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Applied II Mathematics Handout 
Chapter One 

1.  Sequence and Series 
1.1 Sequence. 

1.1.1 Definition and types of sequence 
Definition: A sequence is a list of numbers called terms in a 
specified order. And denoted by {an} where an is called the nth term 
or general term of the sequence. or 
 Simply it is defined as a function whose domain is the set of 
natural number 
A sequence can be finite or infinite. A finite sequence has a last 
term and an infinite sequence has no last term 
               {an} = a1, a2, a3, ... an, an+1 … is called an infinite 
sequence. Whereas, 
               {an} = a1, a2, a3, ... an. is called finite sequence. 
 
Types of sequence 

 An arithmetic sequence is a sequence in which the 
difference between successive terms is a fixed number and 
each term is obtained by adding a fixed amount to the term 
before it. This fixed amount is called the common 
difference. Arithmetic sequences can be represented by 
first-degree polynomial expressions. 

A finite arithmetic sequence can be expressed as: 
      a , a + d , a + 2d , a + 3d , a + 4d , a + 5d,. .., a + ( n - l)d 
where a is the first term, d is the difference between each term, and  
a + (n - 1)d  is the  last or “nth” term.        
 Example; {3, 6, 9, 12, 15, 18} is an arithmetic sequeence with 
a=3 and d = 3  
 

 A geometric sequence is a sequence in which the ratio of 
successive terms is a fixed number, and each term is 
obtained by multiplying a fixed amount to the term before 
it. This fixed amount is called the common ratio. 

Terms in a geometric sequence can be represented as: 
                            a, ar, ar2, ar3, ar4, ar5, ..., arn-l 
 where a is the first term, arn-1 is the last term and the ratio of 
successive terms is given by r    
  such that: 
                                ar/a = r, ar2/ar = r, ar3/ar2 = r, etc. 
           Example {2, 4, 8, 16, 32 ,... }, with  a = 2 and r = 2. 
 

1.1.2  Convergence properties of sequence. 
Definition; A real number L is said to be a limit of a sequence 
{an}n휖ℕ	 if and only if, 
for all 휖 > 0	푡ℎ푒푟푒	푒푥푖푠푡푠	푎	푝표푠푡푖푣푒	푖푛푡푒푔푒푟	푁	푠푢푐ℎ	푡ℎ푎푡; 

	|푎 − 퐿| < 휖		푓표푟	푎푙푙	푛 > 푁 
 We write as 

lim
→∞

푎 = 퐿 

And 푡ℎ푒	푠푒푞푢푒푛푐푒{an} is a convergence sequence 
Note: that this definition holds we have to: 

 Guess the value of the limit ` 
 Assume  휖 > 0 has been given, 
 Find N	휖 ℕ such that |an − L| < 휖  

i.e L-	휖 < 푎 < 퐿 + ϵ for all n	≥ 푁 
If  lim →∞ 푎  doesn’t exist, we say that {an} diverges. 
lim →∞ 푎 = ∞,	means that the sequence {푎 } diverges  to infinity. 
i.e if for every number M, there is an integer N, such that for all n 
> 푁, 푎 > 푀 
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Similarly; if for every number m, there is an integer N, such that for 
all n > 푁, we have 푎 < 푚, 
Then we say {푎 } diverges to negative infinity and we write 

lim
→∞

푎 = −∞,표푟		푎 → −∞ 

Generally: A sequence which has a limit is said to be convergent 
and A sequence with no limit is called divergent. 
Theorem 1:1 if the sequence of a real numbers {an}n휖ℕ	  has a 
limit then, this limit is unique. 
Proof; assume let {an}n휖ℕ	 denote a convergence sequence with 
two limits say L1 and L2 

with L1 ≠L2 
Now choose  휖 = |퐿 − 퐿 | 
Since 퐿 is a limit of {an}n휖ℕ	 , then to find N1∈ ℕ such that  

|푎 − 퐿 | < 휖	푓표푟	푎푙푙	푛 ≥ 푁  
Similarly; 
Since 퐿 	푖푠	푎	푙푖푚푖푡	표푓	{an}n휖ℕ			then,	to find N2 ∈ ℕ such that 

|푎 − 퐿 | < 휖	푓표푟	푎푙푙	푛 ≥ 푁  
Choose any n	≥ max	{푁 ,푁 } then 
|퐿 − 퐿 | = |퐿 − 푎 + 푎 − 퐿 | 
                 ≤ 퐿 − 푎  + a − 퐿  
                 < 	휖 + 휖 
                = 2휖    but from the choice of  휖 = |퐿 − 퐿 | 

                = |퐿 − 퐿 |  

|퐿 − 퐿 | < |퐿 − 퐿 |,  L1 ≠L2, This contradicts  
Therefore our assumption is false, so the theorem is true. 
 
