Applied II Mathematics Handout Chapter One

- 1. Sequence and Series
- 1.1 Sequence.

1.1.1 Definition and types of sequence

Definition: A sequence is a list of numbers called terms in a specified order. And denoted by $\{a_n\}$ where a_n is called the n^{th} term or general term of the sequence. or

Simply it is defined as a function whose domain is the set of natural number

A sequence can be finite or infinite. A *finite sequence* has a last term and an infinite sequence has no last term

 $\{a_n\}=a_1,\ a_2,\ a_3,\ ...\ a_n,\ a_{n+1}\ ...$ is called an infinite sequence. Whereas,

 $\{a_n\} = a_1, a_2, a_3, \dots a_n$. is called finite sequence.

Types of sequence

- An arithmetic sequence is a sequence in which the difference between successive terms is a fixed number and each term is obtained by adding a fixed amount to the term before it. This fixed amount is called the *common difference*. Arithmetic sequences can be represented by first-degree polynomial expressions.
- A finite arithmetic sequence can be expressed as:

a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ..., a + (n - 1)dwhere **a** is the first term, **d** is the difference between each term, and **a**₊ (**n - 1**)**d** is the last or "nth" term.

Example; {3, 6, 9, 12, 15, 18} is an *arithmetic sequence with* a=3 and d=3

• A geometric sequence is a sequence in which the ratio of successive terms is a fixed number, and each term is obtained by multiplying a fixed amount to the term before it. This fixed amount is called the common ratio.

Terms in a geometric sequence can be represented as:

a, ar, ar^2 , ar^3 , ar^4 , ar^5 , ..., ar^{n-1}

where a is the first term, $ar^{n\text{-}1}$ is the last term and the ratio of successive terms is given by ${\bf r}$

such that:

$$ar/a = r$$
, $ar^2/ar = r$, $ar^3/ar^2 = r$, etc.
Example {2, 4, 8, 16, 32,...}, with $a = 2$ and $r = 2$

1.1.2 Convergence properties of sequence.

Definition; A real number L is said to be a limit of a sequence $\{an\}n \in \mathbb{N}$ if and only if,

for all $\epsilon > 0$ there exists a postive integer N such that;

$$|a_n - L| < \epsilon \text{ for all } n > N$$

We write as

$$\lim_{n\to\infty}a_n=L$$

And *the sequence* $\{a_n\}$ is a convergence sequence **Note**: that this definition holds we have to:

- Guess the value of the limit `
- Assume $\epsilon > 0$ has been given,
- Find N ϵ N such that $|a_n L| < \epsilon$ i.e L- $\epsilon < a_n < L + \epsilon$ for all $n \ge N$

If $\lim_{n\to\infty} a_n$ doesn't exist, we say that $\{a_n\}$ diverges.

 $\lim_{n\to\infty} a_n = \infty$, means that the sequence $\{a_n\}$ diverges to infinity. *i.e* if for every number M, there is an integer N, such that for all n $> N, a_n > M$ Similarly; if for every number m, there is an integer N, such that for all n > N, we have $a_n < m$,

Then we say $\{a_n\}$ diverges to negative infinity and we write

$$\lim_{n\to\infty}a_n=-\infty, or \ a_n\to-\infty$$

Generally: A sequence which has a limit is said to be convergent and A sequence with no limit is called divergent.

Theorem 1:1 if the sequence of a real numbers $\{an\}n \in \mathbb{N}$ has a limit then, this limit is unique.

Proof; assume let $\{an\}n \in \mathbb{N}$ denote a convergence sequence with two limits say L_1 and L_2

with $L_1 \neq L_2$

Now choose $\epsilon = \frac{1}{2}|L_1 - L_2|$

Since L_1 is a limit of $\{an\}n\in\mathbb{N}$, then to find $N_1\in\mathbb{N}$ such that $|a_n - L_1| < \epsilon \text{ for all } n \ge N_1$

Similarly;

Since L_2 is a limit of $\{an\}n\in\mathbb{N}$ then, to find $N_2 \in \mathbb{N}$ such that $|a_n - L_2| < \epsilon$ for all $n \ge N_2$ Choose any $n \ge \max\{N_1, N_2\}$ then $|L_1 - L_2| = |L_1 - a_n + a_n - L_2|$ $\le |L_1 - a_n| + |a_n - L_2|$ $< \epsilon + \epsilon$

$$= 2\epsilon \quad \text{but from the choice of } \epsilon = \frac{1}{3}|L_1 - L_2|$$
$$= \frac{2}{3}|L_1 - L_2|$$
$$= L_2| < \frac{2}{3}|L_1 - L_2| \quad L_1 \neq L_2 \text{ This contradicts}$$

 $|L_1 - L_2| < \frac{2}{3}|L_1 - L_2|$, $L_1 \neq L_2$, This contradicts Therefore our assumption is false, so the theorem is true.

Limit properties for sequences

If $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ both exist, then the following properties hold true;

- $\lim_{n\to\infty} ca_n = c(\lim_{n\to\infty} a_n)$ for any constant c.
- $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n.$

•
$$\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} a_n).$$

•
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ if } b_n \neq 0 \text{ for all } n$$

and
$$\lim_{n \to \infty} b_n \neq 0$$

The next three theorems are often helpful in finding limits of sequences.

Theorem1.2

If $\lim_{n\to\infty} a_n = L$, and f is a function whose domain includes L and a_n for $n \ge N$, and if f is continuous at x = L, then; $\lim_{n\to\infty} f(a_n) = f(L)$ Let $f(x) = x^k$ for k a postive integer, is continuous

for all x, we have;

$$\lim_{n\to\infty} (a_n)^k = L^k.$$

Provided the sequence $\{a_n\}$ converges to L. similarly,

$$\lim_{n\to\infty}\sqrt[k]{a_n}=\sqrt[k]{L}.$$

Provided $a_n > 0$ and L > 0 for even ordered k^{th} roots.

