Applied II Mathematics Handout
 Chapter One

1. Sequence and Series

1.1 Sequence.

1.1.1 Definition and types of sequence

Definition: A sequence is a list of numbers called terms in a specified order. And denoted by $\left\{a_{n}\right\}$ where a_{n} is called the $n^{\text {th }}$ term or general term of the sequence. or
Simply it is defined as a function whose domain is the set of natural number
A sequence can be finite or infinite. A finite sequence has a last term and an infinite sequence has no last term

$$
\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots a_{n}, a_{n+1} \ldots \text { is called an infinite }
$$ sequence. Whereas,

$$
\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots a_{n} . \text { is called finite sequence. }
$$

Types of sequence

- An arithmetic sequence is a sequence in which the difference between successive terms is a fixed number and each term is obtained by adding a fixed amount to the term before it. This fixed amount is called the common difference. Arithmetic sequences can be represented by first-degree polynomial expressions.
A finite arithmetic sequence can be expressed as:

$$
a, a+d, a+2 d, a+3 d, a+4 d, a+5 d, \ldots, a+(n-l) d
$$

where \mathbf{a} is the first term, \mathbf{d} is the difference between each term, and $\mathbf{a}_{+}(\mathbf{n - 1}) \mathbf{d}$ is the last or " $\mathrm{n}^{\text {th" }}$ term.
Example; $\{3,6,9,12,15,18\}$ is an arithmetic sequeence with $a=3$ and $d=3$

- A geometric sequence is a sequence in which the ratio of successive terms is a fixed number, and each term is obtained by multiplying a fixed amount to the term before it. This fixed amount is called the common ratio.
Terms in a geometric sequence can be represented as:

$$
a, \operatorname{ar}, \operatorname{ar}^{2}, \operatorname{ar}^{3}, \operatorname{ar}^{4}, \operatorname{ar}^{5}, \ldots, \operatorname{ar}^{\mathrm{n}-1}
$$

where a is the first term, $\mathrm{ar}^{\mathrm{n}-1}$ is the last term and the ratio of successive terms is given by \mathbf{r}
such that:

$$
\mathrm{ar} / \mathrm{a}=\mathrm{r}, \mathrm{ar}^{2} / \mathrm{ar}=\mathrm{r}, \mathrm{ar}^{3} / \mathrm{ar}^{2}=\mathrm{r}, \text { etc. }
$$

Example $\{2,4,8,16,32, \ldots\}$, with $a=2$ and $r=2$.

1.1.2 Convergence properties of sequence.

Definition; A real number L is said to be a limit of a sequence $\{\mathrm{an}\} \mathrm{n} \in \mathbb{N}$ if and only if,
for all $\epsilon>0$ there exists a postive integer N such that;

$$
\left|a_{n}-L\right|<\epsilon \text { for all } n>N
$$

We write as

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

And the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a convergence sequence
Note: that this definition holds we have to:

- Guess the value of the limit `
- Assume $\epsilon>0$ has been given,
- Find $\mathrm{N} \epsilon \mathbb{N}$ such that $\left|\mathrm{a}_{\mathrm{n}}-\mathrm{L}\right|<\epsilon$ i.e L- $\epsilon<a_{n}<L+\epsilon$ for all $\mathrm{n} \geq N$

If $\lim _{n \rightarrow \infty} a_{n}$ doesn't exist, we say that $\left\{a_{n}\right\}$ diverges.
$\lim _{n \rightarrow \infty} a_{n}=\infty$, means that the sequence $\left\{a_{n}\right\}$ diverges to infinity. i.e if for every number M , there is an integer N , such that for all n $>N, a_{n}>M$

Similarly; if for every number m , there is an integer N , such that for all $\mathrm{n}>N$, we have $a_{n}<m$,
Then we say $\left\{a_{n}\right\}$ diverges to negative infinity and we write

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty, \text { or } \quad a_{n} \rightarrow-\infty
$$

Generally: A sequence which has a limit is said to be convergent and A sequence with no limit is called divergent.
Theorem 1:1 if the sequence of a real numbers $\{a n\} n \in \mathbb{N}$ has a limit then, this limit is unique.
Proof; assume let $\{a n\} n \in \mathbb{N}$ denote a convergence sequence with two limits say L_{1} and L_{2}
with $L_{1} \neq L_{2}$
Now choose $\epsilon=\frac{1}{3}\left|L_{1}-L_{2}\right|$
Since L_{1} is a limit of $\{\mathrm{an}\} \mathrm{n} \in \mathbb{N}$, then to find $\mathrm{N}_{1} \in \mathbb{N}$ such that

$$
\left|a_{n}-L_{1}\right|<\epsilon \text { for all } n \geq N_{1}
$$

Similarly;
Since L_{2} is a limit of $\{\mathrm{an}\} \mathrm{n} \in \mathbb{N}$ then, to find $\mathrm{N}_{2} \in \mathbb{N}$ such that

$$
\left|a_{n}-L_{2}\right|<\epsilon \text { for all } n \geq N_{2}
$$

Choose any $\mathrm{n} \geq \max \left\{N_{1}, N_{2}\right\}$ then
$\left|L_{1}-L_{2}\right|=\left|L_{1}-a_{n}+a_{n}-L_{2}\right|$

$$
\leq\left|L_{1}-a_{n}\right|+\left|\mathrm{a}_{\mathrm{n}}-L_{2}\right|
$$

$$
<\epsilon+\epsilon
$$

$$
=2 \epsilon \quad \text { but from the choice of } \epsilon=\frac{1}{3}\left|L_{1}-L_{2}\right|
$$

$$
=\frac{2}{3}\left|L_{1}-L_{2}\right|
$$

$\left|L_{1}-L_{2}\right|<\frac{2}{3}\left|L_{1}-L_{2}\right|, L_{1} \neq L_{2}$, This contradicts
Therefore our assumption is false, so the theorem is true.

Limit properties for sequences

If $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ both exist, then the following properties hold true;

- $\lim _{n \rightarrow \infty} c a_{n}=c\left(\lim _{n \rightarrow \infty} a_{n}\right)$ for any constant c.
- $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$.
- $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} a_{n}\right)$.
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ if $b_{n} \neq 0$ for all n

$$
\text { and } \lim _{n \rightarrow \infty} b_{n} \neq 0
$$

The next three theorems are often helpful in finding limits of sequences.