 

Limit properties for sequences   
If lim →∞ 푎  and 	lim →∞ 푏  both exist, then the following 
properties hold true; 

 lim →∞ 푐푎 = 푐( lim →∞ 푎 )	푓표푟	푎푛푦	푐표푛푠푡푎푛푡	푐. 
 lim →∞(푎 ± 푏 ) = lim →∞ 푎 ±	lim →∞ 푏 . 
 lim →∞ 푎 푏 = (lim →∞ 푎 )(lim →∞ 푎 ). 
 lim →∞ = →∞

→∞
	푖푓	푏 ≠ 0	푓표푟	푎푙푙	푛 

	푎푛푑	 	lim
→∞

푏 ≠ 0 

 The next three theorems are often helpful in finding limits of 
sequences. 
 
Theorem1.2  
If 	lim →∞ 푎 = 	L, 푎푛푑	푓	푖푠	푎	푓푢푛푐푡푖표푛	푤ℎ표푠푒	푑표푚푎푖푛	푖푛푐푙푢푑푒푠 
퐿	푎푛푑	 푎 	푓표푟	푛 ≥ 푁, 푎푛푑	푖푓	푓	푖푠	푐표푛푡푖푛푢표푢푠	푎푡	푥 = 퐿, 푡ℎ푒푛; 

lim
→∞

푓(푎 ) = 푓(퐿) 

Let	푓(푥) = 푥 푓표푟	푘	푎	푝표푠푡푖푣푒	푖푛푡푒푔푒푟, 푖푠	푐표푛푡푖푛푢표푢푠 
	푓표푟	푎푙푙	푥,푤푒	ℎ푎푣푒; 

lim	( →∞ 푎 ) = 퐿 . 
Provided the sequence {푎 } converges to L. similarly, 

lim →∞ 푎 = √퐿. 
Provided 푎 > 0푎푛푑	퐿 > 0	푓표푟	푒푣푒푛	표푟푑푒푟푒푑	푘 	푟표표푡푠. 
 
Theorem 1.3 Let {푎 } be a sequence and 푓 a function such that, 

푓(푛) = 푎 ,																																		푛 = 1, 2, 3, … 
If  

lim →∞ 푓(푥) = 퐿. 
Then also,                       lim →∞ 푎 = 퐿. 
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Example, find the limit of each of the following sequences. 

{ }              b. { ( )}                        c.   {(1 + 3푛) } 
Solution,  

a.   푎 = ,					Let		푓(푥) =  

                 ⟹푓(푛) = = 푎 . Then by Theorem 1.3 

																			lim →∞ = lim →∞ 푎 = lim →∞ 푓(푥) = lim →∞    

                                    = lim →∞   = 0 (Applying L’hopital’s rule) 
 

b. 푎 = ( ), 푙푒푡	푓(푥) = ( ), 

						⟹ 푓(푛) =
ln(2 + 푒 )

3푛 .		Then	by	퐓퐡퐞퐨퐫퐞퐦	ퟏ.ퟑ 

														lim →∞
( ) = lim →∞ 푎 = lim →∞ 푓(푥) =

														lim →∞
( ) =	lim →∞

/( )  =	lim →∞  

                               		= (Applying L’hopital’s rule) 
 

c.    푎 = (1 + 3푛) . 
               let 푦 = (1 + 3푥)     ⟹ ln푦 = ln(1 + 3푥)   =			 ( ) 

                                     ⟹ lim →∞ ln푦 = lim →∞
( ) 

                                                                =	lim →∞
/( )  

                                                 ln lim
→∞
푦  = 0                                                                     

                                                   lim
→∞
푦    = 푒  =1  

                                                lim
→∞

(1 + 3푥)     = 1. 

