Applied Il Mathematics Handout
Chapter One
1. Sequence and Series

1.1 Sequence.
1.1.1 Definition and types of sequence

Definition;:_A sequence is a list of numbers called terms in a
specified order. And denoted by {a,} where a, is called the n™ term
or general term of the sequence. or
Simply it is defined as a function whose domain is the set of
natural number
A sequence can be finite or infinite. A finite sequence has a last
term and an infinite sequence has no last term

{an} = a1, a2, as, ... an, A1 ...
sequence. Whereas,

{a} = a1, a, a3, ... an. is called finite sequence.

is called an infinite

Types of sequence
e An arithmetic sequence is a sequence in which the
difference between successive terms is a fixed number and
each term is obtained by adding a fixed amount to the term
before it. This fixed amount is called the common
difference. Arithmetic sequences can be represented by
first-degree polynomial expressions.
A finite arithmetic sequence can be expressed as:
a,atd,a+2d,a+3d,a+4d,a+5d,..,a+(n-Nd
where a is the first term, d is the difference between each term, and
a+(n-1)d isthe last or “n™ term.
Example; {3, 6, 9, 12, 15, 18} is an arithmetic sequeence with
a=3andd =3

e A geometric sequence is a sequence in which the ratio of
successive terms is a fixed number, and each term is
obtained by multiplying a fixed amount to the term before
it. This fixed amount is called the common ratio.

Terms in a geometric sequence can be represented as:
a, ar, ar?, ar®, ar*, ar®, ..., ar™
where a is the first term, ar"* is the last term and the ratio of
successive terms is given by r
such that:
arfa=r, ar’/ar =r, ar’/ar’ = r, etc.
Example {2, 4, 8, 16, 32 ,... }, with a=2and r = 2.

1.1.2 Convergence properties of sequence.
Definition; A real number L is said to be a limit of a sequence
{an}neN if and only if,
for all e > O there exists a postive integer N such that;
la, — Ll <€ foralln>N
We write as
lima, =1L
n—-oo
And the sequence{a,} is a convergence sequence
Note: that this definition holds we have to:
e Guess the value of the limit °
e Assume e >0 has been given,
e Find N e Nsuchthat|a,—L|<e
lel-e<a,<L+eforalln>=N
If lim,_ a, doesn’t exist, we say that {a,} diverges.
lim,_,, a, = o, means that the sequence {a,} diverges to infinity.
i.e if for every number M, there is an integer N, such that for all n
>N,a,>M



Similarly; if for every number m, there is an integer N, such that for
alln> N, we have a, < m,
Then we say {a,} diverges to negative infinity and we write

lima, = —ow,0r a, > —o

n—-oo

Generally: A sequence which has a limit is said to be convergent
and A sequence with no limit is called divergent.
Theorem 1:1 if the sequence of a real numbers {an}neN has a
limit then, this limit is unique.
Proof; assume let {an}neN denote a convergence sequence with
two limits say L;and L,
with Ly #L
Now choose € = §|L1 — L,|
Since Lis a limit of {an}neN , then to find N;€ N such that
la, — Li| <€ foralln =N,
Similarly;
Since L, is a limit of {an}neN then, to find N, € N such that
la, — L,| <€ foralln =N,
Choose any n > max {N;, N,} then

[Ly = L] = Ly — ap + a, — L]
= |L1_an| + Ian_LZ|
< e+te€

=2¢ but from the choice of € = iIL1 — L,
2
=3 |L; — L,
L, — L, < EIL1 — L,|, Ly #Ly, This contradicts
Therefore our assumption is false, so the theorem is true.

Limit properties for sequences
If lim,_,a, and lim,_, b, both exist, then the following
properties hold true;
e lim,_,ca, =c(lim,_,a,) for any constant c.
e lim,_. (a,xb,)=Ilim,_, a,xlim,_,b,.
e lim,,a,b, =(lim,_,a,){im,_,a,).
%:% if b, # 0 foralln

and limb, #0

n—-oo

The next three theorems are often helpful in finding limits of
sequences.

o lim,_,

Theorem1.2
If lim,_,a, = L, and f is a function whose domain includes
Land a, forn = N,and if f is continuous at x = L, then,
lim f(a,) = f(L)
Let f(x) = x*for k a postive integer, is continuous
for all x,we have;
lim (5. a,)* = L¥.
Provided the sequence {a,,} converges to L. similarly,
limy,e 4/, = VL.

Provided a,, > Oand L > 0 for even ordered k" roots.

Theorem 1.3 Let {a,,} be a sequence and f a function such that,
f(n) = a,, n=123..
If
lim,_. f(x) =L.

Then also, lim,_,a, =L.



Example, find the limit of each of the following sequences.
& b. {50 c. {2 +3n)7)
Solution,
a. an:an, Let f(x )—lnx
= f(n) = T = a,. Then by Theorem 1.3

Inn Inx

"mn_)wT = Iimn_m a, — "mx_)wf(X') = Iimx_m7

= Iimx%% = 0 (Applying L’hopital’s rule)

b, a, = ln(2+e l tf( )_ ln(2+e )

In(2 +
= f(n) = % Then by Theorem 1.3
lim, ., ‘“(2; ) = Iimn_m a, = lim,_., f(x) =

= E(Applying L’hopital’s rule)

c. a,=@0+ 3n)%.