Theorem1.2

If $\lim _{n \rightarrow \infty} a_{n}=\mathrm{L}$, and f is a function whose domain includes L and a_{n} for $n \geq N$, and if f is continuous at $x=L$, then;

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Let $f(x)=x^{k}$ for k a postive integer, is continuous for all x, we have;

$$
\lim \left({ }_{n \rightarrow \infty} a_{n}\right)^{k}=L^{k}
$$

Provided the sequence $\left\{a_{n}\right\}$ converges to L. similarly,

$$
\lim _{n \rightarrow \infty} \sqrt[k]{a_{n}}=\sqrt[k]{L}
$$

Provided $a_{n}>0$ and $L>0$ for even ordered $k^{\text {th }}$ roots.
Theorem 1.3 Let $\left\{a_{n}\right\}$ be a sequence and f a function such that,

$$
f(n)=a_{n}, \quad n=1,2,3, \ldots
$$

If
Then also,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=L \\
& \lim _{n \rightarrow \infty} a_{n}=L
\end{aligned}
$$

Example, find the limit of each of the following sequences.
$\left\{\frac{\ln n}{n}\right\}$
b. $\left\{\frac{\ln \left(2+e^{n}\right)}{3 n}\right\}$
c. $\left\{(1+3 n)^{\frac{1}{n}}\right\}$

Solution,

a. $\quad a_{n}=\frac{\ln n}{n}$, Let $f(x)=\frac{\ln x}{x}$

$$
\Rightarrow f(n)=\frac{\ln n}{n}=a_{n} . \text { Then by Theorem } 1.3
$$

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\ln x}{x}
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0 \text { (Applying L'hopital's rule) }
$$

b. $\quad a_{n}=\frac{\ln \left(2+e^{n}\right)}{3 n}$, let $f(x)=\frac{\ln \left(2+e^{x}\right)}{3 x}$,

$$
\Rightarrow f(n)=\frac{\ln \left(2+e^{n}\right)}{3 n} \text {. Then by Theorem } 1.3
$$

$$
\lim _{n \rightarrow \infty} \frac{\ln \left(2+e^{n}\right)}{3 n}=\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)=
$$

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(2+e^{x}\right)}{3 x}=\lim _{x \rightarrow \infty} \frac{\mathrm{e}^{\mathrm{x} /\left(2+e^{x}\right)}}{3 x}=\lim _{x \rightarrow \infty} \frac{1}{6 e^{-x}+3}
$$

$$
=\frac{1}{3}(\text { Applying L'hopital's rule })
$$

c. $\quad a_{n}=(1+3 n)^{\frac{1}{n}}$.

$$
\text { let } \begin{aligned}
& y=(1+3 x)^{\frac{1}{x}} \Rightarrow \ln y=\ln (1+3 x)^{\frac{1}{x}}=\frac{\ln (1+3 x)}{x} \\
& \Rightarrow \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln (1+3 x)}{x} \\
&=\lim _{x \rightarrow \infty} \frac{3 /(1+3 x)}{1} \\
& \ln \lim _{x \rightarrow \infty} y=0 \\
& \lim _{x \rightarrow \infty} y=e^{0}=1 \\
& \lim _{x \rightarrow \infty}(1+3 x)^{\frac{1}{x}}=1
\end{aligned}
$$

Then by Theorem 1.3, $\lim _{n \rightarrow \infty}(1+3 n)^{\frac{1}{n}}=1$

Theorem 1.4 The Squeeze Theorem for Sequence.

If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=L$ and if for all sufficiently
Large n the inequality $a_{n} \leq c_{n} \leq b_{n}$ holds true, then;

$$
\lim _{n \rightarrow \infty} c_{n}=L
$$

Example; Find the limit of the sequences.
a. $\left\{\frac{n \sin n}{1+n^{2}}\right\}$
b. $\left\{\frac{3+(-1)^{n}}{n^{2}}\right\}$
c. $\{\sqrt{n+2}-\sqrt{n}\}$.

Solution;

$$
\text { a; } \begin{aligned}
& a_{n}=\frac{n \sin n}{1+n^{2}} \Rightarrow\left|\frac{n \sin n}{1+n^{2}}\right| \leq \frac{n}{1+n^{2}}<\frac{n}{n^{2}}=\frac{1}{n} \\
& \Rightarrow-\frac{1}{n} \leq \frac{n \sin n}{1+n^{2}} \leq \frac{1}{n} \\
& \lim _{n \rightarrow \infty}-\frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
\end{aligned}
$$

Then by Squeeze Theorem

$$
\lim _{n \rightarrow \infty} \frac{n \sin n}{1+n^{2}}=0
$$

b. $a_{n}=\frac{3+(-1)^{n}}{n^{2}} \quad \Rightarrow 0<\frac{3+(-1)^{n}}{n^{2}} \leq \frac{4}{n^{2}}$

$$
\lim _{n \rightarrow \infty} 0=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}=0
$$

Then by Squeeze Theorem

$$
\lim _{n \rightarrow \infty} \frac{3+(-1)^{n}}{n^{2}}=0
$$

c. $a_{n}=\sqrt{n+2}-\sqrt{n} . \quad \Rightarrow(\sqrt{n+2}-\sqrt{n})\left(\frac{\sqrt{n+2}+\sqrt{n}}{\sqrt{n+2}+\sqrt{n}}\right)=$ $\frac{n+2-n}{\sqrt{n+2}+\sqrt{n}}<\frac{2}{2 \sqrt{n}}=\frac{1}{\sqrt{n}}$

$$
\begin{aligned}
\Rightarrow 0 & <\sqrt{n+2}-\sqrt{n}<\frac{1}{\sqrt{n}} . \\
\lim _{n \rightarrow \infty} 0 & =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
\end{aligned}
$$

Then by Squeeze Theorem

$$
\lim _{n \rightarrow \infty} \sqrt{n+2}-\sqrt{n}=0
$$

Recursive Definition of Sequence.

Sometimes sequences are defined recursively by giving

- The value of the initial term or terms, and
- A rule called a recursion formula, for calculating any later term from terms that precede it.
i.e the formula giving a_{n} in terms of a_{n-1} is called recursion formula.
The best known sequence defined recursively is the Fibonacci sequence, defined by
$f_{1}=1, f_{2}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$
The number f_{n} are called Fibonacci numbers.

Monotonicity and Boundedness

Definition; A sequence $\left\{a_{n}\right\}$ is said to be

- Increasing if $a_{n} \leq a_{n+1}$ for all postive integer n
- Decreasing if $a_{n} \geq a_{n+1}$ for all postive integer n.
- A sequence that is either always increasing or always decreasing is said to be monotone.
Example: show that each of the following sequence is monotone.
a. $\left\{\frac{2 n+3}{n}\right\}$
b. $\left\{\frac{n}{\sqrt{1+n^{2}}}\right\}$
c. $\left\{\frac{n!}{n^{n}}\right\}$

Solution: a, $a_{n}=\frac{2 n+3}{n}$ and $a_{n+1}=\frac{2(n+1)+3}{n+1}$

$$
\begin{aligned}
\begin{aligned}
a_{n+1}-a_{n}= & \frac{2(n+1)+3}{n+1}-\frac{2 n+3}{n} \\
& =\frac{(2 n+5) n-(2 n+3)(n+1)}{n(n+1)} \\
& =\frac{2 n^{2}+5 n-\left(2 n^{2}+5 n+3\right)}{n(n+1)}=\frac{-3}{n(n+1)}<0 \\
& a_{n+1}-a_{n}<0, \Longrightarrow a_{n+1}<a_{n}
\end{aligned} \\
\quad a_{n} \text { is strictly decreasing, so it is monotone. }
\end{aligned}
$$

Consider a function for which $f(n)=a_{n}$

$$
f(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

Taking its derivative, we have $f^{\prime}(x)=\frac{1+x^{2}-x^{2}}{\left(1+x^{2}\right)^{\frac{3}{2}}}=\frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}}>0$
$f^{\prime}(x)>0$ for all $x, \Rightarrow f$ is an increasing function.
Thus since $f(n)=a_{n}$, we see that $\left\{a_{n}\right\}$ is also increasing, so it is monotone.