Theorem 1.3 Let
$$\{a_n\}$$
 be a sequence and f a function such that,
 $f(n) = a_{n}, \qquad n = 1, 2, 3, ...$

If

Then also,

 $\lim_{x\to\infty} f(x) = L.$ $\lim_{n\to\infty} a_n = L.$

Example, find the limit of each of the following sequences.

$$\{\frac{\ln n}{n}\}$$
 b. $\{\frac{\ln(2+e^n)}{3n}\}$ c. $\{(1+3n)^{\frac{1}{n}}\}$

Solution,

a.
$$a_n = \frac{\ln n}{n}$$
, Let $f(x) = \frac{\ln x}{x}$
 $\Rightarrow f(n) = \frac{\ln n}{n} = a_n$. Then by **Theorem 1.3**
 $\lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x}$
 $= \lim_{x \to \infty} \frac{1}{x} = 0$ (Applying L'hopital's rule)

b.
$$a_n = \frac{\ln(2+e^n)}{3n}$$
, let $f(x) = \frac{\ln(2+e^x)}{3x}$,
 $\Rightarrow f(n) = \frac{\ln(2+e^n)}{3n}$. Then by **Theorem 1.3**
 $\lim_{n\to\infty} \frac{\ln(2+e^n)}{3n} = \lim_{n\to\infty} a_n = \lim_{x\to\infty} f(x) =$
 $\lim_{x\to\infty} \frac{\ln(2+e^x)}{3x} = \lim_{x\to\infty} \frac{e^x/(2+e^x)}{3x} = \lim_{x\to\infty} \frac{1}{6e^{-x}+3}$
 $= \frac{1}{3}$ (Applying L'hopital's rule)

c.
$$a_n = (1+3n)^{\frac{1}{n}}$$
.
let $y = (1+3x)^{\frac{1}{x}} \implies \ln y = \ln(1+3x)^{\frac{1}{x}} = \frac{\ln(1+3x)}{x}$
 $\implies \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln(1+3x)}{x}$
 $= \lim_{x \to \infty} \frac{3/(1+3x)}{1}$
 $\ln \lim_{x \to \infty} y = 0$
 $\lim_{x \to \infty} y = e^0 = 1$
 $\lim_{x \to \infty} (1+3x)^{\frac{1}{x}} = 1.$

Then by **Theorem 1.3**,
$$\lim_{n \to \infty} (1 + 3n)^{\frac{1}{n}} = 1$$

Theorem 1.4 The Squeeze Theorem for Sequence.

If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L$ and if for all sufficiently Large n the inequality $a_n \le c_n \le b_n$ holds true, then;

$$\lim_{n\to\infty}c_n=L$$

Example; Find the limit of the sequences.

a.
$$\left\{\frac{n\sin n}{1+n^2}\right\}$$
 b. $\left\{\frac{3+(-1)^n}{n^2}\right\}$ c. $\left\{\sqrt{n+2}-\sqrt{n}\right\}$.

Solution;

a;
$$a_n = \frac{n \sin n}{1+n^2} \implies \left|\frac{n \sin n}{1+n^2}\right| \le \frac{n}{1+n^2} < \frac{n}{n^2} = \frac{1}{n}$$

$$\implies -\frac{1}{n} \le \frac{n \sin n}{1+n^2} \le \frac{1}{n}$$
$$\lim_{n \to \infty} -\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Then by Squeeze Theorem

b.
$$a_n = \frac{3+(-1)^n}{n^2} \implies 0 < \frac{3+(-1)^n}{n^2} \le \frac{4}{n^2}$$

$$\lim_{n\to\infty} 0 = \lim_{n\to\infty} \frac{4}{n^2} = 0$$

Then by Squeeze Theorem

$$\lim_{n\to\infty}\frac{3+(-1)^n}{n^2}=0$$

c.
$$a_n = \sqrt{n+2} - \sqrt{n}$$
 $\implies (\sqrt{n+2} - \sqrt{n}) \left(\frac{\sqrt{n+2} + \sqrt{n}}{\sqrt{n+2} + \sqrt{n}}\right) = \frac{n+2-n}{\sqrt{n+2} + \sqrt{n}} < \frac{2}{2\sqrt{n}} = \frac{1}{\sqrt{n}}$

$$\Rightarrow 0 < \sqrt{n+2} - \sqrt{n} < \frac{1}{\sqrt{n}}.$$
$$\lim_{n \to \infty} 0 = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

Then by Squeeze Theorem

$$\lim_{n\to\infty}\sqrt{n+2}-\sqrt{n}=0$$

Recursive Definition of Sequence.

Sometimes sequences are defined recursively by giving

- The value of the initial term or terms, and
- A rule called a recursion formula, for calculating any later term from terms that precede it.

i.e the formula giving a_n in terms of a_{n-1} is called recursion formula.

The best known sequence defined recursively is the **Fibonacci** sequence, defined by

 $f_1 = 1, f_2 = 1, and f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$ The number f_n are called **Fibonacci numbers**.

Monotonicity and Boundedness

Definition; A sequence $\{a_n\}$ is said to be

- Increasing if $a_n \le a_{n+1}$ for all postive integer n
- Decreasing if $a_n \ge a_{n+1}$ for all postive integer n.
- A sequence that is either always increasing or always decreasing is said to be monotone.

Example: show that each of the following sequence is monotone.

a.
$$\left\{\frac{2n+3}{n}\right\}$$
 b. $\left\{\frac{n}{\sqrt{1+n^2}}\right\}$ c. $\left\{\frac{n!}{n^n}\right\}$
Solution: a, $a_n = \frac{2n+3}{n}$ and $a_{n+1} = \frac{2(n+1)+3}{n+1}$

$$a_{n+1} - a_n = \frac{2(n+1)+3}{n+1} - \frac{2n+3}{n}$$

= $\frac{(2n+5)n - (2n+3)(n+1)}{n(n+1)}$
= $\frac{2n^2 + 5n - (2n^2 + 5n + 3)}{n(n+1)} = \frac{-3}{n(n+1)} < 0$
 $a_{n+1} - a_n < 0, \implies a_{n+1} < a_n$

 \Rightarrow a_n is strictly decreasing, so it is monotone.

b, $a_n = \frac{n}{\sqrt{1+n^2}}$

Consider a function for which $f(n) = a_n$

$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

Taking its derivative, we have $f'(x) = \frac{1+x^2-x^2}{(1+x^2)^{\frac{3}{2}}} = \frac{1}{(1+x^2)^{\frac{3}{2}}} > 0$

f'(x) > 0 for all $x \to f$ is an increasing function. Thus since $f(n) = a_n$, we see that $\{a_n\}$ is also increasing, so it is monotone.