1
lety = (1+3x) = Iny = In(1 + 3x)x = 20439
= lim,_., Iny =lim,_,,, =2
=i 3/(1+3x)
- Xm0
Inlimy =0
X—00
|Imy =l =
X—0
1
||m(1 —+ 3x)} =1.
X—00

Then by Theorem 1.3, lim(1 + 3n)% =1

Theorem 1.4 The Squeeze Theorem for Sequence.
If lim,_ a, =lim,_, b, = L and if for all sufficiently
Large n the inequality a,, < c¢,, < b, holds true, then;

7!I_rLlo ¢, =1L

Example; Find the limit of the sequences.

{nsinn} b {3+§1—21>"} c. (Vn+2—+n).

14+n2
Solution;
. nsinn nsinn n n _1
a, an 2 2 | = 2 o2
1+n 1+n 1+n n n
— lS nsinn < 1
n 1+n2 n
. 1 1
lim—-——=1Ilim—-=0

n—oo n n-oon

Then by Squeeze Theorem

nsinn _
nl—>oo 1+ nZ -
_ 3+(=)" 34(-1)" _ 4
b. a, = T =0< T < ﬁ
4
lim 0= Ilim — = 0
n—-oo n—-oo N
Then by Squeeze Theorem
3+ (-1
n—oo n
— Vn+2+vn) _
=R = () -

n+2-n 2

-1
vntZ+vn  2vn vn




=0<Vn+2-+yn < \/iﬁ
. 1
Amo=]m #==0

Then by Squeeze Theorem
lim, e Vn+2—+vn=0

Recursive Definition of Sequence.
Sometimes sequences are defined recursively by giving
e The value of the initial term or terms, and
e Arrule called a recursion formula, for calculating any later
term from terms that precede it.
i.e the formula giving a,, in terms of a,,_; is called
recursion formula.
The best known sequence defined recursively is the Fibonacci
sequence, defined by
A=lf=Y andfy = fa1*+ foa forn=2
The number f,, are called Fibonacci numbers.

Monotonicity and Boundedness
Definition; A sequence {a,} is said to be
e Increasing if a,, < a,,1for all postive integer n
e Decreasing if a,, > a4 for all postive integer n.
e A sequence that is either always increasing or always
decreasing is said to be monotone.
Example: show that each of the following sequence is monotone.

EES b. {7} e {75}

- 2n+3 2(n+1)+3
Solution: a, a, = 222 and q,,, = 23

n+1

_2(n+1)+3 2n+3

Apt1 — Qq
n+1 n
_(@n+5n-(2n+3)(n+1)
B n(n+1)
_2n*+5n—-(2n*+5n+3) -3 <0
B nn+1) T nn+1)

Any1 — A <0, = apyy < ay

= a, is strictly decreasing, so it is monotone.
n

b, an = 7
Consider a function for which f(n) = a,
X
xX) = ——
f(x) To o2
2_x2
Taking its derivative, we have f'(x) = 22X =1 ~ >0

(1+x2)2 (1+x2)2
f'(x) >0 for all x,= f is an increasing function.
Thus sincef (n) = a,,, we see that {a,,} is also increasing, so it is
monotone.

Tests for monotonicity

.. (@41 — ay =0 for all n,then{a,} is increasing
i {anﬂ — a, < 0 for all n,then{a,} is decreasing
2. Let f(x)be continuous function with f(n) = a,,.

1.

calculate f'(x) if it exists.

If { f'(x) = 0o0n[l, o), then{a,} is increasing.
f'(x) <0o0n[1, ), then{a,}is decreasing

if a, > 0 for all n, calculete the ratio “*2,

an

> w



An+1

> 1 for alln,then{a,} is increasing.

if{
a
ZH <1 foralln,then{a,}is decreasing.
n
Definition:

A sequence {a,} is said to be bounded if there is some positive
constant number M such that
lan| <M
for all positive integer n.
A sequence {a,} is said to be bounded from;

e Above, if there is some real number M, such that, a,, < M
for all n, M is upper bound for {a,, } and no number less
than M is an upper bound for {a,,}, then M is the least upper
bound for {a,}.

e Below, if there is some real number m, such that, a,, = m
for all n, mis a lower bound for {a,} and no number
greater than m is a lower bound for {a,,}, then m is the
greatest lower bound for{a,}.

e If{a,}is bounded from above and below, then {a,} is
bounded. If {a,} is not bounded, then we say that {a,} is
unbounded sequence.

Note: convergence of a power sequence
If ris fixed number such that

e |r| <1, thenlim,,,r"=0

e r=1thenlim, ,r" =

e For all other value of r, the sequence diverges.

