Problem Two

Dejen K.
31 March, 2018
Solve the flowing problems manually (if possible) and by using computer Lab.

Bisection exercises

1. Find the root of $f(x)=e^{x}-2-x$ in the interval $[-2.4,-1.6]$ accurate to 10^{-4} using the bisection method.
Solution: Using the bisection method gives $a_{1}=-2.4$ and $b_{1}=-1.6$, so $f(-2.4)=0.4907>0$ and $f(-1.6)=-0.1981<0$. Thus $\alpha \in[-2.4,-1.6]$ we have $x_{1}=\frac{1}{2}\left(a_{1}+b_{1}\right)=-2.0$ and $f\left(x_{1}\right)=0.1353>0$. Since $f\left(x_{1}\right) f\left(b_{1}\right)<0$ so $\alpha \in[-2.4,-1.6]$ we have $x_{2}=\frac{1}{2}\left(x_{1}+b_{1}\right)=-1.8$ and $f\left(x_{2}\right)=-0.0347<0$. Continuing in this manner, the bisection gives $x_{12}=-1.84121094$, accurate to within 10^{-4}

n	a	b	p	$\mathrm{f}(\mathrm{p})$
$===$				
1	-2.40000000	-1.60000000	-2.00000000	0.13533528
2	-2.00000000	-1.60000000	-1.80000000	-0.03470111
3	-2.00000000	-1.80000000	-1.90000000	0.04956862
4	-1.90000000	-1.80000000	-1.85000000	0.00723717
5	-1.85000000	-1.80000000	-1.82500000	-0.01378236
6	-1.85000000	-1.82500000	-1.83750000	-0.00328503
7	-1.85000000	-1.83750000	-1.84375000	0.00197298
8	-1.84375000	-1.83750000	-1.84062500	-0.00065680
9	-1.84375000	-1.84062500	-1.84218750	0.00065789
10	-1.84218750	-1.84062500	-1.84140625	0.00000050
11	-1.84140625	-1.84062500	-1.84101563	-0.00032817
12	-1.84140625	-1.84101563	-1.84121094	-0.00016384

2. Use the bisection method to find solutions accurate to within 10^{-4} on the interval $[-5,5]$ of the following functions:
(a) $f(x)=x^{5}-10 x^{3}-4$
(b) $f(x)=2 x^{2}+\ln (x+6)-3$
(c) $f(x)=\ln (x+1)+30 e^{-x}-3$

Solution:

(a) The bisection method gives $x_{17}=3.1818$, accurate to within 10^{-4}.

n	a	b	p	$\mathrm{f}(\mathrm{p})$
$==$				
1	-5.00000000	5.00000000	0.00000000	-4.00000000
2	0.00000000	5.00000000	2.50000000	-62.59375000
3	2.50000000	5.00000000	3.75000000	210.23339844
4	2.50000000	3.75000000	3.12500000	-11.15255737
5	3.12500000	3.75000000	3.43750000	69.78041744
6	3.12500000	3.43750000	3.28125000	23.08243206
7	3.12500000	3.28125000	3.20312500	4.54498532
8	3.12500000	3.20312500	3.16406250	-3.64232635
9	3.16406250	3.20312500	3.18359375	0.36467328
10	3.16406250	3.18359375	3.17382813	-1.66023578
11	3.17382813	3.18359375	3.17871094	-0.65316528
12	3.17871094	3.18359375	3.18115234	-0.14559598
13	3.18115234	3.18359375	3.18237305	0.10920065
14	3.18115234	3.18237305	3.18176270	-0.01828210
15	3.18176270	3.18237305	3.18206787	0.04543816
16	3.18176270	3.18206787	3.18191528	0.01357275

(b) The bisection method fails because $f(-5)=47$ and $f(5)=49.3979$, which gives $f(-5) f(5)>1$.
(c) The bisection method gives $x_{17}=2.9084$, accurate to within 10^{-4}.

n	a	b	p	f
$==$				
1	-5.00000000	5.0000000	0.00000000	27.00000000
2	0.00000000	5.0000000	2.50000000	0.71531293
3	2.50000000	5.00000000	3.75000000	-0.73632301
4	2.50000000	3.75000000	3.12500000	-0.26482597
5	2.50000000	3.1250000	2.81250000	0.13992518
6	2.81250000	3.12500000	2.96875000	-0.08052443

7	2.81250000	2.96875000	2.89062500	0.02481446
8	2.89062500	2.96875000	2.92968750	-0.02902827
9	2.89062500	2.92968750	2.91015625	-0.00240610
10	2.89062500	2.91015625	2.90039063	0.01112863
11	2.90039063	2.91015625	2.90527344	0.00434247
12	2.90527344	2.91015625	2.90771484	0.00096350
13	2.90771484	2.91015625	2.90893555	-0.00072247
14	2.90771484	2.90893555	2.90832520	0.00012022
15	2.90832520	2.90893555	2.90863037	-0.00030120
16	2.90832520	2.90863037	2.90847778	-0.00009051

3. The following equations have a root in the interval $[0,1.6]$. Determine these with an error less than 10^{-4} using the bisection method.
(a) $2 x-e^{-x}=0$
(b) $e^{-3 x}+2 x-2=0$.