Tests for monotonicity

- 1. if $\begin{cases} a_{n+1} a_n \ge 0 \text{ for all } n, \text{ then } \{a_n\} \text{ is increasing} \\ a_{n+1} a_n \le 0 \text{ for all } n, \text{ then} \{a_n\} \text{ is decreasing} \end{cases}$
- 2. Let f(x) be continuous function with $f(n) = a_n$. calculate f'(x) if it exists.
- 3. If $\begin{cases} f'(x) \ge 0 \text{ on}[1,\infty), \text{ then } \{a_n\} \text{ is increasing.} \\ f'(x) \le 0 \text{ on } [1,\infty), \text{ then } \{a_n\} \text{ is decreasing} \end{cases}$
- 4. if $a_n > 0$ for all n, calculate the ratio $\frac{a_{n+1}}{a_n}$.

$$if \begin{cases} \frac{a_{n+1}}{a_n} \ge 1 \text{ for all } n, \text{ then } \{a_n\} \text{ is increasing.} \\ \frac{a_{n+1}}{a_n} \le 1 \text{ for all } n, \text{ then } \{a_n\} \text{ is decreasing.} \end{cases}$$

Definition:

A sequence $\{a_n\}$ is said to be bounded if there is some positive constant number M such that

$$a_n \leq M$$

for all positive integer n.

A sequence $\{a_n\}$ is said to be bounded from;

- Above, if there is some real number M, such that, a_n ≤ M for all n, M is upper bound for {a_n} and no number less than M is an upper bound for {a_n}, then M is the least upper bound for {a_n}.
- Below, if there is some real number m, such that, $a_n \ge m$ for all n, m is a lower bound for $\{a_n\}$ and no number greater than m is a lower bound for $\{a_n\}$, then m is the greatest lower bound for $\{a_n\}$.
- If $\{a_n\}$ is bounded from above and below, then $\{a_n\}$ is bounded. If $\{a_n\}$ is not bounded, then we say that $\{a_n\}$ is unbounded sequence.

Note: convergence of a power sequence

If r is fixed number such that

- |r| < 1, then $\lim_{n \to \infty} r^n = 0$
- r = 1, then $\lim_{n \to \infty} r^n = 1$
- For all other value of *r*, the sequence diverges.

Definition; A sequence $\{a_n\}$ of real numbers is called a Cauchy sequence if for each $\epsilon > 0$ there is a number $N \in \mathbb{N}$ so that

if m; $n > \mathbb{N}$ then $|a_n - a_m| < \epsilon$. **Note**; Convergent sequences are Cauchy sequences. Proof: Suppose that $\lim a_n = L$. Note that $|a_n - a_m| = |a_n - L + L - a_m| \le |a_n - L| + |a_m - L|$. Thus, given any $\epsilon > 0$ there is an $\mathbb{N} \in \mathbb{N}$ so that if $k > \mathbb{N}$ then $|a_k - L| < \epsilon$. Thus, if m; $n > \mathbb{N}$ we have $|a_n - a_m| \le |a_n - L| + |a_m - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ Thus, $\{a_n\}$ is a Cauchy sequence.

Theorem 1.5: Monotone Bounded Sequence Theorem

If $\{a_n\}$ is a sequence of real numbers that is both monotone and bounded, then it is converges.

Theorem 1.6 Every convergent sequence is bounded. But the converse is not always true.

Proof: Let $\{a_n\}_{n\geq 1}$ converge to a. Then there exists an $N\in\mathbb{N}$ such that $|a_n-a|<1=\varepsilon$ for $n\geq N.$ It follows that $|a_n|<1+|a|$ for $n\geq N.$ Define $M=max\{1+|a|,\,|a_1|,\,|a_2|,\,\ldots\,|a_{n-1}|\}.$ Then $|a_n|< M$ for every $n\in\mathbb{N}$.

To see that the converse is not true, it suffices to consider the sequence $\{(-1)^n\}_{n\geq 1}$, which is bounded but not convergent, although the odd terms and even terms both form convergent sequences with different limits.

Example: show that the sequence $\left\{\frac{1.3.5...(2n-1)}{2.4.6...(2n)}\right\}$ converges.

Solution; the first few terms of this sequence are,

$$a_{1} = \frac{1}{2} \qquad a_{2} = \frac{1.3}{2.4} = \frac{3}{8} \qquad a_{3} = \frac{1.3.5}{2.4.6} = \frac{15}{48} = \frac{5}{16}$$
$$a_{4} = \frac{1.3.5.7}{2.4.6.8} = \frac{35}{128} \dots$$

 $\frac{1}{2} > \frac{3}{8} > \frac{5}{16} > \frac{35}{128} > \cdots$ $\Rightarrow the sequence is decreasing (i.e it is monotonic)$ Generally;

we can show that,
$$a_{n+1} < a_{n} \Rightarrow \frac{a_{n+1}}{a_n} < 1$$
, $a_n > 0$ for all n

$$\frac{a_{n+1}}{a_n} = \frac{\frac{1.3.5...(2(n+1)-1)}{2.4.6...(2(n+1))}}{\frac{1.3.5...(2n-1)}{2.4.6...(2n)}}$$

$$= \frac{1.3.5...(2n+1)}{2.4.6...(2n+2)} \cdot \frac{2.4.6...(2n)}{1.3.5...(2n-1)} = \frac{2n+1}{2n+2}$$

$$< 1$$

$$\frac{a_{n+1}}{a_n} < 1 \Rightarrow a_{n+1} < a_n \text{ for any } n > 0. \text{ hence } \{a_n\} = \left\{\frac{1.3.5...(2n-1)}{2.4.6...(2n)}\right\} \text{ is a decreasing sequence.}$$

 $a_n > 0$ for all n it follows that $\{a_n\}$ is bounded below by 0 . Thus by MBCT

$$\{a_n\} = \left\{\frac{1.3.5...(2n-1)}{2.4.6...(2n)}\right\}$$
 Converges.

1.1.3 Subsequence;

Definition: Let $\{a_n\}$ be a sequence. When we extract from this sequence only certain elements and drop the remaining ones we obtain a new sequences consisting of an infinite subset of the original sequence. That sequence is called a **subsequence** and denoted by $\{a_{nk}\}$.

Theorem 1.6;

• If {a_n} is a convergent sequence, then every subsequence of that sequence converges to the same limit.

- If is a sequence such that every possible subsequence extracted from that sequences converges to the same limit, then the original sequence also converges to that limit.
- Let {a_n} be a sequence of real numbers that is bounded. Then there exists a subsequence {a_{nk}} that converges.