Then by Theorem 1.3,  lim
→∞

(1 + 3푛)     = 1 

                               
Theorem 1.4 The Squeeze Theorem for Sequence. 
If lim → 푎 = lim → 푏 = 퐿	푎푛푑	푖푓	푓표푟	푎푙푙	푠푢푓푓푖푐푖푒푛푡푙푦 
Large n the inequality 	푎 ≤ 푐 ≤ 푏  holds true, then; 

lim
→

푐 = 퐿 

Example; Find the limit of the sequences. 

a. 	        b.  ( )       c.  √푛 + 2 − √푛 . 
Solution;  

a;  푎 = 	       ⟹ 	 ≤ < =  

                    ⟹   -   ≤  	   ≤	  

			 lim
→

−
1
푛 = lim

→

1
푛 = 0 

Then by Squeeze Theorem 

lim
→

푛푠푖푛	푛
1 + 푛 	 = 0 

b.  푎 = ( )       ⟹ 0 < 	 ( ) ≤              

                                   

lim
→

0 = lim
→

4
	푛 	 = 0 

Then by Squeeze Theorem 

lim
→

3 + (−1)
	푛 	 = 0 

 

c. 푎 = √푛 + 2 − √푛.      ⟹   (√푛 + 2 − √푛) √ √
√ √

=

√ √
  <

√
=

√
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                                          ⟹ 0 < √푛 + 2 − √푛	  <    
√

. 

lim
→

0 = lim
→

	
1
√푛

= 0 

Then by Squeeze Theorem 
lim → √푛 + 2 − √푛 = 0 

 
Recursive Definition of Sequence. 
Sometimes sequences are defined recursively by giving 

 The value of the initial term or terms, and 
 A rule called a recursion formula, for calculating any later 

term from terms that precede it. 
i.e the formula giving  푎  in terms of		푎  is called 
recursion formula. 

The best known sequence defined recursively is the Fibonacci 
sequence, defined by  
푓 = 1, 푓 = 1, 푎푛푑	푓 = 푓 + 푓 						푓표푟		푛 ≥ 2  
The number  푓  are called Fibonacci numbers. 
 
Monotonicity and Boundedness  
Definition; A sequence {푎 } is said to be  

 Increasing if 푎 ≤ 푎 푓표푟	푎푙푙	푝표푠푡푖푣푒	푖푛푡푒푔푒푟	푛 
 Decreasing if 푎 ≥ 푎 	푓표푟	푎푙푙	푝표푠푡푖푣푒	푖푛푡푒푔푒푟	푛. 
 A sequence that is either always increasing or always 

decreasing is said to be monotone.  
Example: show that each of the following sequence is monotone. 

a.                        b.  
√

                          c. !  

Solution: a, 푎 =     and   푎 = ( )  

푎 − 푎 =
2(푛 + 1) + 3

푛 + 1 −
2푛 + 3
푛

=
(2푛 + 5)푛 − (2푛 + 3)(푛 + 1)

푛(푛 + 1)

=
2푛 + 5푛 − (2푛 + 5푛 + 3)

푛(푛 + 1) =
−3

푛(푛 + 1) < 0 

                       푎 − 푎 < 0, ⟹푎 < 푎  
                        ⟹ 푎 	푖푠	푠푡푟푖푐푡푙푦	푑푒푐푟푒푎푠푖푛푔, 푠표	푖푡	푖푠	푚표푛표푡표푛푒. 
b,  푎 =

√
 

Consider a function for which 푓(푛) = 푎  

푓(푥) =
푥

√1 + 푥
 

Taking its derivative, we have 푓 (푥) =
( )

=
( )

 	> 0 

푓 (푥) > 0	푓표푟	푎푙푙	푥,⟹ 푓	푖푠	푎푛	푖푛푐푟푒푎푠푖푛푔	푓푢푛푐푡푖표푛. 
Thus since푓(푛) = 푎 , we see that {푎 } is also increasing, so it is 
monotone. 
 
Tests for monotonicity 

1. 푖푓		 푎 − 푎 ≥ 0	푓표푟	푎푙푙	푛, 푡ℎ푒푛	{푎 }	푖푠	푖푛푐푟푒푎푠푖푛푔	
푎 − 푎 ≤ 0	푓표푟	푎푙푙	푛, 푡ℎ푒푛{푎 }	푖푠	푑푒푐푟푒푎푠푖푛푔	 

2. 퐿푒푡	푓(푥)푏푒	푐표푛푡푖푛푢표푢푠	푓푢푛푐푡푖표푛	푤푖푡ℎ	푓(푛) = 푎 . 
	푐푎푙푐푢푙푎푡푒		푓 (푥)	푖푓	푖푡	푒푥푖푠푡푠. 