Tests for monotonicity

1. if $\left\{\begin{array}{l}a_{n+1}-a_{n} \geq 0 \text { for all } n, \text { then }\left\{a_{n}\right\} \text { is increasing } \\ a_{n+1}-a_{n} \leq 0 \text { for all } n \text {, then }\left\{a_{n}\right\} \text { is decreasing }\end{array}\right.$
2. Let $f(x)$ be continuous function with $f(n)=a_{n}$.
calculate $f^{\prime}(x)$ if it exists.
3. If $\left\{\begin{array}{l}f^{\prime}(x) \geq 0 \text { on }[1, \infty) \text {, then }\left\{a_{n}\right\} \text { is increasing. } \\ f^{\prime}(x) \leq 0 \text { on }[1, \infty) \text {, then }\left\{a_{n}\right\} \text { is decreasing }\end{array}\right.$
4. if $a_{n}>0$ for all n, calculete the ratio $\frac{a_{n+1}}{a_{n}}$.

$$
\text { if }\left\{\begin{array}{l}
\frac{a_{n+1}}{a_{n}} \geq 1 \text { for all } n, \text { then }\left\{a_{n}\right\} \text { is increasing } \\
\frac{a_{n+1}}{a_{n}} \leq 1 \text { for all } n, \text { then }\left\{a_{n}\right\} \text { is decreasing } .
\end{array}\right.
$$

Definition:

A sequence $\left\{a_{n}\right\}$ is said to be bounded if there is some positive constant number M such that

$$
\left|a_{n}\right| \leq M
$$

for all positive integer n.
A sequence $\left\{a_{n}\right\}$ is said to be bounded from;

- Above, if there is some real number M, such that, $a_{n} \leq M$ for all n, M is upper bound for $\left\{a_{n}\right\}$ and no number less than M is an upper bound for $\left\{a_{n}\right\}$, then M is the least upper bound for $\left\{a_{n}\right\}$.
- Below, if there is some real number m , such that, $a_{n} \geq m$ for all n, m is a lower bound for $\left\{a_{n}\right\}$ and no number greater than m is a lower bound for $\left\{a_{n}\right\}$, then m is the greatest lower bound for $\left\{a_{n}\right\}$.
- If $\left\{a_{n}\right\}$ is bounded from above and below, then $\left\{a_{n}\right\}$ is bounded. If $\left\{a_{n}\right\}$ is not bounded, then we say that $\left\{a_{n}\right\}$ is unbounded sequence.
Note: convergence of a power sequence
If r is fixed number such that
- $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$
- $r=1$, then $\lim _{n \rightarrow \infty} r^{n}=1$
- For all other value of r, the sequence diverges.

Definition; A sequence $\left\{a_{n}\right\}$ of real numbers is called a Cauchy sequence if for each $\epsilon>0$ there is a number $\mathrm{N} \in \mathbb{N}$ so that
if $m ; n>\mathbb{N}$ then $\left|a_{n}-a_{m}\right|<\epsilon$.
Note; Convergent sequences are Cauchy sequences.
Proof: Suppose that $\lim a_{n}=L$. Note that
$\left|a_{n}-a_{m}\right|=\left|a_{n}-L+L-a_{m}\right| \leq\left|a_{n}-L\right|+\left|a_{m}-L\right|$. Thus,
given any $\epsilon>0$ there is an $N \in \mathbb{N}$ so that if $k>N$ then
$\left|a_{k}-L\right|<\epsilon$. Thus, if $m ; n>N$ we have
$\left|a_{n}-a_{m}\right| \leq\left|a_{n}-L\right|+\left|a_{m}-L\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$
Thus, $\left\{a_{n}\right\}$ is a Cauchy sequence.

Theorem 1.5: Monotone Bounded Sequence Theorem

If $\left\{a_{n}\right\}$ is a sequence of real numbers that is both monotone and bounded, then it is converges.

Theorem 1.6 Every convergent sequence is bounded. But the converse is not always true.
Proof: Let $\left\{a_{n}\right\}_{\mathrm{n}} \geqslant 1$ converge to a. Then there exists an $\mathrm{N} \in \mathbb{N}$ such that $\left|a_{n}-a\right|<1=\epsilon$ for $n \geq N$. It follows that $\left|a_{n}\right|<1+|a|$ for $n \geq N$. Define $M=\max \left\{1+|a|,\left|a_{1}\right|,\left|a_{2}\right|, \ldots\left|a_{n-1}\right|\right\}$. Then $\left|a_{n}\right|<M$ for every $\mathrm{n} \in \mathbb{N}$.
To see that the converse is not true, it suffices to consider the sequence $\left\{(-1)^{\mathrm{n}}\right\}_{\mathrm{n} \geq 1}$, which is bounded but not convergent, although the odd terms and even terms both form convergent sequences with different limits.
Example: show that the sequence $\left\{\frac{1.3 .5 \ldots(2 n-1)}{2.4 .6 \ldots(2 n)}\right\}$ converges.
Solution; the first few terms of this sequence are,

$$
\begin{aligned}
& a_{1}=\frac{1}{2} \quad a_{2}=\frac{1.3}{2.4}=\frac{3}{8} \quad a_{3}=\frac{1.3 .5}{2.4 .6}=\frac{15}{48}=\frac{5}{16} \\
& a_{4}=\frac{1.3 .5 .7}{2.46 .8}=\frac{35}{128} \cdots
\end{aligned}
$$

$\frac{1}{2}>\frac{3}{8}>\frac{5}{16}>\frac{35}{128}>\cdots$
\Rightarrow the sequence is decreasing(i.e it is monotonic)
Generally;
we can show that, $a_{n+1}<a_{n}, \Rightarrow \frac{a_{n+1}}{a_{n}}<1, a_{n}>0$ for all n
$\frac{a_{n+1}}{a_{n}}=\frac{\frac{1 \cdot 3.5 \ldots(2(n+1)-1)}{2 \cdot 4.6 \ldots(2(n+1))}}{\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4.6 \ldots(2 n)}}$

$$
=\frac{1.3 .5 \ldots(2 n+1)}{2.4 .6 \ldots(2 n+2)} \cdot \frac{2.4 .6 \ldots(2 n)}{1 \cdot 3.5 \ldots(2 n-1)}=\frac{2 n+1}{2 n+2}
$$

$$
<1
$$

$\frac{a_{n+1}}{a_{n}}<1 \Rightarrow a_{n+1}<a_{n}$ for any $n>0$. hence $\left\{a_{n}\right\}=$ $\left\{\frac{1.3 .5 \ldots(2 n-1)}{2.4 .6 \ldots(2 n)}\right\}$ is a decreasing sequence.
$a_{n}>0$ for all n it follows that $\left\{a_{n}\right\}$ is bounded below by 0 .
Thus by MBCT
$\left\{a_{n}\right\}=\left\{\frac{1.3 .5 \ldots(2 n-1)}{2.4 .6 \ldots(2 n)}\right\}$ Converges.

1.1.3 Subsequence;

Definition: Let $\left\{a_{n}\right\}$ be a sequence. When we extract from this sequence only certain elements and drop the remaining ones we obtain a new sequences consisting of an infinite subset of the original sequence. That sequence is called a subsequence and denoted by $\left\{\mathrm{a}_{\mathrm{nk}}\right\}$.