Definition; A sequence {an} of real numbers is called a Cauchy
sequence if for each € > 0 there is a number N € N so that

if m; n> N then |a, - an| <e.

Note; Convergent sequences are Cauchy sequences.
Proof: Suppose that lim a, = L. Note that

lan-aml = la,-L+L-anl <la,- LI+ lan-LI[. Thus,
given any € > 0 there isan N € N so that if k > N then
lax - LI< e. Thus, if m; n> N we have

lan-am| < lag- LI+ [an-LI< > +>=¢

Thus, {an} is a Cauchy sequence.

Theorem 1.5: Monotone Bounded Sequence Theorem
If {a,} is a sequence of real numbers that is both monotone and
bounded, then it is converges.

Theorem 1.6 Every convergent sequence is bounded. But the
converse is not always true.

Proof: Let {an}n>1 converge to a. Then there exists an N € N such
that |a, —a| <1 = efor n > N. It follows that |a,| <1 + |a| for n > N.
Define M = max{1+ |a], |a1], |a2], . - . [an-1[}- Then |a,| < M for every
neN.

To see that the converse is not true, it suffices to consider the
sequence {(—1)"}.=1, which is bounded but not convergent,
although the odd terms and even terms both form convergent

sequences with different limits.

1.3.5...(2n-1)

Example: show that the sequence { } converges.

2.4.6...(2n)
Solution; the first few terms of this sequence are,
—1 — 13 _3 — 135 _ 15 _ 5
Q=5 2 =322~ 3 43 =246 ~ 28 16
_ 1357 _ 35
Ay = 3268 128



1 3 5 35

2 8 16 128
= the sequence is decreasing(i. e it is monotonic)

Generally;
we can show that, a,,; < a,, = =<1, a,>0foralln

135..2(n+1)-1) "
ny1 . 246...(2(n+1))

@, 135 (2n—1)
246...(2n)
_135.(2n+1) 246...(2n) _2n+1
©246...(2n+2)'135...(2n—1) 2n+2
<1
aZ—: <1 =a,, <a, foranyn=>0. hence{a,} =
1.3.5..(2n-1)) . .
{#(Zn))} is a decreasing sequence.

a, > 0 for all nit follows that {a,} is bounded below by O .
Thus by MBCT

__ (135..(2n-1)
{a,} = {—2.4.6.... @ }Converges.

1.1.3 Subsequence;
Definition: Let {a,} be a sequence. When we extract from this
sequence only certain elements and drop the remaining ones we
obtain a new sequences consisting of an infinite subset of the
original sequence. That sequence is called a subsequence and
denoted by {an}.
Theorem 1.6;

o If {an} is a convergent sequence, then every subsequence of

that sequence converges to the same limit.

e If is a sequence such that every possible subsequence
extracted from that sequences converges to the same limit,
then the original sequence also converges to that limit.

o Let {a,} be a sequence of real numbers that is bounded.
Then there exists a subsequence {an} that converges.

1.2 Infinite Series.

Definition; given a sequence of numbers a,,, an expiration of the
form

a, +a,+az+a,+ ..
is an infinite series. The number a, is the n term of the series.
The sequence {sn} defined by

S1=a1
S, =aq +a,
S3=a; ta;+a;
Sg =a;ta; tazta,

n
S, =a,+a,+tas;+a,.. aHZZak

is the sequence of partial sums of the series, the number s, being
the n™ partial sum.
e |If the sequence of partial sums converges to a limit L
(i.e; lim,,_, s, = L), we say that the series converges and
that its sum is L. we also write



n

a, +a,+az;+a,.. +an:Zak:L
k=1

e |f the sequence of partial sums of the series does not converge,

(i.e; lim,,_, s, = o or does not exist) , we say that the
series diverges
e Ingeneral

0]

Zan =lim(ay +a,+asz+a,..a,)

n—>co
n=1

Provided the limit on the right exist, i.e lim,_, s, =s
Given any positive number ¢, there is a positive number N
suchthat foralln> N, |s, —s| <e€

Geometric Series
A geometric series is an infinite series of the form
o jartl=ag+ar+ar?+ard+ -,
in which a is its first term with a# 0 and r is called the common
ratio
If r = 1 the n™ partial sum of the geometric series is,
s,=a+a(l)+a()? +a()?+--+a(@)" ! =na.
And the series diverge because;
lim,,_,. s, = oo, depend on the sign of a.

If r = -1 the series diverges because the n'" partial sums alternate
between a and 0
If r # 1 we can determine the convergence or divergence of the
series in the following way;

s,=a+ar+ar’+ard+.+ar*?

rs, = ra+ar?+ard+art+.+ar®

Sp—rs,=a—ar®

s,(l—r)y=a(l—-1r")
_a@—-rm")
T TA-n
If |r]<1, the geometric series a+ar+ar?+ar®+
.-~ converges to 1% since r* — 0 as n— oo, and

0]

1-r

n=1
If |r] > 1, the geometric series diverges.
Example; determine whether each of the following series is
convergent or divergent. If convergent find the sum.