1.2 Infinite Series.

Definition; given a sequence of numbers a_n , an expiration of the form

$$a_1 + a_2 + a_3 + a_4 + \dots$$

is an infinite series. The number a_n is the nth term of the series. The sequence $\{s_n\}$ defined by

$$s_{1} = a_{1}$$

$$s_{2} = a_{1} + a_{2}$$

$$s_{3} = a_{1} + a_{2} + a_{3}$$

$$s_{4} = a_{1} + a_{2} + a_{3} + a_{4}$$

$$\vdots$$

$$s_{n} = a_{1} + a_{2} + a_{3} + a_{4} \dots a_{n} = \sum_{k=1}^{n} a_{k}$$

$$\vdots$$

is the sequence of partial sums of the series, the number s_n being the nth partial sum.

• If the sequence of partial sums converges to a limit L (i.e; $\lim_{n\to\infty} s_n = L$), we say that the series converges and that its sum is L. we also write

$$a_1 + a_2 + a_3 + a_4 \dots + a_n = \sum_{k=1}^n a_k = L$$

If the sequence of partial sums of the series does not converge, ٠ (i.e; $\lim_{n\to\infty} s_n = \infty$ or does not exist), we say that the series diverges

In general •

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} (a_1 + a_2 + a_3 + a_4 \dots a_n)$$

Provided the limit on the right exist, i.e $\lim_{n\to\infty} s_n = s$ Given any positive number ϵ , there is a positive number N such that for all n > N, $|s_n - s| < \epsilon$

Geometric Series

A geometric series is an infinite series of the form

 $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \cdots,$

in which **a** is its first term with $a \neq 0$ and **r** is called the common ratio

If r = 1 the nth partial sum of the geometric series is,

$$s_n = a + a(1) + a(1)^2 + a(1)^2 + \dots + a(1)^{n-1} = na.$$

the series diverge because:

And the series diverge because;

 $\lim_{n\to\infty} s_n = \pm \infty$, depend on the sign of a. If r = -1 the series diverges because the n^{th} partial sums alternate between **a** and **0**

If $r \neq 1$ we can determine the convergence or divergence of the series in the following way;

$$s_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$

$$rs_n = ra + ar^2 + ar^3 + ar^4 + \dots + ar^n$$

$$s_n - rs_n = a - ar^n$$

$$s_n(1-r) = a(1-r^n)$$

 $s_n = \frac{a(1-r^n)}{(1-r)}$ $r \neq 1$

If |r| < 1, the geometric series $a + ar + ar^2 + ar^3 + ar^3$ \cdots converges to $\frac{a}{1-r}$ since $r^n \to 0$ as $n \to \infty$, and $\sum_{i=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$

If |r| > 1, the geometric series diverges.

Example; determine whether each of the following series is convergent or divergent. If convergent find the sum.

a.
$$2 - 1 + \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \dots$$

b. $\sum_{n=1}^{\infty} (\frac{5}{4})^n$

Solution:

a. The series is geometric with a=2 and $r = -1 \div 2 = -\frac{1}{2}$,

$$\begin{vmatrix} -\frac{1}{2} \end{vmatrix} = \frac{1}{2} < 1$$

Therefore the series is converges to

$$\frac{a}{1-r} = \frac{2}{1+1/2} = 4/3$$

b. $\sum_{n=1}^{\infty} (\frac{5}{4})^n = \sum_{n=1}^{\infty} \frac{5}{4} (\frac{5}{4})^{n-1}$ the series is geometric with
 $a = \frac{5}{4}$ and $r = \frac{5}{4}$
 $\left| \frac{5}{4} \right| = \frac{5}{4} > 1$

Therefore the series is diverges and it has no sum.

Example: Find the rational number represented by the repeating decimal 0.784784784 . . .

Solution. We can write

0.784784784... = 0.784 + 0.000784 + 0.000000784 + ...so the given decimal is the sum of a geometric series with a =0.784 and r = 0.001. Thus.

0:784784784 ... = $\frac{a}{1-r} = \frac{0.784}{1-0.001} = \frac{784}{999}$

Theorem 1.7

1. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$, but not the converse.

Proof: let s_n the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$ that is,

$$s_n = a_1 + a_2 + a_3 + a_4 \dots + a_n$$
 then,

if n > 1, we also have,

$$s_{n-1} = a_1 + a_2 + a_3 + a_4 \dots + a_{n-1}$$

 $s_n - s_{n-1} = a_n$ since the series converges $\lim_{n\to\infty} s_n = s$. but $n \to \infty$, we also $n - 1 \to \infty$, so $\lim_{n\to\infty} s_{n-1} = s$. Thus $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (s_n - s_{n-1}) = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1} = s - s$ = 0.

- 2. $\sum_{n=1}^{\infty} a_n \text{ diverge, if } \lim_{n \to \infty} a_n \neq 0 \text{ or does not exist.}$ Example;
- The series $\sum_{k=1}^{\infty} \frac{k}{k+1} = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{k}{k+1} + \dots$ diverges since

$$\lim_{k \to \infty} \frac{k}{k+1} = \lim_{k \to \infty} \frac{1}{1+1/k} = 1 \neq 0$$

- The series $\sum_{n=1}^{\infty} (-1)^n \text{ diverges, since } \lim_{n\to\infty} (-1)^n \text{ does not exist.}$
- The series $\sum_{n=1}^{\infty} n^2$ diverges, since $\lim_{n\to\infty} n^2 = \infty$.

• The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ diverges. This is an example of a series where $\lim_{n\to\infty} a_n = 0$, but $n = 1 \infty$ and iverges.

Property of convergent series

If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series, and if c is any constant, then

- $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$ converges.
- $\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$ converges.
- if $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} b_n$ diverges then $\sum_{n=1}^{\infty} (a_n \pm b_n)$ diverges.
- If $\sum_{n=1}^{\infty} a_n$ diverges and $c \neq 0$ then $\sum_{n=1}^{\infty} ca_n$ diverges.
- $if \sum_{n=1}^{\infty} a_n converges, then \sum_{n=k}^{\infty} a_n converges for any$ $k > 1, and \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 \dots + a_{k-1} + \sum_{n=k}^{\infty} a_n.$ Conversely, $if \sum_{n=k}^{\infty} a_n converges for any, k > 1$ then $\sum_{n=1}^{\infty} a_n converges.$

1.2.1 Test of Convergence.

The integral test.

The series $\sum_{n=1}^{\infty} a_n$ of nonnegative terms converges, iff its partial sum is bounded from above.

Theorem 1.8: the integral test.

