4 2
1 2 3


1.0000

1.4138
1.0000



t 1.0000

1.4138
1.0000


(
[
1.0000 1.4138 1.0000

]
)

1.0000
1.4138
1.0000


= 1.7071.
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Therefore λ = 0.5858 is required eigenvalue. The corresponding eigenvector is
[
1.0000 1.4138 1.0000

]t
.

The smallest eigenvalue of A is 2−
√

2 = 0.5858.

1.5 System of Non-linear Equations
Recall that at the end of Chap. 2 we presented an approach to solve two nonlinear equations
with one unknowns. This approach can be extended to the general case of solving n simultaneous
nonlinear equations.

f1(x1, x2, · · · , xn) = 0
f2(x1, x2, · · · , xn) = 0
f3(x1, x2, · · · , xn) = 0

...
fn(x1, x2, · · · , xn) = 0

The solution of this system consists of the set of x values that simultaneously result in all the
equations equaling zero.

1.5.1 Newton Raphson method
One approach to solving such systems is based on a multidimensional version of the Newton-
Raphson method. Thus, a Taylor series expansion is written for each equation about the point
(xk1, xk2, · · · , xkn) we get,

f1(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f1(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f1(xk1, xk2, · · · , xkn)+

1
2! [M x1

∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]2f1(xk1, xk2, · · · , xkn) + · · · = 0

f2(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f2(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f2(xk1, xk2, · · · , xkn)+

1
2! [M x1

∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]2f2(xk1, xk2, · · · , xkn) + · · · = 0

· · ·
· · ·

fn(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = fn(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]fn(xk1, xk2, · · · , xkn)+

1
2! [M x1

∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]2fn(xk1, xk2, · · · , xkn) + · · · = 0

(1.9)
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Neglecting 2nd and higher powers of 4x1, 4x2, · · · and 4xn, we obtain

f1(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f1(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f1(xk1, xk2, · · · , xkn)

f2(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = f2(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]f2(xk1, xk2, · · · , xkn)

· · ·
· · ·

fn(xk1+ M x1, x
k
2+ M x2, · · · , xkn+ M xn) = fn(xk1+ M x1, x

k
2+ M x2, · · · , xkn+ M xn)

+ [M x1
∂

∂x1
+ M x2

∂

∂x2
+ · · ·+ M xn

∂

∂xn
]fn(xk1, xk2, · · · , xkn)

(1.10)

Since xk+1
1 = xk1 +4x1, x

k+1
2 = xk2 +4x2, · · · and xk+1

n = xkn +4xn writing the equation in
matrix form, we get

Jk4Xk = −F (Xk) (1.11)

where Jk =



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
· · ·
· · ·

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


at (xk1, xk2, · · · , xkn) ,4Xk =


xk+1

1 − xk1
xk+1

2 − xk2
·
·

xk+1
n − xkn

 and

F (Xk) =


f1(xk1, xk2, xk3, · · · , xkn)
f2(xk1, xk2, xk3, · · · , xkn)

·
·

fn(xk1, xk2, xk3, · · · , xkn)

 Therefore equation can be written as4Xk = −J−1
k F (Xk)

[
Xk+1

]
=
[
Xk
]
− J−1

k F (Xk) , k = 0, 1, 2, 3, · · · (1.12)

The convergence of the method depends on the initial approximation X0. A sufficient condition
for convergence is that for each k

‖J−1
k ‖ < 1.

whereas a necessary and sufficient condition for convergence is

ρ(J−1
k ) < 1

Where ‖.‖ is suitable norm and ρ(J−1
k ) is the spectral radius (large eigenvalue in magnitude)

of the matrix J−1
k

if the method converges, then its rate of convergence is two. The iterations stopped when

‖Xk+1 −Xk‖ < ε

Where ε is the given error tolerance.
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Example 1.17

perform three iterations of the Newton-Raphson Method to solve the system of equations

x2 + xy + y2 = 7
x3 + y3 = 9

Take initial approximation as x0 = 1.5 and y0 = 0.5. The exact solution is x = 2, y = 1
Solution: We have

f(x) = x2 + xy + y2 − 7 = 0
g(x) = x3 + y3 − 9 = 0

Jk =
[
fx(xk, yk) fy(xk, yk)
gx(xk, yk) gy(xk, yk)

]
=
[
2xk + yk xk + 2yk

3x2
k 3y2

k

]

J−1
k = 1

Dk

[
3y2

k −(xk + 2yk)
−3x2

k 2xk + yk

]
Where Dk = |Jk| = 3y2

k(2xk + yk)− 3x2
k(xk + 2yk). Know we can write the method as[

xk+1
yk+1

]
=
[
xk
yk

]
− 1
Dk

[
3y2

k −(xk + 2yk)
−3x2

k 2xk + yk

] [
x2
k + xkyk + y2

k − 7
x3
k + y3

k − 9

]
k = 0, 1, 2, 3, · · ·

Using (x0, y0) = (1.5, 0.5), we get[
x1
y1

]
=
[
1.5
0.5

]
− 1
−14.25

[
0.75 −2.5
−6.75 3.5

] [
−3.75
−5.5

]
=
[
2.2675
0.9254

]
[
x2
y2

]
=
[
2.2675
0.9254

]
− 1
−49.4951

[
2.5691 −4.1183
−15.4247 5.4604

] [
1.0963
3.4510

]
=
[
2.0373
0.9645

]
[
x3
y3

]
=
[
2.0373
0.9645

]
− 1
−35.3244

[
2.7908 −3.9663
−12.4518 5.0391

] [
0.0458
0.3532

]
=
[
2.0013
0.9987

]
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