Theorem 1.6;

- If $\left\{a_{n}\right\}$ is a convergent sequence, then every subsequence of that sequence converges to the same limit.
- If is a sequence such that every possible subsequence extracted from that sequences converges to the same limit, then the original sequence also converges to that limit.
- Let $\left\{a_{n}\right\}$ be a sequence of real numbers that is bounded. Then there exists a subsequence $\left\{\mathrm{a}_{\mathrm{nk}}\right\}$ that converges.

1.2 Infinite Series.

Definition; given a sequence of numbers a_{n}, an expiration of the form

$$
a_{1}+a_{2}+a_{3}+a_{4}+\ldots
$$

is an infinite series. The number a_{n} is the $\mathrm{n}^{\text {th }}$ term of the series. The sequence $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ defined by

$$
\begin{gathered}
s_{1}=a_{1} \\
s_{2}=a_{1}+a_{2} \\
s_{3}=a_{1}+a_{2}+a_{3} \\
s_{4}=a_{1}+a_{2}+a_{3}+a_{4} \\
: \\
: \\
s_{n}=a_{1}+a_{2}+a_{3}+a_{4} \ldots a_{n}=\sum_{k=1}^{n} a_{k}
\end{gathered}
$$

is the sequence of partial sums of the series, the number s_{n} being the $\mathrm{n}^{\text {th }}$ partial sum.

- If the sequence of partial sums converges to a limit L (i.e; $\lim _{n \rightarrow \infty} s_{n}=L$), we say that the series converges and that its sum is L . we also write

$$
a_{1}+a_{2}+a_{3}+a_{4} \ldots+a_{n}=\sum_{k=1}^{n} a_{k}=L
$$

- If the sequence of partial sums of the series does not converge, (i.e; $\lim _{n \rightarrow \infty} s_{n}=\infty$ or does not exist), we say that the series diverges
- In general

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+a_{3}+a_{4} \ldots a_{n}\right)
$$

Provided the limit on the right exist, i.e $\lim _{n \rightarrow \infty} s_{n}=s$
Given any positive number ϵ, there is a positive number N such that for all $\mathrm{n}>N,\left|s_{n}-s\right|<\epsilon$

Geometric Series

A geometric series is an infinite series of the form

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots,
$$

in which \mathbf{a} is its first term with $\mathbf{a} \neq 0$ and \mathbf{r} is called the common ratio
If $\mathrm{r}=1$ the $\mathrm{n}^{\text {th }}$ partial sum of the geometric series is,

$$
s_{n}=a+a(1)+a(1)^{2}+a(1)^{2}+\cdots+a(1)^{n-1}=n a .
$$

And the series diverge because;

$$
\lim _{n \rightarrow \infty} s_{n}= \pm \infty, \text { depend on the sign of a. }
$$

If $r=-1$ the series diverges because the $\mathrm{n}^{\text {th }}$ partial sums alternate between \mathbf{a} and $\mathbf{0}$
If $r \neq 1$ we can determine the convergence or divergence of the series in the following way;

$$
\begin{gathered}
s_{n}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1} \\
r s_{n}=r a+a r^{2}+a r^{3}+a r^{4}+\cdots+a r^{n} \\
s_{n}-r s_{n}=a-a r^{n}
\end{gathered}
$$

$$
\begin{gathered}
s_{n}(1-r)=a\left(1-r^{n}\right) \\
s_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \quad r \neq 1
\end{gathered}
$$

If $|r|<1$, the geometric series $a+a r+a r^{2}+a r^{3}+$ \cdots converges to $\frac{a}{1-r}$ since $r^{n} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$, and

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}
$$

If $|r|>1$, the geometric series diverges.
Example; determine whether each of the following series is convergent or divergent. If convergent find the sum.
a. $2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\ldots$
b. $\sum_{n=1}^{\infty}\left(\frac{5}{4}\right)^{n}$

Solution:

a. The series is geometric with $\mathrm{a}=2$ and $\mathrm{r}=-1 \div 2=-\frac{1}{2}$,
$\left|-\frac{1}{2}\right|=\frac{1}{2}<1$
Therefore the series is converges to

$$
\frac{a}{1-r}=\frac{2}{1+1 / 2}=4 / 3
$$

b. $\quad \sum_{n=1}^{\infty}\left(\frac{5}{4}\right)^{n}=\sum_{n=1}^{\infty} \frac{5}{4}\left(\frac{5}{4}\right)^{n-1}$ the series is geometric with

$$
\mathrm{a}=\frac{5}{4} \text { and } \mathrm{r}=\frac{5}{4}
$$

$$
\left|\frac{5}{4}\right|=\frac{5}{4}>1
$$

Therefore the series is diverges and it has no sum.
Example: Find the rational number represented by the repeating decimal 0.784784784...

Solution. We can write
$0.784784784 \ldots=0.784+0.000784+0.000000784+\ldots$
so the given decimal is the sum of a geometric series with a $=0.784$ and $r=0.001$. Thus.
$0: 784784784 \ldots=\frac{a}{1-r}=\frac{0.784}{1-0.001}=\frac{784}{999}$

Theorem 1.7

1. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$, but not the converse.
Proof: let s_{n} the $n^{\text {th }}$ partial sum of $\sum_{n=1}^{\infty} a_{n}$ that is,

$$
s_{n}=a_{1}+a_{2}+a_{3}+a_{4} \ldots+a_{n} \text { then }
$$

if $n>1$, we also have,

$$
\begin{gathered}
s_{n-1}=a_{1}+a_{2}+a_{3}+a_{4} \ldots+a_{n-1} \\
s_{n}-s_{n-1}=a_{n}
\end{gathered}
$$

since the series converges $\lim _{n \rightarrow \infty} s_{n}=s$. but $n \rightarrow$ ∞, we also $n-1 \rightarrow \infty$, so $\lim _{n \rightarrow \infty} s_{n-1}=s$. Thus

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=s-s \\
=0
\end{gathered}
$$

2. $\sum_{n=1}^{\infty} a_{n}$ diverge, if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or does not exist.

Example;

- The series $\sum_{k=1}^{\infty} \frac{k}{k+1}=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{k}{k+1}+\ldots$ diverges since

$$
\lim _{k \rightarrow \infty} \frac{k}{k+1}=\lim _{k \rightarrow \infty} \frac{1}{1+1 / k}=1 \neq 0
$$

- The series
$\sum_{n=1}^{\infty}(-1)^{n}$ diverges, since $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.
- The series $\sum_{n=1}^{\infty} n^{2}$ diverges, since $\lim _{n \rightarrow \infty} n^{2}=\infty$.
- The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$ diverges. This is an example of a series where $\lim _{n \rightarrow \infty} a_{n}=$ 0 , but $n=1$ osandiverges.

Property of convergent series

If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, and if c is any constant, then

- $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$ converges.
- $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n}$ converges.
- if $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty}\left(a_{n} \pm\right.$ b_{n}) diverges.
- If $\sum_{n=1}^{\infty} a_{n}$ diverges and $c \neq 0$ then $\sum_{n=1}^{\infty} c a_{n}$ diverges.
- if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=k}^{\infty} a_{n}$ converges for any $\mathrm{k}>1$, and $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4} \ldots+a_{k-1}+$ $\sum_{n=k}^{\infty} a_{n}$. Conversely,
if $\sum_{n=k}^{\infty} a_{n}$ converges for any, $\mathrm{k}>1$ then $\sum_{n=1}^{\infty} a_{n}$ converges.

1.2.1 Test of Convergence.

The integral test.