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, Where *f* is continuos, postive, decreasing function of *x* for all $x \ge N$ (N > 0). Then the series $\sum_{n=1}^{\infty} a_n$ and the integral $\int_N^{\infty} f(x) dx$ both converge or both diverge

Example: show that the p – series

 $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots \text{ converges if } p > 1, \text{ and diverges if } p \le 1.$

Solution: if p > 1, then $f(x) = \frac{1}{x^p}$ is a positive decreasing function for x > 1. Since

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \lim_{b \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{b}$$
$$= \frac{1}{1-p} \lim_{b \to \infty} \left(\frac{1}{b^{p-1}} - 1 \right) = \frac{1}{p-1}$$

the improper integral converges.

Then the series converges by the integral test. But it does not tell the sum of the p- series.

If
$$p < 1$$
, then $1 - p > 0$ and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{1-p} \lim_{b \to \infty} (b^{1-p} - 1) = \infty. \text{ diverge.}$$

Then the series diverges by integral test

If p = 1 we have the divergence harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Therefore, p – series is convergence series for p > 1 but divergence for all other values of p.

Example: show that $\sum_{n=1}^{\infty} \left(\frac{1}{n^2+1}\right)$ convergent. **Solution:** let $f(x) = \frac{1}{x^2+1}$ is continues, positive, and decreasing for x > 1, and

$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{b \to \infty} [\arctan x]_{1}^{b} = \lim_{b \to \infty} [\arctan b - \arctan 1] = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$
 Convergent.

Then, the series converges by the integral test. But we do not know the value of its sum.

Theorem 1.10; Comparison test.

 $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series of non negative terms, with $a_n \leq b_n$ for all n.

- If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges. Limit comparison test

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N(N \text{ an integer})$

- If $\lim_{n\to\infty} \frac{a_n}{b_n} = L > 0$ then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverges.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverge, then

 $\sum_{n=1}^{\infty} a_n$ diverge.

Example: test each of the following series for convergence or divergence.

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$
 b. $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n+4}$ c. $\sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$

Solution:

a. Let
$$a_n = \frac{1}{n^2 + 2n} < \frac{1}{n^2} = b_n$$

 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent p - series, then
 $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$ is convergent by comparition test
b. Let $a_n = \frac{\sqrt[3]{n}}{n+4}$ for large n is like $\frac{\sqrt[3]{n}}{n} = \frac{1}{\sqrt[3]{n^2}} = b_n$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt[3]{n}}{n+4}}{\frac{1}{\sqrt[3]{n^2}}} = \lim_{n \to \infty} \frac{n}{n+4} = 1,$$

Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$ diverges p- series with $p = \frac{2}{3}$.
 $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n+4}$ diverges by the limit comparition test,
c. Let $a_n = \frac{1+n\ln n}{n^2+5}$ for large n we expect a_n to behave like
 $\frac{n\ln n}{n^2} = \frac{\ln n}{n} > \frac{1}{n}$ for $n \ge 3$
So let $b_n = \frac{1}{n}$. since,

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} diverges, \text{ and}$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1+n\ln n}{n^2+5}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n+n^2\ln n}{n^2+5} = \infty$$

Therefore by limit comparison test $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1+n\ln n}{n^2+5}$ diverges.

The ratio and root tests

The ratio test.

Let $\sum_{n=1}^{\infty} a_n$ be a series of non negative terms, and suppose that

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = p$$
. Then

- a. the series converges if p < 1
- b. The series diverges if p > 1
- c. The test is inconclusive if p = 1

Example: investigates the convergence of the following series.

a.
$$\sum_{n=1}^{\infty} \frac{n}{4^n}$$
 b. $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$ c. $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$

Solution:

a. Let
$$a_n = \frac{n}{4^n} \implies a_{n+1} = \frac{n+1}{4^{n+1}}$$
.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{n+1}{4^{n+1}}}{\frac{n}{4^n}} = \lim_{n \to \infty} \frac{n+1}{4^n} = \frac{1}{4} < 1$$
. Thus By ratio test $\sum_{n=1}^{\infty} \frac{n}{4^n}$ converges.

b. Let
$$a_n = \frac{(2n)!}{n!n!} \implies a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \lim_{n \to \infty} \frac{n!n!(2n+2)(2n+1)(2n)!}{n!n!(n+1)(n+1)(2n)!}.$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \lim_{n \to \infty} \frac{4n+2}{n+1} = 4 > 1.$$

Thus,

By ratio test
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$$
 is diverges.
c. Let $a_n = \frac{4^n n!n!}{(2n)!} \implies a_{n+1} = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)!}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)!}}{\frac{4^n n! n!}{(2n)!}}$$

$$= \lim_{n \to \infty} \frac{4^{n+1}(n+1)!(n+1)!(n+1)!}{(2n+2)(2n+1)!(2n)!} \cdot \frac{(2n)!}{4^n n! n!}$$

$$= \lim_{n \to \infty} \frac{4^{(n+1)(n+1)}}{(2n+2)(2n+1)} = \lim_{n \to \infty} \frac{2^{(n+1)}}{(2n+1)} = 1.$$

Thus

We cannot decide by ratio test.

Root test.

Let $\sum_{n=1}^{\infty} a_n$ be a series of non negative terms for $n \ge N$. and suppose that

$$\lim_{n\to\infty} \sqrt[n]{a_n} = p$$
. Then

- a. the series converges if p < 1
- b. The series diverges if p > 1
- c. The test is inconclusive if p = 1

Example: Investigates the convergence of the following series

a.
$$\sum_{n=1}^{\infty} \frac{4^n}{(3n)^n}$$
 b. $\sum_{n=1}^{\infty} (\frac{4n+3}{3n-5})^n$.

Solution:

a. Let
$$a_n = \frac{4^n}{(3n)^n} \implies \sqrt[n]{a_n} = \sqrt[n]{\frac{4^n}{(3n)^n}} = \frac{4}{3n}$$
.
 $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{4}{3n} = 0 < 1$. Thus by root test,
 $\sum_{n=1}^{\infty} \frac{4^n}{(3n)^n}$ converges.
b. Let $a_n = (\frac{4n+3}{3n-5})^n \implies \sqrt[n]{a_n} = \sqrt[n]{(\frac{4n+3}{3n-5})^n} = \frac{4n+3}{3n-5}$.
 $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{4n+3}{3n-5} = \frac{4}{3} > 1$. Thus by root,
Test the series, $\sum_{n=1}^{\infty} (\frac{4n+3}{3n-5})^n$ diverges.