Solution:

(a) The bisection method gives $x_{16}=0.35173$, accurate to within 10^{-4}.
(b) The bisection method gives $x_{15}=0.9730$, accurate to within 10^{-4}..
4. Estimate the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $f(x)=x^{3}+4 x^{2}+4 x-4$ lying in the interval $[0,1]$ using the bisection method.
5. Use the bisection method for $f(x)=x^{3}-3 x+1$ in $[1,3]$ to find:
(a) The first eight approximation to the root of the given equation.
(b) Find an error estimate $\left|\alpha-x_{8}\right|$.

False Position Exercises

1. Solve the Problem 1 of bisection by the false position method.

n	a	b	$\mathrm{f}(\mathrm{a})$	$\mathrm{f}(\mathrm{b})$	p	$\mathrm{f}(\mathrm{p})$
$==$						
1	-2.40000000	-1.60000000	0.49071795	-0.19810348	-1.83007818	-0.00952079
2	-2.40000000	-1.83007818	0.49071795	-0.00952079	-1.84092522	-0.00040423
3	-2.40000000	-1.84092522	0.49071795	-0.00040423	-1.84138538	-0.00001707

2. Use the false position method to find the root of $f(x)=x^{3}+4 x^{2}+4 x-4$ on the interval $[0,1]$ accurate to 10^{-4}.

n	a	b	$\mathrm{f}(\mathrm{a})$	$\mathrm{f}(\mathrm{b})$	p	$\mathrm{f}(\mathrm{p})$
$==$						
1	0.00000000	1.00000000	-4.00000000	5.00000000	0.44444444	-1.34430727
2	0.44444444	1.00000000	-1.34430727	5.00000000	0.56216216	-0.30958814
3	0.56216216	1.00000000	-0.30958814	5.00000000	0.58769134	-0.06473274
4	0.58769134	1.00000000	-0.06473274	5.00000000	0.59296109	-0.01325746
5	0.59296109	1.00000000	-0.01325746	5.00000000	0.59403749	-0.00270360
6	0.59403749	1.00000000	-0.00270360	5.00000000	0.59425688	-0.00055087

3. Use the false position method to find solution accurate to within 10^{-4} on the interval $[1,1.5]$ of the equation $2 x^{3}+4 x^{2}-2 x-5=0$.

n	a	b	$\mathrm{f}(\mathrm{a})$	$\mathrm{f}(\mathrm{b})$	p	$\mathrm{f}(\mathrm{p})$
$===$						
1	1.00000000	1.50000000	-1.00000000	7.75000000	1.05714286	-0.28125948
2	1.05714286	1.50000000	-0.28125948	7.75000000	1.07265198	-0.07462622
3	1.07265198	1.50000000	-0.07462622	7.75000000	1.07672775	-0.01949217
4	1.07672775	1.50000000	-0.01949217	7.75000000	1.07778965	-0.00507039
5	1.07778965	1.50000000	-0.00507039	7.75000000	1.07806570	-0.00131752
6	1.07806570	1.50000000	-0.00131752	7.75000000	1.07813742	-0.00034226
7	1.07813742	1.50000000	-0.00034226	7.75000000	1.07815605	-0.00008890

4. Use the false position method to find solution accurate to within 10^{-4} on the interval $[3,4]$ of the equation $e^{x}-3 x^{2}=0$.

n	a	b	$\mathrm{f}(\mathrm{a})$	$\mathrm{f}(\mathrm{b})$	p	$\mathrm{f}(\mathrm{p})$
$===$						
1	3.00000000	4.00000000	-6.91446308	6.59815003	3.51170436	-3.49087822
2	3.51170436	4.00000000	-3.49087822	6.59815003	3.68065826	-0.96923545
3	3.68065826	4.00000000	-0.96923545	6.59815003	3.72155975	-0.22121453
4	3.72155975	4.00000000	-0.22121453	6.59815003	3.73059212	-0.04815826
5	3.73059212	4.00000000	-0.04815826	6.59815003	3.73254421	-0.01037526
6	3.73254421	4.00000000	-0.01037526	6.59815003	3.73296411	-0.00223023
7	3.73296411	4.00000000	-0.00223023	6.59815003	3.73305434	-0.00047917
8	3.73305434	4.00000000	-0.00047917	6.59815003	3.73307372	-0.00010294