The series $\sum_{n=1}^{\infty} a_{n}$ of nonnegative terms converges, iff its partial sum is bounded from above.

Theorem 1.8: the integral test.

Let $\left\{a_{n}\right\}$ be a sequence of positive terms. Suppose that $a_{n}=f(n)$, Where f is continuos, postive, decreasing function of x for all $x \geq N(N>0)$.

Then the series $\sum_{n=1}^{\infty} a_{n}$ and the integral $\int_{N}^{\infty} f(x) d x$ both converge or both diverge
Example: show that the $\mathrm{p}-$ series
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\ldots$ converges if $\mathrm{p}>1$, and diverges if $\mathrm{p} \leq 1$.
Solution: if $\mathrm{p}>1$, then $f(x)=\frac{1}{x^{p}}$ is a positive decreasing function for $x>1$. Since

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\int_{1}^{\infty} x^{-p} d x=\lim _{b \rightarrow \infty}\left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{b} \\
& =\frac{1}{1-p} \lim _{b \rightarrow \infty}\left(\frac{1}{b^{p-1}}-1\right)=\frac{1}{p-1}
\end{aligned}
$$

the improper integral converges.
Then the series converges by the integral test. But it does not tell the sum of the p - series.
If $\mathrm{p}<1$, then $1-\mathrm{p}>0$ and
$\int_{1}^{\infty} \frac{1}{x^{p}} d x=\frac{1}{1-p} \lim _{b \rightarrow \infty}\left(b^{1-p}-1\right)=\infty$. diverge.
Then the series diverges by integral test
If $\mathrm{p}=1$ we have the divergence harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\ldots
$$

Therefore, $\mathrm{p}-$ series is convergence series for $\mathrm{p}>1$ but divergence for all other values of p.
Example: show that $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}+1}\right)$ convergent.
Solution: let $f(x)=\frac{1}{x^{2}+1}$ is continues, positive, and decreasing for $\mathrm{x}>1$, and
$\int_{1}^{\infty} \frac{1}{x^{2}+1} d x=\lim _{b \rightarrow \infty}[\arctan x]_{1}^{b}=\lim _{b \rightarrow \infty}[\arctan b-$ $\arctan 1]=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$. Convergent.
Then, the series converges by the integral test. But we do not know the value of its sum.

Theorem 1.10; Comparison test.

$\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series of non negative terms, with $a_{n} \leq b_{n}$ for all n .

- If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.

Limit comparison test

Suppose that $a_{n}>0$ and $b_{n}>0$ for all $\mathrm{n} \geq N(\mathrm{~N}$ an integer)

- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$ then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverge, then $\sum_{n=1}^{\infty} a_{n}$ diverge.
Example: test each of the following series for convergence or divergence.
a. $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}$
b. $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n+4}$
c. $\sum_{n=2}^{\infty} \frac{1+n \ln n}{n^{2}+5}$

Solution:

a. Let $a_{n}=\frac{1}{n^{2}+2 n}<\frac{1}{n^{2}}=b_{n}$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p - series, then
$\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}$ is convergent by comparition test
b. Let $a_{n}=\frac{\sqrt[3]{n}}{n+4}$ for large n is like $\frac{\sqrt[3]{n}}{n}=\frac{1}{\sqrt[3]{n^{2}}}=b_{n}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{\sqrt[3]{n}}{n+4}}{\frac{1}{\sqrt[3]{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{n}{n+4}=1$,
Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2}}}$ diverges p - series with $\mathrm{p}=\frac{2}{3}$.

$$
\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n+4} \text { diverges by the limit comparition test }
$$

c. Let $a_{n}=\frac{1+n \ln n}{n^{2}+5}$ for large n we expect a_{n} to behave like $\frac{n \ln n}{n^{2}}=\frac{\ln n}{n}>\frac{1}{n}$ for $n \geq 3$
So let $b_{n}=\frac{1}{n}$. since,
$\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1+n \ln n}{n^{2}+5}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n+n^{2} \ln n}{n^{2}+5}=\infty
$$

Therefore by limit comparison test
$\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1+n \ln n}{n^{2}+5}$ diverges.

The ratio and root tests

The ratio test.

Let $\sum_{n=1}^{\infty} a_{n}$ be a series of non negative terms, and suppose that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=p \text {. Then }
$$

a. the series converges if $\mathrm{p}<1$
b. The series diverges if $\mathrm{p}>1$
c. The test is inconclusive if $\mathrm{p}=1$

Example: investigates the convergence of the following series.
a. $\quad \sum_{n=1}^{\infty} \frac{n}{4^{n}}$
b. $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$
c. $\sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!}$

Solution:

a. Let $a_{n}=\frac{n}{4^{n}} \Rightarrow a_{n+1}=\frac{n+1}{4^{n+1}}$.
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n+1}{4^{n+1}}}{\frac{n}{4^{n}}}=\lim _{n \rightarrow \infty} \frac{n+1}{4 n}=\frac{1}{4}<1$. Thus
By ratio test $\sum_{n=1}^{\infty} \frac{n}{4^{n}}$ converges.
b. Let $a_{n}=\frac{(2 n)!}{n!n!} \Rightarrow a_{n+1}=\frac{(2 n+2)!}{(n+1)!(n+1)!}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}= & \lim _{n \rightarrow \infty} \frac{\frac{(2 n+2)!}{(n+1)!(n+1)!}}{\frac{(2 n)!}{n!n!}}= \\
& \lim _{n \rightarrow \infty} \frac{n!n!(2 n+2)(2 n+1)(2 n)!}{n!n!(n+1)(n+1)(2 n)!} . \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}=\lim _{n \rightarrow \infty} \frac{4 n+2}{n+1}=4>1 .
\end{aligned}
$$

Thus,
By ratio test $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$ is diverges.
c. Let $a_{n}=\frac{4^{n} n!n!}{(2 n)!} \quad \Rightarrow a_{n+1}=\frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)!}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}= & \lim _{n \rightarrow \infty} \frac{\frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)!}}{\frac{4^{n} n!n!}{(2 n)!}} \\
& =\lim _{n \rightarrow \infty} \frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)(2 n+1)!(2 n)!} \cdot \frac{(2 n)!}{4^{n} n!n!} \\
& =\lim _{n \rightarrow \infty} \frac{4(n+1)(n+1)}{(2 n+2)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{2(n+1)}{(2 n+1)}=1 .
\end{aligned}
$$

Thus
We cannot decide by ratio test.

Root test.

Let $\sum_{n=1}^{\infty} a_{n}$ be a series of non negative terms for $\mathrm{n} \geq N$. and suppose that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=p . \text { Then }
$$

a. the series converges if $\mathrm{p}<1$
b. The series diverges if $\mathrm{p}>1$
c. The test is inconclusive if $p=1$

Example: Investigates the convergence of the following series
a. $\quad \sum_{n=1}^{\infty} \frac{4^{n}}{(3 n)^{n}}$
b. $\sum_{n=1}^{\infty}\left(\frac{4 n+3}{3 n-5}\right)^{n}$.