1.3 Alternating series, absolute and conditional convergence. Alternating series.

Definition;

A series in which the terms are alternately positive and negative is an **alternating series**.

Example; the nth term of an alternating series is of the form,

 $a_n = (-1)^{n+1}u_n$ or $a_n = (-1)^n u_n$ where $u_n = |a_n|$ is a positive number.

Alternating series test

If $a_n > 0$, for all n and the following two conditions are satisfied

- $a_{n+1} \leq a_n$ and,
- $\lim_{n\to\infty} a_n = 0$, then;
- The series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.

Example; show that the alternating harmonic series,

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 Converges.

Solution: $a_n = \frac{1}{n}$ let the series is alternating series in which,

• $\frac{1}{n+1} < \frac{1}{n} \implies a_{n+1} \le a_n$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

Therefore by the alternate series test $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.

Absolute and conditional convergence. Definition:

- the series $\sum_{n=1}^{\infty} a_n$ is said to be absolutely convergent, if $\sum_{n=1}^{\infty} |a_n|$ converges.
- If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, then $\sum_{n=1}^{\infty} a_n$ is said to be conditionally convergent.
- If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then it is convergent.

Example: Determine whether each converges conditionally, converges absolutely or diverges.

a.
$$\sum_{n=1}^{\infty} \frac{\sin n + \cos n}{n^3}$$
. b. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

Solution:

a. Let $a_n = \frac{\sin n + \cos n}{n^3}$, since $\sin n + \cos n \le 2$ is both positive and negative.

$$\frac{|\sin n + \cos n|}{n^3} \le \frac{2}{n^3} \text{ and } \sum_{n=1}^{\infty} \frac{2}{n^3} \text{ converges. Since it is a } p - series with } p = 3. \text{ Thus },$$

$$\sum_{n=1}^{\infty} \left| \frac{\sin n + \cos n}{n^3} \right| = \sum_{n=1}^{\infty} \frac{|\sin n + \cos n|}{n^3} \text{ Converges, by comparison test.}$$
Therefore $\sum_{n=1}^{\infty} \frac{\sin n + \cos n}{n^3}$ is absolutely convergent.
b. Let $a_n = \frac{(-1)^{n-1}}{\sqrt{n}}$

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \left| \frac{1}{\sqrt{n}} \right|$$
 is diverges absolutely. But

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}.$$

$$let b_n = \frac{1}{\sqrt{n}}, \quad b_{n+1} = \frac{1}{\sqrt{n+1}}, \implies b_{n+1} > b_n \text{ and,}$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

ł

Then by alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$. Converges.

Chapter Two

2. Power Series

2.1 **Definition of Power series**.

Definition: A power series about x = 0 is a series of the form, $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n \dots$, and A power series about x = a is a series of the form, $\sum_{n=0}^{\infty} c_n (x - a)^n = c_0 + c_1 (x - a) + c_2 (x - a)^2 + c_3 (x - a)^3 + \dots + c_n (x - a)^n \dots$ in which the center a and the coefficients c_0 , c_1 , c_2 , $c_3 \dots c_n$, ... are constants. **Example:** consider a geometric series, $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n + \dots$ with first term 1 and ratio x. it converges to $\frac{1}{1-x}$ for |x| < 1.

We express this fact by writing.

 $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots, \quad -1 < x < 1.$ it is also called a power series with all the coefficients equal to 1 of the first form.

Example: consider the power series of the second form.

$$1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 - \dots + (-\frac{1}{2})^n(x - 2)^n + \dots, 0 < x < 4.$$

With a= 2, $c_0 = 1$, $c_1 = -1/2$, $c_2 = 1/4$, ... $c_n = (-\frac{1}{2})^n$. this is a geometric series with the first term 1 and ratio $r = -(\frac{x-2}{2})$ the series converges for $\left|-(\frac{x-2}{2})\right| < 1$ or $0 < x < 4$. Then the sum is,
 $\frac{1}{1-r} = \frac{1}{1+\frac{x-2}{2}} = \frac{2}{x}$. Therefore,
 $\frac{2}{x} = 1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 - \dots + (-\frac{1}{2})^n(x - 2)^n + \dots,$
 $0 < x < 4$.

Theorem 2.1. The convergence theorem for power series. If the power series,

 $f(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$ converges at $x = a \neq 0$, then it converges absolutely for all x with |x| < |c|. If the series diverges at x = d then it diverges for all x with |x| > |d|

2.2. Radius of Convergence and Interval of Convergence.

The convergence of the series.

 $\sum_{n=0}^{\infty} c_n (x-a)^n$ is described by one of the following three cases

- The series converge absolutely for every x ($R = \infty$)
- There is a positive number R such that the series diverges ٠ for x with |x - a| > R but converge absolutely for x with |x - a| < R. The series may or may not converge at either of the end points x = a - R and x = a + R
- The series converge at x = a and diverge all the rest ٠ (R = 0)

Where, the number R in each case is called the radius of convergence of the series. For convenience, if the first case holds we agree to call the radius of convergence is $R = \infty$, if the second case holds R = x - a, and the last case holds R = 0.

If |x - a| < R. Then the series converges on the intervals

(a-R, a+R), [a-R, a+R], [a-R, a+R) or (a-R, a+R] depends on the series converges at a-R or a+R and these intervals are called intervals of convergence. When R=0 the interval of convergence degenerates to the single point x = 0, and if $R = \infty$, it is the entire real line $(-\infty, \infty)$.

Using the Ratio Test to Find the Radius of Convergence.

When $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists, the radius of convergence can be found using the ratio test.