3. 퐼푓  
	푓 (푥) ≥ 0	표푛[1,∞), 푡ℎ푒푛	{푎 }	푖푠	푖푛푐푟푒푎푠푖푛푔.
	푓 (푥) ≤ 0	표푛	[1,∞), 푡ℎ푒푛	{푎 }	푖푠	푑푒푐푟푒푎푠푖푛푔	 

4. 푖푓	푎 > 0	푓표푟	푎푙푙	푛, 푐푎푙푐푢푙푒푡푒	푡ℎ푒	푟푎푡푖표	 . 
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푖푓

푎
푎 ≥ 1		푓표푟	푎푙푙	푛, 푡ℎ푒푛	{푎 }	푖푠	푖푛푐푟푒푎푠푖푛푔.

푎
푎 ≤ 1			푓표푟	푎푙푙	푛, 푡ℎ푒푛	{푎 }	푖푠	푑푒푐푟푒푎푠푖푛푔.

 

 
Definition: 
A sequence {푎 } is said to be bounded if there is some positive 
constant number M such that  

|푎 | ≤ 푀 
		푓표푟	푎푙푙	푝표푠푖푡푖푣푒	푖푛푡푒푔푒푟	푛. 
A sequence {푎 } is said to be bounded from; 

 Above, if there is some real number M, such that, 푎 ≤ 푀 
for all n, M is upper bound for {푎 }	and no number less 
than M is an upper bound for {푎 }, then M is the least upper 
bound for {푎 }. 

 Below, if there is some real number m , such that, 푎 ≥ 푚 
for all n, m is  a lower bound for  {푎 } and no number 
greater than m is a lower bound for {푎 }, then m is the 
greatest lower  bound for{푎 }. 

 If {푎 } is bounded from above and below, then {푎 } is 
bounded. If {푎 } is not bounded, then we say that {푎 } is 
unbounded sequence. 

Note: convergence of a power sequence 
 If  r is fixed number such that		 

 |푟| < 1, then lim → 푟 = 0 
 푟 = 1, 푡ℎen lim → 푟 = 1 
 For all other value of	푟, the sequence diverges. 

Definition; A sequence {an} of real numbers is called a Cauchy 
sequence if for each ϵ	> 0 there is a number N	∈ ℕ so that 

 if m; n > ℕ then an - am < ϵ. 
Note; Convergent sequences are Cauchy sequences. 
Proof: Suppose that lim an = L. Note that 
an - am = an - L + L - am ≤ an - L+ am - L. Thus,  
given any ϵ > 0 there is an N ∈ ℕ so that if k > N then  
ak - L< ϵ.  Thus, if m; n > N we have  
an - am	≤ an - L+ am - L< + = ϵ 
Thus, {an} is a Cauchy sequence. 
 
Theorem 1.5: Monotone Bounded Sequence Theorem 
If {푎 } is a sequence of real numbers that is both monotone and 
bounded, then it is converges. 
 
Theorem 1.6 Every convergent sequence is bounded. But the 
converse is not always true. 
Proof: Let {an}n ≥1 converge to a. Then there exists an N ∈ ℕ such 
that |an − a| < 1 = ϵ	for n ≥ N. It follows that |an| < 1 + |a| for n ≥ N. 
Define M = max{1+ |a|, |a1|, |a2|, . . . |an−1|}. Then |an| < M for every 
n ∈	ℕ . 
To see that the converse is not true, it suffices to consider the 
sequence {(−1)n}n≥1, which is bounded but not convergent, 
although the odd terms and even terms both form convergent 
sequences with different limits. 

Example: show that the sequence . . .…( )
. . .…( )

 converges. 

Solution; the first few terms of this sequence are, 
푎 =               푎 = .

. =              푎 = . .
. . = =               

푎 = . . .
. . . =   … 
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> > > > ⋯   
⟹ 푡ℎ푒	푠푒푞푢푒푛푐푒	푖푠	푑푒푐푟푒푎푠푖푛푔(푖. 푒	푖푡	푖푠	푚표푛표푡표푛푖푐) 
Generally; 
we can show that, 푎 < 푎 , ⟹ < 1, 푎 > 0	푓표푟	푎푙푙	푛 

푎
푎 =

1.3.5. … (2(푛 + 1) − 1)
2.4.6. … (2(푛+ 1))
1.3.5. … (2푛 − 1)

2.4.6. … (2푛)

=
1.3.5. … (2푛 + 1)
2.4.6. … (2푛 + 2) .