Solution:

a. Let $a_{n}=\frac{4^{n}}{(3 n)^{n}} \quad \Rightarrow \sqrt[n]{a_{n}}=\sqrt[n]{\frac{4^{n}}{(3 n)^{n}}}=\frac{4}{3 n}$. $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{4}{3 n}=0<1$. Thus by root test, $\sum_{n=1}^{\infty} \frac{4^{n}}{(3 n)^{n}}$ converges.
b. Let $a_{n}=\left(\frac{4 n+3}{3 n-5}\right)^{n} \quad \Rightarrow \sqrt[n]{a_{n}}=\sqrt[n]{\left(\frac{4 n+3}{3 n-5}\right)^{n}}=\frac{4 n+3}{3 n-5}$. $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{4 n+3}{3 n-5}=\frac{4}{3}>1$. Thus by root, Test the series, $\sum_{n=1}^{\infty}\left(\frac{4 n+3}{3 n-5}\right)^{n}$ diverges.

1.3 Alternating series, absolute and conditional convergence.

Alternating series.

Definition;

A series in which the terms are alternately positive and negative is an alternating series.
Example; the $\mathrm{n}^{\text {th }}$ term of an alternating series is of the form, $a_{n}=(-1)^{n+1} u_{n}$ or $a_{n}=(-1)^{n} u_{n}$ where $u_{n}=\left|a_{n}\right|$ is a positive number.

Alternating series test

If $a_{n}>0$, for all n and the following two conditions are satisfied

- $a_{n+1} \leq a_{n}$ and,
- $\lim _{n \rightarrow \infty} a_{n}=0$, then;
- The series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges.

Example; show that the alternating harmonic series,
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ Converges.
Solution: $a_{n}=\frac{1}{n}$ let the series is alternating series in which,

- $\frac{1}{n+1}<\frac{1}{n} \quad \Rightarrow a_{n+1} \leq a_{n}$
- $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$

Therefore by the alternate series test $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges.

Absolute and conditional convergence.

Definition:

- the series $\sum_{n=1}^{\infty} a_{n}$ is said to be absolutely convergent, if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
- If $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ is said to be conditionally convergent.
- If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then it is convergent.

Example: Determine whether each converges conditionally,
converges absolutely or diverges.
a. $\sum_{n=1}^{\infty} \frac{\sin n+\cos n}{n^{3}}$.
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$

Solution:
a. Let $a_{n}=\frac{\sin n+\cos n}{n^{3}}$, since $\sin n+\cos n \leq 2$ is both positive and negative.
$\frac{|\sin n+\cos n|}{n^{3}} \leq \frac{2}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{2}{n^{3}}$ converges. Since it is a pseries with $\mathrm{p}=3$. Thus,
$\sum_{n=1}^{\infty}\left|\frac{\sin n+\cos n}{n^{3}}\right|=\sum_{n=1}^{\infty} \frac{|\sin n+\cos n|}{n^{3}}$ Converges, by comparison test.
Therefore $\sum_{n=1}^{\infty} \frac{\sin n+\cos n}{n^{3}}$ is absolutely convergent.
b. Let $a_{n}=\frac{(-1)^{n-1}}{\sqrt{n}}$
$\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty}\left|\frac{1}{\sqrt{n}}\right|$ is diverges absolutely. But
$\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$.
let $b_{n}=\frac{1}{\sqrt{n}}, \quad b_{n+1}=\frac{1}{\sqrt{n+1}}, \quad \Longrightarrow b_{n+1}>b_{n}$ and,

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

Then by alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$. Converges.

Chapter Two

2. Power Series

2.1 Definition of Power series.

Definition: A power series about $\mathrm{x}=0$ is a series of the form,
$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots+c_{n} x^{n} \ldots$, and
A power series about $\mathrm{x}=\mathrm{a}$ is a series of the form,
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+$ $c_{3}(x-a)^{3}+\cdots+c_{n}(x-a)^{n} \ldots$ in which the center a and the coefficients $c_{0}, c_{1}, c_{2}, c_{3} \ldots c_{n}, \ldots$ are constants.
Example: consider a geometric series,
$\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\ldots$ with first term 1
and ratio x . it converges to $\frac{1}{1-x}$ for $|x|<1$.
We express this fact by writing.
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\ldots,-1<x<1$. it is also
called a power series with all the coefficients equal to 1 of the first form.
Example: consider the power series of the second form.
$1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}-\ldots+\left(-\frac{1}{2}\right)^{n}(x-2)^{n}+\cdots, 0<x<4$.
With $\mathrm{a}=2, c_{0}=1, c_{1}=-1 / 2, c_{2}=1 / 4, \ldots c_{n}=\left(-\frac{1}{2}\right)^{n}$. this is a geometric series with the first term 1 and ratio $\mathrm{r}=-\left(\frac{x-2}{2}\right)$ the series converges for $\left|-\left(\frac{x-2}{2}\right)\right|<1$ or $0<x<4$. Then the sum is, $\frac{1}{1-r}=\frac{1}{1+\frac{x-2}{2}}=\frac{2}{x}$. Therefore,
$\frac{2}{x}=1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}-\ldots+\left(-\frac{1}{2}\right)^{n}(x-2)^{n}+\cdots$, $0<x<4$.

Theorem 2.1. The convergence theorem for power series.
If the power series,
$f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$ converges at $\mathrm{x}=\mathrm{a} \neq 0$, then it converges absolutely for all x with $|x|<|c|$.
If the series diverges at $\mathrm{x}=\mathrm{d}$ then it diverges for all x
with $|x|>|d|$

2.2. Radius of Convergence and Interval of Convergence.

The convergence of the series.
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is described by one of the following three cases

- The series converge absolutely for every $\mathrm{x}(\mathrm{R}=\infty)$
- There is a positive number R such that the series diverges for x with $|x-a|>R$ but converge absolutely for x with $|x-a|<R$. The series may or may not converge at either of the end points $x=a-R$ and $x=a+R$
- The series converge at $x=a$ and diverge all the rest ($\mathrm{R}=0$)
Where, the number R in each case is called the radius of convergence of the series. For convenience, if the first case holds we agree to call the radius of convergence is $\mathrm{R}=\infty$, if the second case holds $\mathrm{R}=x-a$, and the last case holds $\mathrm{R}=0$.
If $|x-a|<R$. Then the series converges on the intervals $(a-R, a+R),[a-R, a+R],[a-R, a+R)$ or $(a-R, a+R]$ depends on the series converges at $a-R$ or $a+R$ and these intervals are called
intervals of convergence. When $R=0$ the interval of convergence degenerates to the single point $\mathrm{x}=0$, and if $\mathrm{R}=\infty$, it is the entire real line $(-\infty, \infty)$.

Using the Ratio Test to Find the Radius of Convergence.

When $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists, the radius of convergence can be found using the ratio test.