Examples: find the radius and intervals of convergence of the series.

a.
$$\sum_{n=0}^{\infty} \frac{x^n}{2n+1}$$
 b. $\sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^n}{(n+1)^2 3^n}$ c. $\sum_{n=0}^{\infty} n! (2x-1)^n$
Solution;

a. $a_n = \frac{x^n}{2n+1}$, ratio test is applicable only to series of positive terms, and since x can be either positive or negative, so we must consider in absolute value.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{2(n+1)+1}}{\frac{x^n}{2n+1}} \right|$$
$$= \lim_{n \to \infty} \left| \frac{x^{n+1}}{2n+3} \cdot \frac{2n+1}{x^n} \right|$$
$$= \lim_{n \to \infty} \frac{2n+1}{2n+3} |x| = |x|.$$

n

The series converges absolutely when |x| < 1 and diverges when |x| > 1. Therefore the radius of convergence is R = 1. If $x = 1 \sum_{n=0}^{\infty} \frac{1}{2n+1} = 1 + \frac{1}{3} + \frac{1}{5} + \dots$ $a_n = \frac{1}{2n+1} let b_n = \frac{1}{n}$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{2n+1} \div \frac{1}{n} = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$ $\lim_{n\to\infty}\frac{1}{n}$ is divergent harmonic series, then by limit Comparison test $\sum_{n=0}^{\infty} \frac{1}{2n+1}$ is diverges. If x = -1, $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ this series is an alternating series, and $\frac{1}{2n+1}$ decrease monotonically to 0 thus the series converges. Therefore the complete interval of convergence of the original series is $-1 \le x < 1$. b. Consider the limit

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-2)^{n+1}}{(n+2)^2 3^{n+1}} * \frac{(n+1)^2 3^n}{(-1)^n (x-2)^n} \right|$$

 $=\lim_{n\to\infty}\frac{1}{3}(\frac{n+1}{n+2})^2|x-2| = \frac{|x-2|}{3}$. Thus by the ratio test the series converges absolutely If $\frac{|x-2|}{3} < 1$, $\implies |x-2| < 3$ and diverge If |x-2| > 3. Now we test the value $(x-2) = \pm 3$ If (x-2) =3 $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{(n+1)^{2} 3^{n}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{2}}$ this series is converges absolutely, since it is p – series with p=2. If (x-2) = -3 $\sum_{n=0}^{\infty} \frac{(-1)^n (-3)^n}{(n+1)^2 3^n} = \sum_{n=0}^{\infty} \frac{(-1)^n (-1)^n 3^n}{(n+1)^2 3^n}$ $=\sum_{n=0}^{\infty}\frac{1}{(n+1)^2}$ is a convergence P series with p = 2. Therefore the complete interval of convergence is defined as $|x-2| \le 3$, $\implies -3 \le x-2 \le 3$ $\Rightarrow -1 < x < 5$ Thus the interval of Convergence is [-1,5]c. Let $a_n = n! (2x - 1)^n$ $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!(2x-1)^{n+1}}{n!(2x-1)^n} \right|$ $= \lim_{n \to \infty} (n+1) |(2x-1)|$ Now for all $x \neq \frac{1}{2}$ the series diverges, so R=0 and interval of Convergence is a single point $\{\frac{1}{2}\}$ d. If $a_n = \frac{nx^n}{135(2n-1)}$ then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{1 \cdot 3 \cdot 5 \cdot (2n+1)} \cdot \frac{1 \cdot 3 \cdot 5 \cdot (2n-1)}{n \cdot n} \right|$ $=|x| \lim_{n\to\infty} \frac{n+1}{2n+1} = 0$ for all x. The series converges $\implies R = \infty$, and interval of

The series converges $\implies R = \infty$, and interval of convergence $=(-\infty, \infty)$

2.3. Arithmetic Operations on Convergent Power Series. If $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for |x| < R, and $c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0 = \sum_{k=0}^{n} a_k b_{n-k}$, then $A(x) = \sum_{n=0}^{\infty} c_n x^n$ converges absolutely to A(x)B(x) for |x| < R $(\sum_{n=0}^{\infty} a_n x^n) (\sum_{n=0}^{\infty} b_n x^n) = \sum_{n=0}^{\infty} c_n x^n$. Similarly,

 $\begin{aligned} & (\sum_{n=0}^{\infty} a_n x^n) \pm (\sum_{n=0}^{\infty} b_n x^n) = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n. \text{ Converges to} \\ & A(x) \pm B(x) \text{ for } |x| < R \\ & \text{Note If } \sum_{n=0}^{\infty} a_n x^n \text{ converges absolutely for } |x| < R, \text{ then } \\ & \sum_{n=0}^{\infty} a_n (f(x))^n \\ & \text{Converges absolutely for any continuous function f on } |f(x)| < R \\ & \text{Example; since } \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ converges absolutely for } |x| < 1 \end{aligned}$

Then
$$\frac{1}{1-3x^4} = \sum_{n=0}^{\infty} (3x^4)^n$$
 converges absolutely for $|3x^4| < 1$, or $|x| < 1/3$

2.4. Differentiation and integration of power series

let $\sum_{n=0}^{\infty} a_n (x-a)^n$ have nonzero radius of convergence R and for a-R < x < a+R, we write,

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
. Then,

- 1. f is continuous on the interval (a-R, a+R).
- 2. f is differentiable on the interval (a-R, a+R) and

$$f'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} (a_n (x-a)^n) = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}.$$

the series on the right also has radiuse of convergence R

3. f integrable over any interval [a, b] contained in (a-R, a+R),

$$\int_a^b f(x)dx = \sum_{n=0}^\infty \int_a^b a_n(x-a)^n dx.$$

furthermore, f has an antiderevatives in (a–R, a+R) given by,

$$\int f(x)dx = \sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1} + C.$$

the series on the right also has radius of convergence R. Example; let $f(x) = \frac{1}{1-x}$, then find series for f'(x)Solution; $f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$ $= \sum_{n=0}^{\infty} x^n \qquad |x| < 1$

Differentiate f term by term gives,

$$f'(x) = 1 + 2x + 3x^{2} + 4x^{3} + \dots + nx^{n-1} + \dots$$
$$= \sum_{n=1}^{\infty} nx^{n-1} \quad |x| < 1.$$

Example; find a power series for $\ln(1+x^2)$.

Solution; let
$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

 $|x| < 1$, then

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots + x^{2n} - \dots$$

$$\frac{2x}{1+x^2} = 2x - 2x^3 + 2x^4 - \dots + x^{2n+1} - \dots$$
$$= \sum_{n=0}^{\infty} 2(-1)^n x^{2n+1} ,$$

Integrating both sides with respect to x gives,

$$\int \frac{2x}{1+x^2} dx = \int \sum_{n=0}^{\infty} 2(-1)^n x^{2n+1} dx.$$

= $\sum_{n=0}^{\infty} 2(-1)^n \int x^{2n+1} dx$
= $\sum_{n=0}^{\infty} 2(-1)^n \frac{x^{2n+2}}{2n+2}.$
= $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{n+1}$
Since $\ln(1+x^2) = \int \frac{2x}{1+x^2} dx$
 $\ln(1+x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{n+1}$ is convergence on (-1, 1)

more over converge at the two end points, so it is converge on the interval [-1,1].