2.4.6. … (2푛)
1.3.5. … (2푛 − 1) =

2푛 + 1
2푛 + 2

< 1 
< 1	 ⟹ 푎 < 푎 		푓표푟	푎푛푦	푛 > 0.		ℎ푒푛푐푒	{푎 } =

	 . . .…( )
. . .…( )

 is a decreasing sequence. 

푎 > 0	푓표푟	푎푙푙	푛	푖푡	푓표푙푙표푤푠	푡h푎푡 {푎 }	푖푠	푏표푢푛푑푒푑	푏푒푙표푤	푏푦	0	. 
Thus by MBCT 
{푎 } = 	 . . .…( )

. . .…( )
 Converges. 

 
1.1.3  Subsequence; 

Definition: Let {an} be a sequence. When we extract from this 
sequence only certain elements and drop the remaining ones we 
obtain a new sequences consisting of an infinite subset of the 
original sequence. That sequence is called a subsequence and 
denoted by {ank}. 
Theorem 1.6; 

 If {an} is a convergent sequence, then every subsequence of 
that sequence converges to the same limit. 

 If is a sequence such that every possible subsequence 
extracted from that sequences converges to the same limit, 
then the original sequence also converges to that limit. 

 Let {an} be a sequence of real numbers that is bounded. 
Then there exists a subsequence {ank} that converges. 
 

1.2  Infinite Series. 
Definition; given a sequence of numbers		푎 , an expiration of the 
form 

푎 + 푎 + 푎 + 푎 + 	… 
is an infinite series.  The number 		푎  is the nth term of the series. 
The sequence {sn} defined by 

푠 = 푎  
푠 = 푎 + 푎  

푠 = 푎 + 푎 + 푎  
푠 = 푎 + 푎 + 푎 + 푎  

: 
: 

푠 = 푎 + 푎 + 푎 + 푎 … 	푎 = 푎  

: 
: 

is the sequence of partial sums of the series, the number  푠  being 
the nth partial sum. 

 If the sequence of partial sums converges to a limit L 
(i. e; 	lim → 푠 = 퐿), we say that the series converges and 
that its sum is L. we also write  
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푎 + 푎 + 푎 + 푎 … 	+푎 = 푎 = 퐿 

 If the sequence of partial sums of the series does not converge, 
       (i. e; 	lim → 푠 = ∞	표푟	푑표푒푠	푛표푡	푒푥푖푠푡) , we say that the 
        series diverges     
 In general 

푎 = lim
→

(푎 + 푎 + 푎 + 푎 … 	푎 ) 

Provided the limit on the right exist, i.e  lim → 푠 = 푠 
Given any positive number		휖, there is a positive number N 
such that for all n	> 푁,  |푠 − 푠| < 휖 
 

Geometric Series 
A geometric series is an infinite series of the form  

∑ 푎푟 = 푎 + 푎푟 + 푎푟 + 푎푟 + ⋯, 
 in which a is its first  term with a≠ 0 and r is called the common 
ratio   
If r = 1 the nth partial sum of the geometric series is, 

푠 = 푎 + 푎(1) + 푎(1) 	 + 푎(1) + ⋯+ 푎(1) 	 = 푛푎. 
And the series diverge because; 

lim → 푠 = ±∞,푑푒푝푒푛푑	표푛	푡he	sign	of	a. 
If r = -1 the series diverges because the nth partial sums alternate 
between a and 0  
If r	≠ 1 we can determine the convergence or divergence of the 
series in the following way; 

푠 = 	푎 + 푎푟 + 푎푟 + 푎푟 + ⋯+	푎푟 	 
푟푠 = 	푟푎 + 푎푟 + 푎푟 + 푎푟 + ⋯+	푎푟 	 

푠 − 푟푠 = 푎 − 푎푟 	 

푠 (1− 푟) = 푎(1− 푟 	) 

푠 =
푎(1 − 푟 	)

(1 − 푟) 																	푟 ≠ 1 

If |푟| < 1, the geometric series 푎 + 푎푟 + 푎푟 + 푎푟 +
⋯	converges  to 		푠푖푛푐푒	푟 	 → 0	푎푠 n→ ∞, and  

푎푟 =
푎

1 − 푟 

If  |푟| > 1, the geometric series diverges. 
Example; determine whether each of the following series is 
convergent or divergent. If convergent find the sum. 

a. 2-1 + − + − + … 
b.  ∑ (	 	

	
)	   