1 1 1 1
a 2:1+1-1

+o— =+ ..,
b. Z.()"

r+1

4 8 16

Solution:
a. The series is geometric with a=2 and r = -1+2 = -

’

N | =

1 1
-4=2 <2
2 2
Therefore the series is converges to
a

1-r 1+1/2
b. ,‘;":1(%)” = D=1 Z (%)”‘1 the series is geometric with

= 4/3

5 5
a=-andr==
4 4

|5| _2 >1
4l = 4
Therefore the series is diverges and it has no sum.

Example: Find the rational number represented by the repeating
decimal 0.784784784 . . .



Solution. We can write
0.784784784... = 0.784 + 0.000784 + 0.000000784 +. ..
so the given decimal is the sum of a geometric series with a =0.784
and r = 0.001. Thus.
a __ 0784 __ 784

0:784784784 ... = —

1-r  1-0.001 999

Theorem 1.7
1. If Y>_;a, converges,then lim,_ a, =0, but not the
converse.

Proof: let s, the n"* partial sum of Y-, a, that is,
s, =a, +a, +as+a,.. +a,then,

if n>1 wealso have,
Sp1=ay ta, +as;+a,.. +a,4

Sp — Sp-1 = A4y
since the series converges lim,_, s, = s. butn -
o,we alson —1 - oo,s0 lim,,_,, S,_; = . Thus
lima, =lim(s,— s,_;)=Ilims, —lim s,,_;, =s—5s
n—oo n—oo n—oo n—oo

=0.
2. Yx_qay, diverge,if lim,_ . a, # 0 or does not exist.
Example;
. k 1 2 3 k -
e Theseries)r_—=-+ >+ =+..+—+ .. diverges
k+1 2 3 4 k+1
since
. k .
lim — = lim =1+0
koo +1 ko011 +1/k
e The series

©_(=1)" diverges, since lim,_,(—1)" does not exist.

The series)._, n? diverges, since lim,_,n? = .

e The harmonic series Yi_y == 1+ ~+ -t =+ .
diverges. This is an example of a series where lim,,_,, a, =
0, but n=1coandiverges.
Property of convergent series
If ¥ ,a, and X_, b, are convergent series, and if ¢ is any
constant, then
® Y™ . ca, =cYy-,a, converges.
o Xn=i(an £by) =20, an = X5, by converges.
o ifY>  a,convergesand Y., b, divergesthen }y_,(a, *
b,)diverges.
o If)>"_a,divergesand c # Othen ), ca,diverges.
o if ) ,a,converges,then ).»_, a, converges for any
k>1and Yy ,a, =a,+a, +az+a,.. +a;_;+
Yok An. Conversely,
if Yo, a,converges for any, k> 1then
Y=y A, CONVETges.

1.2.1 Test of Convergence.

The integral test.
The series Y., a, of nonnegative terms converges, iff
its partial sum is bounded from above.

Theorem 1.8: the integral test.
Let {a,} be a sequence of positive terms. Suppose that a,, = f(n),
Where f is continuos, postive ,decreasing function of x
forallx = N (N > 0).



Then the series }»—, a, and the integral f;o f (x)dx both converge

or both diverge
Example: show that the p — series
o 1 _ 1,1 1

1 .
n=1p =+ 3 T3+t 5+ .. converges ifp>1,and

diverges ifp < 1.
Solution: if p > 1, then f(x) = xip is a positive decreasing function
for x> 1. Since

1 x p+1

—dx :f xPdx = lim l l

xP b— o —p +1
1

the improper integral converges.

Then the series converges by the integral test. But it does not tell
the sum of the p- series.

Ifp<1,thenl-p>0and

7 dx :$Iimb%o(b1‘p — 1) = oo. diverge.

Then the series diverges by integral test
If p = 1 we have the divergence harmonic series

1 1 1
1+ —4+—+ - 4+—+ .
2 3 n

Therefore, p — series is convergence series for p > 1 but divergence
for all other values of p.

Example: show that . 1( )convergent

Solution: let f(x) = x2+1
for x> 1,and

floo ! = Iimbﬁoo[arctan x]? = lim[arctan b —
x2 b—co
s

arctan 1] T_Z=T Convergent.
2 4 4

Then, the series converges by the integral test. But we do not know
the value of its sum.
Theorem 1.10; Comparison test.
Yme1 Gy and Y2_; b, are series of non negative terms, with
a, < b,for all n.
e IfY>_, b, converges, then }.>°_, a, converges.
o IfY>_, a, diverges, then ).>>_, b, diverges.
Limit comparison test
Suppose that a,, > 0 and b,, > 0 for all n> N(N an integer)
. Ifllmn_m =L >O0then Yy a, and Yo, byboth

converge or both diverges.
o Iflim, 2 = =0and ), b, converges, then Y.>°_; a,

converges.
o Iflim, o Z—" = oo and Y>_, b, diverge, then
n

ey ay, diverge.
Example: test each of the following series for convergence or
divergence.