Examples: find the radius and intervals of convergence of the series.
a. $\quad \sum_{n=0}^{\infty} \frac{x^{n}}{2 n+1}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{(n+1)^{2} 3^{n}}$
c. $\sum_{n=0}^{\infty} n!(2 x-1)^{n}$

Solution;

a. $a_{n}=\frac{x^{n}}{2 n+1}$, ratio test is applicable only to series of positive terms, and since x can be either positive or negative, so we must consider in absolute value.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|= & \lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{2(n+1)+1}}{\frac{x^{n}}{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{2 n+3} \cdot \frac{2 n+1}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+3}|x|=|x|
\end{aligned}
$$

The series converges absolutely when $|x|<1$ and diverges when $|x|>1$. Therefore the radius of convergence is $\mathrm{R}=1$. If $\mathrm{x}=1 \sum_{n=0}^{\infty} \frac{1}{2 n+1}=1+1 / 3+1 / 5+\ldots$
$a_{n}=\frac{1}{2 n+1}$ let $b_{n}=\frac{1}{n}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{2 n+1} \div \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$
$\lim _{n \rightarrow \infty} \frac{1}{n}$ is divergent harmonic series, then by limit Comparison test $\sum_{n=0}^{\infty} \frac{1}{2 n+1}$ is diverges.
If $\mathrm{x}=-1, \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ this series is an alternating series, and $\frac{1}{2 n+1}$ decrease monotonically to 0 thus the series converges.
Therefore the complete interval of convergence of the original series is $-1 \leq x<1$.
b. Consider the limit
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-2)^{n+1}}{(n+2)^{2} 3^{n+1}} * \frac{(n+1)^{2} 3^{n}}{(-1)^{n}(x-2)^{n}}\right|$
$=\lim _{n \rightarrow \infty} \frac{1}{3}\left(\frac{n+1}{n+2}\right)^{2}|x-2|=\frac{|x-2|}{3}$. Thus by the ratio test the series converges absolutely
If $\frac{|x-2|}{3}<1, \Rightarrow|x-2|<3$ and diverge
If $|x-2|>3$. Now we test the value $(x-2)= \pm 3$
If $(\mathrm{x}-2)=3 \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{(n+1)^{2} 3^{n}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{2}}$ this series is converges absolutely, since it is $\mathrm{p}-$ series with $\mathrm{p}=2$.

$$
\text { If } \begin{aligned}
(\mathrm{x}-2)=-3 \sum_{n=0}^{\infty} \frac{(-1)^{n}(-3)^{n}}{(n+1)^{2} 3^{n}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n} 3^{n}}{(n+1)^{2} 3^{n}} \\
& =\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}} \text { is a convergence }
\end{aligned}
$$

P series with $\mathrm{p}=2$.
Therefore the complete interval of convergence is defined as $|x-2| \leq 3, \Rightarrow-3 \leq x-2 \leq 3$

$$
\Rightarrow-1 \leq x \leq 5 \text { Thus the interval of }
$$

Convergence is $[-1,5]$
c. Let $a_{n}=n!(2 x-1)^{n}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(2 x-1)^{n+1}}{n!(2 x-1)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}(n+1)|(2 x-1)| \\
& =\infty
\end{aligned}
$$

Now for all $\mathrm{x} \neq \frac{1}{2}$ the series diverges, so $\mathrm{R}=0$ and interval of Convergence is a single point $\left\{\frac{1}{2}\right\}$
d. If $a_{n}=\frac{n x^{n}}{1.3 .5 . . .(2 n-1)}$ then

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{n+1}}{1.3 .5 \ldots(2 n+1)} \cdot \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n x^{n}}\right|
$$

$$
=|x| \lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=0 \text { for all } \mathrm{x}
$$

The series converges $\Rightarrow R=\infty$, and interval of convergence $=(-\infty, \infty)$

2.3. Arithmetic Operations on Convergent Power Series.

If $\mathrm{A}(\mathrm{x})=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\mathrm{B}(\mathrm{x})=\sum_{n=0}^{\infty} b_{n} x^{n}$ converge absolutely for $|x|<R$, and
$c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n-1} b_{1}+a_{n} b_{0}=\sum_{k=0}^{n} a_{k} b_{n-k}$, then $\mathrm{A}(\mathrm{x})=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely to $\mathrm{A}(\mathrm{x}) \mathrm{B}(\mathrm{x})$ for $|x|<R$

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Similarly,
$\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \pm\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) x^{n}$. Converges to $\mathrm{A}(\mathrm{x}) \pm \mathrm{B}(\mathrm{x})$ for $|x|<R$

Note If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely for $|x|<R$, then

$$
\sum_{n=0}^{\infty} a_{n}(f(x))^{n}
$$

Converges absolutely for any continuous function f on $|f(x)|<R$
Example; since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ converges absolutely for $|x|<1$
Then $\frac{1}{1-3 x^{4}}=\sum_{n=0}^{\infty}\left(3 x^{4}\right)^{n}$ converges absolutely for $\left|3 x^{4}\right|<1$, or $|x|<1 / 3$

2.4. Differentiation and integration of power series

let $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ have nonzero radius of convergence R and for $a-R<x<a+R$, we write,

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n} . \text { Then, }
$$

1. f is continuous on the interval $(\mathrm{a}-\mathrm{R}, \mathrm{a}+\mathrm{R})$.
2. f is differentiable on the interval $(a-\mathrm{R}, \mathrm{a}+\mathrm{R})$ and

$$
f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{d}{d x}\left(a_{n}(x-a)^{n}\right)=\sum_{n=1}^{\infty} n a_{n}(x-a)^{n-1} .
$$

the series on the right also has radiuse of convergence R
3. f integrable over any interval $[a, b]$ contained in $(a-R, a+R)$,

$$
\int_{a}^{b} f(x) d x=\sum_{n=0}^{\infty} \int_{a}^{b} a_{n}(x-a)^{n} d x
$$

furthermore, f has an antiderevatives in ($a-\mathrm{R}, \mathrm{a}+\mathrm{R}$) given by,

$$
\int f(x) d x=\sum_{n=0}^{\infty} \int a_{n} x^{n} d x=\sum_{n=0}^{\infty} \frac{a_{n} x^{n+1}}{n+1}+C
$$

the series on the right also has radius of convergence R.
Example; let $f(x)=\frac{1}{1-x}$, then find series for $f^{\prime}(x)$
Solution; $f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots$

$$
=\sum_{n=0}^{\infty} x^{n} \quad|x|<1
$$

Differentiate f term by term gives,

$$
\begin{aligned}
f^{\prime}(x) & =1+2 x+3 x^{2}+4 x^{3}+\cdots+n x^{n-1}+\cdots \\
& =\sum_{n=1}^{\infty} n x^{n-1} \quad|x|<1
\end{aligned}
$$

Example; find a power series for $\ln \left(1+x^{2}\right)$.
Solution; let $\mathrm{f}(\mathrm{x})=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots$
$|x|<1$, then

$$
\begin{gathered}
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-\cdots+x^{2 n}-\cdots \\
\frac{2 x}{1+x^{2}}=2 x-2 x^{3}+2 x^{4}-\cdots+x^{2 n+1}-\cdots \\
\quad=\sum_{n=0}^{\infty} 2(-1)^{n} x^{2 n+1},
\end{gathered}
$$

Integrating both sides with respect to x gives,

$$
\begin{aligned}
\int \frac{2 x}{1+x^{2}} d x & =\int \sum_{n=0}^{\infty} 2(-1)^{n} x^{2 n+1} \mathrm{dx} \\
& =\sum_{n=0}^{\infty} 2(-1)^{n} \int x^{2 n+1} d x \\
& =\sum_{n=0}^{\infty} 2(-1)^{n} \frac{x^{2 n+2}}{2 n+2} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n+1}
\end{aligned}
$$