Example; identify the function.

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots + \frac{x^{2n+1}}{2n+1} - \dots$$

for [-1,1].

Solution; differentiating f term by term, we get $f'(x) = 1 - x^2 + x^4 - \dots + x^{2n} - \dots$ for |x| < 1The series is geometric with first term 1 and common ratio $-x^2$. Thus;

$$f'(x) = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}$$

Integrating both sides, gives

$$\int f'(x)dx = \int \frac{1}{1+x^2}dx$$
$$f(x) = tan^{-1}x + C$$

2.5. Taylor and Maclaurin Series

If a function f(x) has derivatives of all orders on the interval I, it can be represented as a power series on I about a is called the **Taylor Series**. (If a = 0 it is called the **Maclaurin Series**). If f(x) is represented by a power series centered at a; then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

This can be written out the long way as,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 \dots$$

Where the coefficient of the nth term is, $a_n = \frac{f^{(n)}(a)}{n!}$, and $p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$

The function $p_n(x)$ generated by f at x = a is called **Taylor** polynomials of order n

Example; Find the power series and Taylor polynomials $p_3(x)$, $p_4(x)$ and $p_5(x)$ for

a.
$$f(x) = e^x$$
 centered at $x = 0$:
Solution: $f(x) = e^x \implies f(0) = 1$
 $f'(x) = e^x \implies f'(0) = 1$
 $f''(x) = e^x \implies f'(0) = 1$
:
 $f^{(n)}(x) = e^x \implies f^{(n)}(0) = 1$. So
 $f(x) = e^x = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \cdots$
 $= 1 + 1(x) + \frac{1}{2!}(x)^2 + \frac{1}{3!}(x)^3 \dots$
 $= 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
 $p_n(x) = 1 + 1(x) + \frac{1}{2!}(x)^2 + \frac{1}{3!}(x)^3 + \cdots + \frac{x^n}{n!}$
 $p_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$,
 $p_4(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4$
 $p_5(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5$
A special limit

 $\lim_{n\to\infty}\frac{x^n}{n!} = 0$, since $e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!}$ is a convergence series

b. $f(x) = \ln x$ centered at x = 1: **Solution:** $f(x) = \ln x \implies f(1) = 0$. $f'(x) = \frac{1}{x} \implies f'(1) = 1$ $f''(x) = \frac{-1}{x^2} \implies f(1) = -1$ $f'''(x) = \frac{2}{x^3} \implies f(1) = 2$: $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n} \implies f^{(n)}(1) = (-1)^{n-1}(n-1)!$.

so the Taylor Series

$$f(x) = \ln x = f(1) + f'(1)(x - 1) + \frac{f''(1)}{2!}(x - 1)^2 + \cdots$$

$$f(x) = \ln x = 0 + (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \cdots$$

$$\ln x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(x - 1)^n$$

$$p_n(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \cdots$$

$$+ \frac{(-1)^{n+1}}{n}(x - 1)^{n-1}$$

$$p_3(x) = (x - 1) - \frac{1}{2}(x - 1) \sum_{n=1}^{\infty} p_4(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$$

$$p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{4}(x - 1) \sum_{n=1}^{\infty} p_5(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \frac{1}{$$

Taylor formula with remainder

If a function f(x) have derivatives up through the $(n+1)^{st}$ order in an open interval I centered at x = a. then for each x in I there is a number c between a and x such that,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

Where $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$, is called lagrange form of the remainder. And Taylor formula can be written more briefly,

$$f(x) = P_n(x) + R_n(x)$$

Example; let $f(x) = \ln x$, then find a Taylor's formula with the remainder for arbitrary n about x = 1.

Solution, from the previous example,

$$f(x) = 0 + (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \cdots + \frac{(-1)^{n-1}}{n}(x - 1)^n - \cdots$$

The Taylor formula with the remainder is,

$$f(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \dots + \frac{(-1)^{n-1}}{n}(x-1)^n + R_n(x)$$

Where $R_n(x) = \frac{(-1)^n}{n+1}(x-1)^{n+1}$ and

$$P_n(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \cdots + \frac{(-1)^{n-1}}{n}(x-1)^n$$

Theorem let f have derivatives of all orders in an open interval I centered at x = a. then the Taylor series for f about x = a converges to f(x) for x in I if and only if,

$$\lim_{n\to\infty}R_n(x)=0$$

Where $R_n(x)$ is the remainder term in the Taylor formula.

Example, show that the Taylor series for $f(x) = e^x$ about x = 0 converges to e^x for all x.

Solution,

$$P_n(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!}$$

And that

$$R_n(x) = \frac{e^c}{(n+1)!} x^{n+1}$$
, where $0 < c < x$

If 0 < c < x then $e^c < e^x$ since $f(x) = e^x$ is an increasing function.

$$|R_n(x)| \le \frac{e^x}{(n+1)!} x^{n+1}.$$

By special limit

$$\lim_{n \to \infty} \frac{e^x}{(n+1)!} x^{n+1} = e^x \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = e^x(0) = 0.$$

Thus, for x > 0

$$\lim_{n\to\infty}R_n(x)=0$$

If 0 < c < x then $e^c < e^0 = 1$. Thus,

$$|R_n(x)| \le \left|\frac{e^x}{(n+1)!}x^{n+1}\right|$$

By special limit

$$\lim_{n \to \infty} \frac{e^x}{(n+1)!} x^{n+1} = e^x \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = e^x(0) = 0.$$

Thus, for all x < 0

$$\lim_{n\to\infty}R_n(x)=0$$

Therefore the Taylor series for e^x about x = 0 converges to e^x for all real number x.

Taylor series for f about x = 0 (Maclaurin series)

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

Basic List of Power Series

- $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{x^n}{n!} + \dots -\infty < x < \infty$ • $\ln x = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \dots 0 < x \le 2$ • $\frac{1}{x} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + \dots 0 < x < 2$ • $\frac{1}{1 - x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots |x| < 1$ • $(1 + x)^k = 1 + kx + \frac{k(k - 1)x^2}{2!} + \frac{k(k - 1)(k - 2)x^3}{2!} \dots |x| < 1$ • $\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots + \frac{x^{2n+1}}{(2n+1)!} - \dots -\infty < x < \infty$
- $\cos x = 1 \frac{1}{2!}x^2 + \frac{1}{4!}x^4 \dots + \frac{x^{2n}}{(2n)!} \dots \infty < x < \infty$