3
yn 1+nlnn
[0/
a. Z n2+2n CAn=1 g4y c. Z T nZys
Solution:
_ 1
a. Letay =——< nz =b,

1. .
ne1 — s a convergent p — series, then

1
ne1 2+2 ———is convergent by comparltlon test

b. Leta, for large n is I|ke — = % = b,
n



¥n Solution:

n+4 _ ,. _ _n — n+1
M'Jo b, amTr - Mmoo =t 2oL = T e T
3 n+1
Vn? lim,, oo 2242 = lim,,_,q, 45 = lim,,_,q, 2o = 2 < 1. Thus
Since )., = diverges p- series with p == " 4
\/_ H oo n
3\/_ By ratio test ) _ 1 converges.
ol 17, dwerges by the limit comparition test, b Let _ ey _ (2n+2)
1+nlnn ’ n nin! An+1 = (n+1)!(n+1)!
c. Leta, for large n we expect a,, to behave like (an42)!
' o a i 2228 = lim, ., S0 =
n n n il
So let b, = +. since, lim.  Mnien+2)@n+1(@n)!
n n=2>0 aimln+1)(n+1)2n)!
. (2n+2)(2n+1) _ 4n+2
=1lim, e ———==1im b =4>1
©_ b, =Y, ~diverges, and T (D (nt) T
" Thus,
l+ninn 5
lim & = lim 245 _ iy P Inn _ By ratio test ¥, 222 is diverges.
n-ow b, n-ox 1 n-w  n%+5 4nn'n' 4" (n4+1)(n+1)!
n c. Leta, )] S (Zni2)
Therefore by I|m|1t c?mparlson test 4m+ 1 (n + D1 (n + 1)!
1Oy =2y :;nn diverges. lim Ani1 _ lim (2n+2)!
n-o q, - n—oo 4npnlnl
) (2n)!
The ratio and root tests
) L A+ DI+ 1) (2n)!
The ratio test. = lim 2n+2)(2n+1)!(2n)! 47nin!
Let >, a,, be a series of non negative terms, and suppose that " n n P\ AT
) Gnas =lim 4(n+1)(n+1) = i 2(n+1) —
IImn_m "t = p. Then N> (on42)(2n+1) n=%0 (on+1)
a. the series converges if p < 1 Thus _ _
b. The series divergesifp > 1 We cannot decide by ratio test.

c. The testis inconclusive ifp=1
Example: investigates the convergence of the following series.

(2 ) 4Mnin!
a Zn 14n b Z n C. Z nin!

1 pin n=1 (2n)!

10



Root test.
Let Yo, a,, be a series of non negative terms for n> N. and

suppose that
My +/ Ay = p. Then

a. the series convergesifp<1

b. The series divergesifp > 1

c. The testis inconclusive ifp=1

Example: Investigates the convergence of the following series

An+3\n
a. Zn 1(3 )n Z 1(37’1—5) .
Solution:
4n 4
a. Let an (3 X = ,/ (3n)n = 5
Moo A/ An = I|m7Hoo = 0 < 1. Thus by root test,
e 1(: J converges.
—_ An+3\y /— 4n+3 _ 4n+3
b. Let An = (3n—5) = 3n 5 ~ 3n-5

My @, = lim, . % =2> 1. Thus by root,
Test the series, Y- (—)”dwerges

1.3 Alternating series, absolute and conditional convergence.
Alternating series.
Definition;

A series in which the terms are alternately positive and negative is

an alternating series.

Example; the n™ term of an alternating series is of the form,
a, = (-1D)"*, or a,=(-1)"u, whereu, =|a,|isa

positive number.

11

Alternating series test
If a,, > O, for all n and the following two conditions are satisfied
* a,,; <a,and,

e lim,,a,=0,then;
e The series Yoo, (—1)" 1a, converges.
Example; show that the alternating harmonic series,
co (_1)
+-—-+
n=1" =1- i -- Converges.
Solution: a, = ; Iet the series is alternating series in which,
1 1
* 1 <. TS0y
. - 1
o Ilim,_,a,= Ilmn%o;:O

Therefore by the alternate series test Yo",

=n"
n

Absolute and conditional convergence.
Definition:

e the series )., a, is said to be absolutely convergent, if

~_1lay| converges.
e IfY>_ a, converges but Y>_,|a,| diverges, then ¥>_; a,
is said to be conditionally convergent.

e IfY>_, a, isabsolutely convergent, then it is convergent.
Example: Determine whether each converges conditionally,
converges absolutely or diverges.

a Z sm n+cosn b. Z 1)"
Solution:
a. Leta, = ST gince  sinn +cosn < 2 is both

n3

positive and negative.



Isinn+cosn| n;cosnl < % and 27?:1% converges. Since it isa p - Chapter Two
series with p =3. Thus , 2. Power Series

sinn+cosn 2.1 Definition of Power series.