 
Solution: 

a. The series is geometric with a=2 and r = -1÷ 2 = -	  ,    

− = 	 	< 1 

푇ℎ푒푟푒푓표푟푒	푡ℎ푒	푠푒푟푖푒푠	푖푠	푐표푛푣푒푟푔푒푠	푡표	 
푎

1 − 푟 =
2

1 + 1/2 = 4/3 

b. ∑ (	 	
	

)	 = ∑ (	 	
	

)	  the series is geometric with 

 a =   and r =  
5
4 =

5
4 > 1 

Therefore the series is diverges and it has no sum. 
Example: Find the rational number represented by the repeating 
decimal 0.784784784 . . . 
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Solution. We can write  
0.784784784... = 0.784 + 0.000784 + 0.000000784 +. .. 
so the given decimal is the sum of a geometric series with a =0.784 
and r = 0.001. Thus. 
0: 784784784	. . . = = .

.
=    

 
Theorem 1.7  

1. If  ∑ 푎 	푐표푛푣푒푟푔푒푠, 푡ℎ푒푛	 lim → 푎 = 0, but not the 
converse. 
Proof: let 푠 	푡ℎ푒	푛 	푝푎푟푡푖푎푙	푠푢푚	표푓	∑ 푎  that is, 

푠 = 푎 + 푎 + 푎 + 푎 … 	+푎 	푡h푒푛, 
푖푓	푛 > 1,푤푒	푎푙푠표	ℎ푎푣푒,  

푠 = 푎 + 푎 + 푎 + 푎 … 	+푎  
 

푠 − 푠 = 푎  
푠푖푛푐푒	푡ℎ푒	푠푒푟푖푒푠	푐표푛푣푒푟푔푒푠	 lim → 푠 = 푠. 	푏푢푡	푛 →
∞,푤푒	푎푙푠표	푛 − 1 → ∞, 푠표		 lim → 푠 = 푠. Thus  

lim
→

푎 = lim
→

(푠 −	푠 ) = lim
→

푠 − lim
→

	푠 = 푠 − 푠

= 0. 
2. ∑ 푎 	푑푖푣푒푟푔푒, 푖푓 lim → 푎 ≠ 0	표푟	푑표푒푠	푛표푡	푒푥푖푠푡. 

          Example; 
 The series ∑∞ = + 	 + 	 + ⋯+ + 	…  diverges 

since 

lim
→

푘

푘 + 1
= lim

→

1

1 + 1/푘
= 1 ≠ 0 

 The series 
∑ (−1)∞ 	푑푖푣푒푟푔푒푠, 푠푖푛푐푒	 lim푛→∞(−1) 	푑표푒푠	푛표푡	푒푥푖푠푡. 

 The series∑ 푛∞ 	푑푖푣푒푟푔푒푠, 푠푖푛푐푒	 lim푛→∞ 푛 = ∞. 

 The harmonic series ∑∞ = 1 + 	 + 	 + ⋯+ + 	…  
diverges. This is an example of a series where lim → 푎 =
0, 푏푢푡 푛=1∞푎푛푑푖푣푒푟푔푒푠. 

Property of convergent series 
If  ∑ 푎 	푎푛푑	 ∑ 푏 	푎푟푒	푐표푛푣푒푟푔푒푛푡	푠푒푟푖푒푠,	and if c is any 
constant, then 

 ∑ 푐푎 = 푐 ∑ 푎 	푐표푛푣푒푟푔푒푠. 
 ∑ (푎 ± 푏 ) = ∑ 푎 ± ∑ 푏 	푐표푛푣푒푟푔푒푠. 
 푖푓 ∑ 푎 푐표푛푣푒푟푔푒푠	푎푛푑	 ∑ 푏 	푑푖푣푒푟푔푒푠	푡ℎ푒푛	∑ (푎 ±

푏 )푑푖푣푒푟푔푒푠. 
 If ∑ 푎 푑푖푣푒푟푔푒푠	푎푛푑	푐 ≠ 0	푡ℎ푒푛	∑ 푐푎 푑푖푣푒푟푔푒푠. 
 푖푓 ∑ 푎 푐표푛푣푒푟푔푒푠, 푡ℎ푒푛	∑ 푎 푐표푛푣푒푟푔푒푠	푓표푟	푎푛푦	

k	> 1,and  ∑ 푎 = 푎 + 푎 + 푎 + 푎 … 	+푎 +
∑ 푎 . Conversely, 
푖푓	 ∑ 푎 푐표푛푣푒푟푔푒푠	푓표푟	푎푛푦	,	k	> 1 then 
∑ 푎 푐표푛푣푒푟푔푒푠.		 