Fixed Point Iteration Exercises

1. The cubic equation $x^{3}-3 x-20=0$ can be written as
(a) $x=\frac{x^{3}-20}{3}$
(b) $x=\frac{20}{x^{3}-3}$
(c) $x=(3 x+20)^{1 / 3}$

Choose the form which satisfies the condition $\left|g^{\prime}(x)\right|<1$ on $[1,4]$ and then find third approximation x_{3} when $x_{0}=1.5$.
Solution For (a) and (b), $\left|g^{\prime}(x)\right|>1$ on $[1,4]$, but for (c), we have $g^{\prime}(x)=$ $\frac{1}{() 3 x+20)^{3 / 2}}<1$ on $[1,4]$. So by using (c), the third approximation by the fixedpoint method is, $x_{3}=3.0789$.
2. Consider the nonlinear equation $g(x)=\frac{1}{2} e^{0.5 x}$ defined on the interval $[0,1]$. Then
(a) Show that there exists a unique fixed-point for g in $[0,1]$.
(b) Use the fixed-point iterative method to compute x^{3}, set $x_{0}=0$.
(c) Compute an error bound for your approximation in part (b).

Solution:

(a) Since given g is continuous in $[0,1]$ and $g(0)=0.5 \in[0,1]$ and $g(1)=$ $0.8243 \in[0,1]$. Also, $g^{\prime}(x)=1 / 4 e^{0.5 x}$ and $g^{\prime}(0)=0.25, g^{\prime}(1)=0.41218$, so $\left|g^{\prime}(x)\right|<1$ for $x \in[0,1]$.
(b) The fixed-point iterative method using $x_{0}=0$ gives $x_{1}=g\left(x_{0}\right)=0.5, x_{2}=$ $g\left(x_{1}\right)=0.64201, x_{3}=g\left(x_{2}\right)=0.58705$
(c) The error bound for the approximation is

$$
\left|\alpha-x_{3}\right| \leq \frac{k^{3}}{1-k}\left|x-1-x_{0}\right|
$$

where $k=\max _{0 \leq x \leq 1}\left|g^{\prime}(x)\right|=g^{\prime}(1)=0.41218$. Thus

$$
\left|\alpha-x_{3}\right| \leq \frac{(0.41218)^{3}}{1-0.41218}|0.5-0|=0.05957
$$

3. An equation $x^{3}-2=0$ can be written in form $x=g(x)$ in two ways:
(a) $x=g_{1}(x)=x^{3}+x-2$
(b) $x=g_{2}(x)=\frac{2+5 x-x^{3}}{5}$ Generate first four approximations from $x_{n+1}=$ $g_{i}\left(x_{n}\right), i=1,2$ by using $x_{0}=1.2$.
Show which sequence converges to $2^{1 / 3}$ and why ?

Solution:

(a) The fixed-point iterative method using $x_{0}=0$ gives $x_{4}=-16.3514$.
(b) The fixed-point iterative method using $x_{0}=0$ gives $x_{4}=1.2599$. The second sequence converges to $2^{1 / 3}$ because $\left|g_{2}^{\prime}\left(2^{1 / 3}\right)\right|=0.0476<1$ whereas the first sequence does not converge to $2^{1 / 3}$ because $\left|g_{1}^{\prime}\left(2^{1 / 3}\right)\right|=4.7622>$ 1.
4. Find value of k such that the iterative scheme $x_{n+1}=\frac{x_{n}^{2}-4 k x_{n}+7}{4}, n \geq 0$ converges to 1 . Also, find the rate of convergence of the iterative scheme
5. Write the equation $x^{2}-6 x+5=0$ in the form $x=g(x)$, where $x \in[0,2]$, so that the iteration $x_{n+1}=g\left(x_{n}\right)$ will converge to the root of the given equation for any initial approximation $x_{0} \in[0,2]$.
6. Which of the following iterations
(a) $x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+\frac{6}{x_{n}}\right)$
(b) $x_{n+1}=\left(4-\frac{6}{x_{n}}\right)$
is suitable to find a root of the equation $x^{3}=4 x^{2}-6$ in the interval $[3,4]$? Estimate the number of iterations required to achieve 10^{-3} accuracy, starting from $\mathrm{x}_{0}=3$.