Since $\ln \left(1+x^{2}\right)=\int \frac{2 x}{1+x^{2}} d x$
$\ln \left(1+x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n+1}$ is convergence on $(-1,1)$
more over converge at the two end points, so it is converge on the interval $[-1,1]$.
Example; identify the function.
$\mathrm{f}(\mathrm{x})=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots+\frac{x^{2 n+1}}{2 n+1}-\cdots$
for $[-1,1]$.
Solution; differentiating f term by term, we get
$f^{\prime}(x)=1-x^{2}+x^{4}-\cdots+x^{2 n}-\cdots$ for $|x|<1$
The series is geometric with first term 1 and common ratio $-x^{2}$.
Thus;

$$
f^{\prime}(x)=\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}
$$

Integrating both sides, gives

$$
\begin{gathered}
\int f^{\prime}(x) d x=\int \frac{1}{1+x^{2}} d x \\
f(x)=\tan ^{-1} x+C
\end{gathered}
$$

2.5. Taylor and Maclaurin Series

If a function $f(x)$ has derivatives of all orders on the interval I, it can be represented as a power series on I about a is called the Taylor Series. (If $a=0$ it is called the Maclaurin Series). If $f(x)$ is represented by a power series centered at a; then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

This can be written out the long way as,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}= & f(a)+f^{\prime}(a)(x-a)++\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
& +\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3} \ldots
\end{aligned}
$$

Where the coefficient of the $\mathrm{n}^{\text {th }}$ term is, $a_{n}=\frac{f^{(n)}(a)}{n!}$, and
$p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+$ $\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
The function $p_{n}(x)$ generated by f at $\mathrm{x}=\mathrm{a}$ is called Taylor

polynomials of order n

Example; Find the power series and Taylor polynomials
$p_{3}(x), p_{4}(x)$ and $p_{5}(x)$ for
a. $\mathrm{f}(\mathrm{x})=e^{x}$ centered at $\mathrm{x}=0$:

Solution: $f(x)=e^{x} \quad \Rightarrow f(0)=1$

$$
f^{\prime}(x)=e^{x} \quad \Rightarrow f^{\prime}(0)=1
$$

$$
f^{\prime \prime}(x)=e^{x} \quad \Rightarrow f^{\prime}(0)=1
$$

$$
f^{(n)}(x)=e^{x} \quad \Rightarrow f^{(n)}(0)=1 . \text { So }
$$

$$
f(x)=e^{x}=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\cdots
$$

$$
=1+1(x)+\frac{1}{2!}(x)^{2}+\frac{1}{3!}(x)^{3} \ldots
$$

$$
=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3} \ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
p_{n}(x)=1+1(x)+\frac{1}{2!}(x)^{2}+\frac{1}{3!}(x)^{3}+\cdots+\frac{x^{n}}{n!}
$$

$$
p_{3}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
$$

$$
p_{4}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}
$$

$$
p_{5}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}
$$

A special limit

$\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$, since $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is a convergence series
b. $f(x)=\ln x$ centered at $x=1$:

Solution: $f(x)=\ln x \quad \Rightarrow f(1)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x} \quad \Rightarrow f^{\prime}(1)=1 \\
& f^{\prime \prime}(x)=\frac{-1}{x^{2}} \quad \Rightarrow f(1)=-1 \\
& f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} \quad \Rightarrow f(1)=2 \\
& : \\
& f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{x^{n}} \Rightarrow f^{(n)}(1)=(-1)^{n-1}(n-1)!.
\end{aligned}
$$

so the Taylor Series

$$
\begin{gathered}
f(x)=\ln x=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\cdots \\
f(x)=\ln x=0+(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \\
\ln x=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(x-1)^{n} \\
p_{n}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \\
\quad+\frac{(-1)^{n+1}}{n}(x-1)^{n-1} \\
p_{3}(x)=(x-1)-\frac{1}{2}(x-1 \\
p_{4}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3} \\
p_{5}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\frac{1}{4}(x-1)
\end{gathered}
$$

Taylor formula with remainder
If a function $f(x)$ have derivatives up through the $(\mathrm{n}+1)^{\text {st }}$ order in an open interval I centered at $x=a$. then for each x in I there is a number c between a and x such that,

$$
\begin{aligned}
f(x)=f(a) & +f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)
\end{aligned}
$$

Where $\quad R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$, is called lagrange form of the remainder. And Taylor formula can be written more briefly,

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

Example; let $\mathrm{f}(\mathrm{x})=\ln \mathrm{x}$, then find a Taylor's formula with the remainder for arbitrary n about $\mathrm{x}=1$.
Solution, from the previous example,

$$
\begin{gathered}
f(x)=0+(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \\
+\frac{(-1)^{n-1}}{n}(x-1)^{n}-\cdots
\end{gathered}
$$

The Taylor formula with the remainder is,

$$
\begin{gathered}
f(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \\
+\frac{(-1)^{n-1}}{n}(x-1)^{n}+R_{n}(x)
\end{gathered}
$$

Where $R_{n}(x)=\frac{(-1)^{n}}{n+1}(x-1)^{n+1}$ and

$$
\begin{gathered}
P_{n}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \\
+\frac{(-1)^{n-1}}{n}(x-1)^{n}
\end{gathered}
$$

Theorem let f have derivatives of all orders in an open interval I centered at $\mathrm{x}=\mathrm{a}$. then the Taylor series for f about $\mathrm{x}=\mathrm{a}$ converges to $f(x)$ for x in I if and only if,

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Where $R_{n}(x)$ is the remainder term in the Taylor formula.

Example, show that the Taylor series for $\mathrm{f}(\mathrm{x})=e^{x}$ about $\mathrm{x}=0$ converges to e^{x} for all x.

Solution,

$$
P_{n}(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{x^{n}}{n!}
$$

And that

$$
R_{n}(x)=\frac{e^{c}}{(n+1)!} x^{n+1}, \text { where } 0<c<x
$$

If $0<c<x$ then $e^{c}<e^{x}$ since $\mathrm{f}(\mathrm{x})=e^{x}$ is an increasing function.

$$
\left|R_{n}(x)\right| \leq \frac{e^{x}}{(n+1)!} x^{n+1}
$$

By special limit

$$
\lim _{n \rightarrow \infty} \frac{e^{x}}{(n+1)!} x^{n+1}=e^{x} \lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=e^{x}(0)=0 . .
$$

Thus, for $\mathrm{x}>0$

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

If $0<c<x$ then $e^{c}<e^{0}=1$. Thus,

$$
\left|R_{n}(x)\right| \leq\left|\frac{e^{x}}{(n+1)!} x^{n+1}\right|
$$

By special limit

$$
\lim _{n \rightarrow \infty} \frac{e^{x}}{(n+1)!} x^{n+1}=e^{x} \lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=e^{x}(0)=0
$$

Thus, for all $\mathrm{x}<0$

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Therefore the Taylor series for e^{x} about $\mathrm{x}=0$ converges to e^{x} for all real number x .
Taylor series for f about $\mathrm{x}=0$ (Maclaurin series)

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

Basic List of Power Series

- $e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{x^{n}}{n!}+\cdots \quad-\infty<x<\infty$
- $\ln x=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \quad 0<x \leq 2$
- $\frac{1}{x}=1-(\mathrm{x}-1)+(\mathrm{x}-1)^{2}-(\mathrm{x}-1)^{3}+\ldots \quad 0<\mathrm{x}<2$
- $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots \quad|x|<1$
- $(1+x)^{k}=1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{} \ldots \quad|x|<1$
- $\sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}-\cdots \quad-\infty<x<\infty$
- $\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots+\frac{x^{2 n}}{(2 n)!}-\cdots \quad-\infty<x<\infty$