 
1.2.1 Test of Convergence. 
The integral test. 

The	푠푒푟푖푒푠	 ∑ 푎∞ 표푓	푛표푛푛푒푔푎푡푖푣푒	푡푒푟푚푠	푐표푛푣푒푟푔푒푠,	iff 
	푖푡푠	푝푎푟푡푖푎푙	푠푢푚  푖푠 푏표푢푛푑푒푑	푓푟표푚	푎푏표푣푒.	 
 
Theorem 1.8: the integral test. 

Let {푎 } be a sequence of positive terms. Suppose that 푎 = 푓(푛),	 
Where	푓	푖푠	푐표푛푡푖푛푢표푠, 푝표푠푡푖푣푒	, 푑푒푐푟푒푎푠푖푛푔	푓푢푛푐푡푖표푛	표푓	푥 
		푓표푟	푎푙푙	푥 ≥ 푁	(푁 > 0). 
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Then the series ∑ 푎∞  and the integral ∫ 푓(푥)푑푥 both converge 
or both diverge 
Example: show that the p – series  
∑∞ = + 	 + + ⋯+ + 	… converges if p	> 1, and 
diverges if p	≤ 1. 
Solution: if p > 1, then 푓(푥) =  is a positive decreasing function 
for  x	> 1. Since  

1
푥 푑푥 = 푥 푑푥 = lim

→

푥
−푝 + 1  

                                     = lim → ( − 1) =   

the improper integral converges. 
Then the series converges by the integral test. But it does not tell 
the sum of the p- series. 
If p	< 1, then 1- p	> 0 and  
∫ 푑푥 = lim → (푏 − 1) = ∞. diverge. 

Then the series diverges by integral test 
If p = 1 we have the divergence harmonic series 

1 + 	
1
2 +

1
3 + ⋯+

1
푛 + 	… 

Therefore, p – series is convergence series for p	> 1 but divergence 
for all other values of p. 
Example: show that	∑ (∞ )	 convergent. 

Solution: let 푓(푥) =  is continues, positive, and decreasing 
 for  x	> 1,and  

∫ 푑푥 = lim → [푎푟푐푡푎푛	푥] = lim
→

[푎푟푐푡푎푛	푏 −

푎푟푐푡푎푛	1] = − = .  Convergent. 
Then, the series converges by the integral test. But we do not know 
the value of its sum. 
 Theorem 1.10; Comparison test. 
∑ 푎 	푎푛푑	∑ 푏 	푎푟푒	푠푒푟푖푒푠 of non negative terms, with 
푎 ≤ 푏 for all n. 

 If ∑ 푏 	converges, then ∑ 푎  converges. 
 If ∑ 푎  diverges, then ∑ 푏  diverges.  

Limit comparison test 
Suppose that 푎 > 0 and 푏 > 0 for all n≥ 푁(N an integer) 

 If lim → = 퐿 > 0	푡ℎ푒푛 	∑ 푎 	푎푛푑	∑ 푏 푏표푡ℎ  

converge or both diverges. 
 If lim → = 0 and  ∑ 푏  converges, then ∑ 푎  

converges. 
 If lim → = ∞ and ∑ 푏  diverge, then 

∑ 푎 	diverge. 
Example: test each of the following series for convergence or 
divergence. 

a. ∑       b. ∑ √       c. ∑ 	  
Solution:  

a. Let 푎 =  < = 푏   

∑ 푖푠	푎	푐표푛푣푒푟푔푒푛푡	푝 − 푠푒푟푖푒푠, then 

∑ 푖푠	푐표푛푣푒푟푔푒푛푡	푏푦	푐표푚푝푎푟푖푡푖표푛	푡푒푠푡 

b. Let 푎 = √   for large n is like √ =
√

= 푏   
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lim
→

푎
푏 = lim

→

√푛
푛 + 4

1
√푛

= lim
→

푛
푛 + 4 = 1, 

Since ∑
√

 diverges p- series with p = . 