Solution: (a) Let $g_{1}(x)=\frac{1}{4}\left(x^{2}+\frac{6}{x}\right)$ which is continuous in $[3,4]$, but $g_{1}^{\prime}(x)>1$ for all $x \in(3,4)$. So $g_{1}(x)$ is not suitable.
(b) $g_{2}(x)=\left(4-\frac{6}{x_{n}^{2}}\right)$ which is continuous in $[3,4]$ and $g(x) \in[3,4]$ for all $x \in[3,4]$.

Also, $\left|g_{2}^{\prime}(x)\right|=\left|12 / x^{3}\right|<1$ for all $x \in(3,4)$. Then from the Theorem ?? implies that a unique fixed-point exists in $[3,4]$. To find an approximation of that is accurate to within 10^{-3}, we need to determine the number of iterations n so that

$$
\left|\alpha-x_{n}\right| \leq \frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right|<10^{-3}
$$

With $k=\max _{3 \leq x \leq 4}\left|g^{\prime}(x)\right|=4 / 9$ and using the fixed-point method by taking $x_{0}=3$, we have $x_{1}=10 / 3$, we have and

$$
\left|\alpha-x_{n}\right| \leq \frac{(4 / 9)^{n}}{(1-4 / 9)}|10 / 3-3|<10^{-3}
$$

Thus a bound for the number of iterations is

$$
\frac{(4 / 9)^{n}}{(1-4 / 9)}|10 / 3-3|<10^{-3}
$$

and solving for n, we get, $n=8$.
7. An equation $e^{x}=4 x^{2}$ has a root in $[4,5]$. Show that we cannot find that root using $x=g(x)=\frac{1}{2} e^{x / 2}$ for the fixed-point iteration method. Can you find another iterative formula which will locate that root? If yes, then find third iterations with $x_{0}=4.5$. Also find the error bound

Solution: Since $g^{\prime}(x)=\frac{1}{4} e^{x / 2}>0$ for all $x \in(4,5)$, therefore, the fixed-point iteration fails to converge to the root in $[4,5]$. Consider $x=g(x)=\ln \left(4 x^{2}\right)$ and its derivative can be found as, $g^{\prime}(x)=\frac{2}{x}$. Note that $\left|g^{\prime}(x)\right|<1$ for all $x \in(4,5)$ and the fixed-point iteration converges to the root in $[4,5]$. Using the fixed-point iteration method gives the third iteration as $x_{3}=4.3253$. With $k=\max _{4 \leq x \leq 5}\left|g^{\prime}(x)\right|=$ $g^{\prime}(4)=0.5$ and taking $x_{0}=4.5$, we have $x_{1}=4.3944$. Thus the error bound for the above approximation, gives

$$
\left|\alpha-x_{3}\right| \leq \frac{(0.5)^{3}}{(1-0.5)}|4.3944-4.5|=0.0264
$$

Newton Exercises

1. Solve the Problem 1 of bisection' by the Newton's method by taking initial approximation $\mathrm{x}_{0}=-2$.

Solution: Since $f(x)=e^{x}-2-x$ and its derivative is $f^{\prime}(x)=e^{x}-1$. Using the Newton's iterative formula, we get

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=-2-\frac{(0.1353)}{(-0.8647)}=-1.8435
$$

and

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=-1.8435-\frac{(0.0017)}{(-0.8417)}=-1.8414
$$

Thus, the Newton's method gives $x_{2}=-1.8414$, accurate to within 10^{-4}.
2. Let $f(x)=e^{x}+3 x^{2}$
(a) Find the Newton's formula $g\left(x_{k}\right)$.
(b) Start with $x_{0}=4$ and compute x_{4}.
(c) Start with $x_{0}=-0.5$ and compute x_{4}.

Solution: (a) Using the Newton's formula gives

$$
x_{k+1}=g\left(x_{k}\right)=x_{k}-\frac{e^{x_{k}}+3 x_{k}^{2}}{e^{x_{k}}+6 x_{k}}=\frac{\left(x_{k}-1\right) e^{x_{k}}+3 x_{k}^{2}}{e^{x_{k}}+6 x_{k}}
$$

(b) For $x_{0}=4, x_{4}=0.1215$
(c) For $x_{0}=-0.5, x_{4}=-32.1077$
3. Use the Newton's formula for the reciprocal of square root of a number 15 and then find the $3^{r d}$ approximation of number, with $x_{0}=0.05$.