Definition: A power series about x = 0 is a series of the form,

Y o CnX™ =Co + X + Cpx? + cgx3 + -+ cpx™ L., and

[ee]
n=1

_ |sinn+cosn|
=) — Converges, by

n=1

‘l’l3
comparison test.

sinn+cosn

Therefore Y;_, ———— is absolutely convergent. A power series about X = a is a series of the form,
Let a, S Gl n=oCn(x — @)t =co+ ey (x —a) + cp(x —a)’ +
o (-pnt 1 c3(x —a)d® + -+ ¢, (x —a)™ ... in which the center a and the
netlan| = ff=1| | = Zn=1 |\/—ﬁ| is diverges coefficients ¢y, ¢, €3, C3...Cp, ... are constants.
absolutely. But Example: consider a geometric series,
w0 — veo (DM © oXt=1+x+x%+ x3+ .-+ x"+ .. with first term 1
n=1An = Zn=1"_ . . 1
1 1 and ratio x. it converges to — for |x| < 1.
leth,=—, by =—, = b,y >b,and _ 1
Vn Vn+1 . We express this fact by writing.
limb, = lim—= —=1+x+ai+ 3+t X"+, -I<x<litisalso
n—-oo n—-oo n —
) ) (—1)n-1 called a power series with all the coefficients equal to 1 of the first
Then by alternating series test, Z;‘{; = . Converges. form

Example: consider the power series of the second form.
1--(x=2)+=(x—2)2 — ... H(—)M(x — 2" + -, 0<x <4,
Witha=2,¢p=1,¢; = =1/2,c; = 1/4, ... ¢, = ()" this is a
geometric series with the first term 1 and ratio r = —(xz;z) the series

converges for |—(xz;2) | < 1or0< x < 4. Then the sum is,

i:%:z.Therefore,

1-r 1+T

2= 1 -2+ (=2 — ()M -2+
O<x<4.
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Theorem 2.1. The convergence theorem for power series.
If the power series,
fx) = X5—ocnx™

=co + ¢, x + c,x? + --- converges at

x =a# 0, then it converges absolutely for all x with |x| < |c|.

If the series diverges at x = d then it diverges for all x
with |x| > |d]|

2.2. Radius of Convergence and Interval of Convergence.
The convergence of the series.
o Cn(x — a)™ is described by one of the following three cases

e The series converge absolutely for every x ( R = o0)

e There is a positive number R such that the series diverges
for x with |x — a| > R but converge absolutely for x with
|x — al < R. The series may or may not converge at either
of the end points x =a— R and x = a+R

e The series converge at x = a and diverge all the rest

(R=0)
Where, the number R in each case is called the radius of
convergence of the series. For convenience, if the first case holds
we agree to call the radius of convergence is R= oo, if the second
case holds R = x — a, and the last case holds R = 0.
If |x — a] < R. Then the series converges on the intervals
(a-R, a+R), [a-R, a+R], [a-R, a+R) or (a-R, a+R] depends on the
series converges at a-R or a+R and these intervals are called
intervals of convergence. When R=0 the interval of convergence
degenerates to the single point x = 0, and if R= oo, it is the entire
real line (—oo, ).
Using the Ratio Test to Find the Radius of Convergence.
When lim,,_,., |=2| exists, the radius of convergence can be

found using the ratio test.
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Examples: find the radius and intervals of convergence of the
series.

a. Y- om

Solution;

a. a, = z:T , ratio test is applicable only to series of positive

terms, and since x can be either positive or negative , so we
must consider in absolute value.

)" (x=2)" oo
b. Zn O_?;:I%EF_ C. Zn:OnJ(Zx__l)n

xn+1
. a‘n_+1 . 2(n+1)+1
lim = lim |——2—~—
n—oo an n—oo
2n+1
x™t 2n+1
= m .
2n+3 x"
. 2n+1
= Irm "7 |x] = x|

oo 2n+3
The series converges absolutely when |x| < 1 and diverges
when |x| > 1. Therefore the radius of convergence isR = 1.

Ifx=1 Z = 1+1/3+1/5+

an = 5— let b

lim “n—nm =My —— ==
n-e . no®oni1  n N2 ont1 2

Ilm7Hoo = is divergent harmonlc series, then by limit

Comparrson test Z — is diverges.

Ifx— -1, X

m decrease monotonrcally to 0 thus the series converges.

Therefore the complete interval of convergence of the original
seriesis —1 < x < 1.
b. Consider the limit

) thrs series is an alternating series, and

(_1)n+1(x_2)n+1
(n+2)23n+1

(n+1)%3"
(-1)™(x-2)"

An+1

= 1lim,_

lim,,_



= 1My 3 Co)2]x = 2|
series converges absolutely
If ":2' < 1,= |x — 2| < 3 and diverge
If |x — 2] > 3. Now we test the value (x 2)==3

(-1)"3" oo (-1
If (x-2) =3 XY= 0 trr1)2an 2m=0 (g )2 this series is converges
absolutely, since it is p — series with p=2.
If (X 2) __3 Z ( 1) ( 3) — oo (_1) (_1) 3

n=0 (p41)23n ~ 4n=0 (;1q)23n

[— co - H
n=0 Gz 1S @ convergence

= % Thus by the ratio test the

P series with p = 2.
Therefore the complete interval of convergence is defined as
lx—2]<3= -3<x-2<3
= —1 < x < 5 Thus the interval of
Convergence is [-1,5]
c. Leta,=n!'(2x-21)"

Ans1 +1)!I(2x—1)"*1

— 1 (n

- Ilmn_mo | n!(Qx—-1)"
= Iimn—>oo(n + 1)'(2x - 1)'
= 00

Now for all x + % the series diverges, so R=0 and interval of

lim,,_

n

Convergence is a single point {%}

_ nx™
d. Ifa, = 135D then
. ans1| _ s (n+1)x™*1  1.35..(2n-1)
My, =My |13 5..(2n+1) nxm
_ . n+1
=|x| lim,_ o vl = 0 for all x.

The series converges = R = oo, and interval of
convergence =(—oo, o)
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2.3. Arithmetic Operations on Convergent Power Series.
If A(X) =Xy apx™and B(X) = Yy by x™ converge absolutely
for |x|] < R, and
Cn = Aobp + a1bp_y + -+ an_1by + ayby = Xj—o by, then
A(X) =X, c,x™ converges absolutely to A(x)B(x) for |x| < R
G anx™) (X bpx™) = Xy cux™

Similarly,
Crzoanx™) = (Yo bpx™) =
A(x) = B(x) for |x|] <R

Note If Y»°_, a,x™ converges absolutely for [x| < R, then

n=0 @n (f (x))"

Converges absolutely for any continuous function fon |f(x)| <R

n=o(an * by)x™. Converges to

Example smce — =Y _,x™ converges absolutely for |x| < 1
Then —— = n=0(3x4)” converges absolutely for [3x*| < 1,or
x| <1/3

2.4. Differentiation and integration of power series
let Y77, a, (x — a)™ have nonzero radius of convergence R and for
a— R <x<a+R, wewrite,
f(x) =Y7_oa,(x —a)*. Then,
1. fis continuous on the interval (a-R, a+R).
2. fisdifferentiable on the interval (a-R, a+R) and

F1(00) = 50 (an(x — @)") = T2y natn(x — @)™,
the series on the right also has radiuse of convergence R
3. fintegrable over any interval [a, b]contained in (a-R, a+R),
[} f)dx = T2 [ an(x — a)"dx.
furthermore, f has an antiderevatives in (a—R, at+R)
given by,



apxtl

[f)dx =Y2, [ apx™dx = X,

n+1

+C.

the series on the right also has radius of convergence R.

Example; let f(x) = i , then find series for ' (x)

Solution; f(x) = —= =1 +x+x2 +x3 + o 2" + -

Differentiate f term by term gives,

x| <1

F1(6) = 1+ 2x + 3% + 4% + o ™1 4 oo

=Yaoanx™t x| <1,
Example; find a power series for In (1+x2).

Solution; let f(x) = —1— =1+x+x2+x3+ - +x"+

|x] <1, then
1

=1—x%+xt—. 4 x2n _
1+ x?

2x

1+ x2
- Zz;o 2(_1)nx2n+1 ,
Integrating both sides with respect to x gives,

=2x —2x3 4+ 2x* — o 4 x2MHL

f1+x2 fz 02( 1)n 2n+1 dx.
Z 02( 1)nfx2n+1dx
=Xn=0 2(-1)" 2n+2
=i 0(— ik
Since In(1+x
In (1+x2) =Y (- 1)“ “is convergence on (-1, 1)
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more over converge at the two end points, so it is converge on the
interval [—1,1].
Example; identify the function.

100 = g1 Sy = =3+t - T
for [-1,1].

Solution; differentiating f term by term, we get
ffx)=1—-x?+x*—-+x?"—...for|x|] <1

The series is geometric with first term 1 and common ratio —x2.
Thus;

1 1
1—(—x2) 1+x2

f(x)=
Integrating both sides, gives

ff’(x)dx:fl_fxz dx

f(x)=tan"x +C

2.5. Taylor and Maclaurin Series

If a function f(x) has derivatives of all orders on the interval I, it
can be represented as a power series on | about a is called the
Taylor Series. (Ifa =0 it is called the Maclaurin Series). If f(x) is
represented by a power series centered at a; then

= ()
Foy =YD oy

n=0

This can be written out the long way as,
M (q
2o D~ = fa) + f(a)(x —

+f 3(! )(x —a)d ..

a) + +12 (x — ay?