Solution: Let N be a positive number and $x=1 / \sqrt{ } N$. If $f(x)=0$, then $x=\alpha=1 / \sqrt{N}$ is the exact zero of the function

$$
f(x)=1 / x^{2}-N, \quad \text { gives } f^{\prime}(x)=-2 / x^{3}
$$

Hence, assuming an initial estimate to the root, say, $x=x_{0}$ and by using the Newton's iterative formula, we get

$$
x_{1}=x_{0}-\frac{\left(1 / x_{0}^{2}-N\right)}{\left(-2 / x_{0}^{3}\right)}=x_{0}\left(3-N x_{0}^{2}\right) / 2 .
$$

In general, we have

$$
x_{n+1}=x_{n}\left(3-N x_{n}^{2}\right) / 2, \quad n=0,1, \ldots,
$$

Now to find the reciprocal of square root of a number $N=15$, using an initial gauss of say $x_{0}=0.05$, we have

$$
\begin{array}{ll}
n=0, & x_{1}=x_{0}\left(3-N x_{0}^{2}\right) / 2=0.05\left(3-(15)(0.05)^{2}\right) / 2=0.0741 \\
n=1, & x_{2}=x_{1}\left(3-N x_{1}^{2}\right) / 2=0.0741\left(3-(15)(0.0741)^{2}\right) / 2=0.1081 \\
n=0, & x_{3}=x_{2}\left(3-N x_{2}^{2}\right) / 2=0.1081\left(3-(15)(0.1081)^{2}\right) / 2=0.1527
\end{array}
$$

4. Use the Newton's method to find solution accurate to within 10^{-4} of the equation $\tan (x)-7 x=0$, with initial approximation $x_{0}=4$.

Solution: The Newton's method gives $x_{6}=-4.1231 e-014$, accurate to within 10^{-4}.
5. Find the Newton's formula for $f(x)=x^{3}-3 x+1$ in $[1,3]$ to calculate x_{3}, if $x_{0}=1.5$. Also, find the rate of convergence of the method.

Solution: The Newton's method gives $x_{3}=1.5321$. To find the order of convergence, we do the following:

$$
g(x)=x-\frac{x^{3}-3 x+1}{3 x^{2}-3}=\frac{2 x^{3}-1}{3 x^{2}-3}
$$

and its derivative is

$$
g^{\prime}(x)=\frac{6 x^{4}-18 x^{2}+6 x}{\left(3 x^{2}-3\right)^{2}}=\frac{6 x\left(x^{3}-3 x+1\right)}{\left(3 x^{2}-3\right)^{2}}=0
$$

Thus $g^{\prime}(\alpha)=0$, gives at least quadratic convergence.

Secant Exercises

1. Find the positive root of $f(x)=x^{10}-1$ by the secant method by using starting values $x_{0}=1.2$ and $x_{1}=1.1$ accurate to within 10^{-4}.

Solution: Using the secant method gives $x_{0}=1.2$ and $x_{1}=1.1$, so $f(1.2)=5.1917$ and $f(1.1)=1.5937$, and the new approximation

$$
x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}=\frac{(1.2)(1.5937)-(1.1)(5.1917)}{1.5937-5.1917}=1.0557
$$

Similarly, the secant method gives other approximations

$$
x_{3}=1.0192, \quad x_{4}=1.0042, \quad x_{5}=1.0004, \quad x_{6}=1.0000, \quad x_{7}=1.0000
$$

accurate to within 10^{-4}.
2. Find the first three estimates for the equation $x^{3}-2 x-5=0$ by the secant method using $x_{0}=2$ and $x_{1}=3$.

Solution: Using the secant method gives $x_{0}=2$ and $x_{1}=3$, so $f(2)=-1$ and $f(3)=16$, and the first approximation

$$
x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}=\frac{(2)(16)-(3)(-1)}{16+1}=2.0588
$$

second approximation using $x_{1}=3, x_{2}=2.0588, f(3)=16$, and $f(2.0588)=$ -0.3908 , gives

$$
x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}=\frac{(3)(-0.3908)-(2.0588)(16)}{-0.3908-16}=2.0813
$$

and third approximation using $x_{2}=2.0588, x_{3}=2.0813, f(2.0588)=-0.3908$, and $f(2.0813)=-0.1472$ is

$$
x_{4}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)}=\frac{(2.0588)(-0.1472)-(2.0813)(-0.3908)}{-0.1472+0.3908}=2.0948
$$

3. Solve the equation $e^{-x}-x=0$ by using the secant method, starting with $x_{0}=0$ and $x_{1}=1$, accurate to 10^{4}.
Solution: The secant method gives $x_{4}=0.56714$, accurate to within 10^{-4}.
4. Use the secant method to find a solution accurate to within 10^{-4} for $\ln (x)+$ $x-5=0$ on $[3,4]$.
Solution: The secant method gives $x_{3}=3.6934$, accurate to within 10^{-4}.