(n)
Where the coefficient of the n" term is, a, =1 n(a) and

pa(x) = f(@) + (@) (x — @) + T2 (x -

f(() _ )(a)
a( —a)t = ’;lo k.a(x a)®

The functlon pn(x) generated by f at x = a is called Taylor

polynomials of order n
Example; Find the power series and Taylor polynomials
p3(x) ,ps(x) and ps(x) for

a. f(x) =e* centered at x = 0:

Solution: f(x) =e* = f(0)=1
ffx)=e = f'(0)=1
f'(x)=e = f'(0)=1
f(.n)(x) =e*¥ = lf(n)(O) =1.So
f(X)=e"=f(0)+f’(0)(x—0)+f (© )( —0)? +

1+ 1(x) + - (x)? +l(x)3
Zn O nl
pn(x) =1+ 1(x) + %(x)z +;(x)3 + e+ n_T

ps(x) = 1+x+lx2 +lx3

1 1
1+x+=x2+=x3.
2! 31

p4(x)—1+x+ x%2+- x +24 x*

1
= l+x+ox2+2x3+1xt+-1 x5
ps(x) = 1+x 2x X+ —xt
A special Iimit
n

lim,,e0 — — = =0, since e* = ¥%_, = — |s a convergence series

)2 f (a)( _a)3_|_

b. f(x) =In x centered at x = 1:

Solution: f(x)=Inx = f(1)=0
f=- =fr0=1
frey==% =f1=-1
f”’(x) =2 =f(1)=2
f(”)(x) — Ll(nl)' = fM(1) = (-1)" 1 (n - D).
so the Taylor Series
FO)=Inx = f@) + @G-+ 2 1y

f(x):Inx:O+(x—1)—%(x—1)2+%(x—1)3—

_yn—-1
Inx = ,°1°=1(17)1 x-1)"

pa() = (r 1) — 5 (x— 1) +3 (x 1) -
(_1)n+1
+
n

(x_l)n—l
ps(0)=(x-1) -5 (x -1
o) = (= 1) =3 (r — 1) + 3 (x ~ 1)°

o) = (r =D =3 (r = D + 50— 1+ 7~ DY

Taylor formula with remainder

If a function f(x) have derivatives up through the (n+1)* order in
an open interval | centered at x = a. then for each x in | there is a
number c between a and x such that,
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Aminat
Sticky Note
+ 1/3(x-1)^3

Aminat
Sticky Note
-1/4(x-1)^4


f”(a)

> (x — a)z + ...

fx)=f(a)+f'(a)(x—a)+
f(”)(a)

n!

+

(x —a)* + Ry (x)

_ ()
Where R, (x) = D)

remainder. And Taylor formula can be written more briefly,
f(x) = B(x) + R, (x)
Example; let f(x) = Inx, then find a Taylor’s formula with the
remainder for arbitrary n about x = 1.
Solution, from the previous example,

(x — a)™*1,is called lagrange form of the

f(x):0+(x—1)—%(x—1)2+%(x_1)3 — ..
(-1
n

+—(x—-1)"— -
The Taylor formula with the remainder is,
1 1
f@)= (=1~ 5 -1 +5(x— 1)~

+ (_tli_l(x — 1"+ R, (x)

Where R, (x) = % (x — 1)**1and

P(x) =(x—1) —%(x —1)? +%(x —1)3 — ...
(-1
n

+——(x-1)"
Theorem let f have derivatives of all orders in an open interval |
centered at x = a. then the Taylor series for f about x =a converges
to f(x) for x in I if and only if,
limR,(x)=0
n—->o0o

Where R,,(x) is the remainder term in the Taylor formula.
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Example, show that the Taylor series for f(x) = e* about x =0
converges to e* for all x.
Solution,
1 1 x™
— 2 3 e
Ba(r) = 14+ Spaf g 4o
And that

e¢ 1
R,(x) ° 1)!x” ,Where0<c<x
If0 < c < xthene® < e*since f(X) = e* is an increasing function.

e* n+1
[R,, ()] S—(n+1)!x .

By special limit

li e* n+1
im X =
n=>%0 (4

e* lim 2 =e*(0) = 0
n-oo (n+1)! -

Thus, for x>0
limR,(x)=0

If0<c<xthene€ <e®=1.Thus,

ex
n+1
IRn (] < |y
By special limit
lim,, ., ——— x™*1 = e* lim 2 = ¢*(0) = 0
n=>%0 (4! n-oo (n+1)! -

Thus, forall x<0
limR,(x)=0
n—->o0o
Therefore the Taylor series for e* about x = 0 converges to e* for
all real number x.
Taylor series for f about x = 0 (Maclaurin series)

= (n) " mnr
SO = po)+ priope + L2 + L0

n!

x3 + ...

n=0



Basic List of Power Series

X — 1 >, 1 3 x™
e —1+x+;x +;x ++_'+ —0<x < o0
! ! n:

1 1
Inx:(x—l)—z(x—1)2+g(x_1)3_... O<x<?
1
—=1-(x-1D)+(x — 1)2— (x — 1)3+... 0<x<2
X
%:1+x+x2+x3+---+x“+--- Ix] <1
X

k(k-1)x? | k(k-1)(k-2)x3
A+x)*=1+kx+ (2')" 4 MEDE=DC 1y <1
2n+1
SiNx =x ——x3 +—x5 + 4+ = . —0< x < 0
3! 5! (2n+1)!
_ 1 2 1 4 xZn
cosx=1—=x“+=-x*—--+ —e —0< X <O
2! 4! (2n)!
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