∑ √ 푑푖푣푒푟푔푒푠	푏푦	푡ℎ푒	푙푖푚푖푡	푐표푚푝푎푟푖푡푖표푛	푡푒푠푡,  

c. Let 푎 = 	  for large n we expect 푎  to behave like 
	 = 	 > 	푓표푟	푛 ≥ 3 

So let 푏 = . since, 
  
∑ 푏 = ∑ 푑푖푣푒푟푔푒푠, and 

lim
→

푎
푏 = lim

→

1 + 푛푙푛	푛
푛 + 5

1
푛

= lim
→

푛 + 푛 ln푛
푛 + 5 = ∞ 

Therefore by limit comparison test  
∑ 푎 =∑ 	 	푑푖푣푒푟푔푒푠. 
 

The ratio and root tests 
The ratio test. 
Let ∑ 푎 	푏푒	푎	푠푒푟푖푒푠 of non negative terms, and suppose that  

lim → = 푝. Then 

a.  the series converges if p	< 1 
b. The series diverges if p > 1 
c. The test is inconclusive if p = 1 
Example: investigates the convergence of the following series. 

a. ∑           b.  ∑ ( )!
! !

              c.  ∑ ! !
( )!

 

Solution:  
a. Let 푎 =     ⟹ 푎 = . 

lim → = lim → = lim → = < 1. Thus  

By ratio test  ∑  converges. 

b. Let 푎 = ( )!
! !

    ⟹ 푎 = ( )!
( )!( )!

 

lim → = lim →

( )!
( )!( )!

( )!
! !

=

																													lim →
! !( )( )( )!

! !( )( )( )!
. 

                        =	lim →
( )( )

( )( )
 = lim →  = 4	> 1. 

Thus,  

By ratio test  ∑ ( )!
! !

 is diverges. 

c. Let 푎 = ! !
( )!

                ⟹ 푎 = ( )!( )!
( )!

 

lim
→

푎
푎 = lim

→

4 (푛 + 1)! (푛 + 1)!
(2푛 + 2)!

4 푛! 푛!
(2푛)!

= lim
→

4 (푛 + 1)! (푛 + 1)!
(2푛 + 2)(2푛 + 1)! (2푛)! .

(2푛)!
4 푛! 푛!	 

                            =	lim →
( )( )

( )( )
= 	lim →

( )
( )

= 1. 

Thus  
We cannot decide by ratio test. 
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Root test. 
Let ∑ 푎 	푏푒	푎	푠푒푟푖푒푠 of non negative terms for n	≥ 푁. and 
suppose that  

lim → 푎 = 푝. Then 
a.  the series converges if p	< 1 
b. The series diverges if p > 1 
c. The test is inconclusive if p = 1 
Example: Investigates the convergence of the following series 

a. ∑
( )

              b.  ∑ ( ) .              

Solution:  

a. Let 	푎 =
( )

                ⟹ 푎 =
( )

= . 

														lim → 푎 = lim → = 0 < 1. Thus by root test, 

          ∑
( )

	푐표푛푣푒푟푔푒푠. 

b. Let 	푎 =  ( )              ⟹ 푎 = ( )    = . 

	lim → 푎 = lim → = > 1. Thus by root, 

 Test the series,	∑ ( ) 푑푖푣푒푟푔푒푠. 
 

1.3 Alternating series, absolute and conditional convergence. 
Alternating series. 
Definition; 
A series in which the terms are alternately positive and negative is 
an alternating series. 
Example;   the nth term of an alternating series is of the form, 
   푎 = (−1) 푢     or				푎 = (−1) 푢   where 푢 = |푎 | is a 
positive number. 

 
Alternating series test 
If 푎 > 0, for all n and the following two conditions are satisfied  

 푎 ≤ 푎 	and, 
 	lim → 푎 = 0, then; 
 The series ∑ (−1) 푎  converges. 

Example; show that the alternating harmonic series, 
∑ ( ) = 1 − + − + ⋯ Converges. 

Solution:  푎 = 		let the series is alternating series in which,  

 		<      ⟹ 푎 ≤ 푎 	  

 	lim → 푎 = 	lim → 	= 0 

Therefore by the alternate series test ∑ ( )  converges. 
 

Absolute and conditional convergence. 
Definition:  

 the series ∑ 푎  is said to be absolutely convergent, if 
∑ |푎 | converges. 

 If ∑ 푎  converges but ∑ |푎 | diverges, then ∑ 푎  
is said to be conditionally convergent. 

 If ∑ 푎  is absolutely convergent, then it is convergent. 
Example: Determine whether each converges conditionally, 
converges absolutely or diverges. 

a. ∑ .                  b.  ∑ ( )
√

          

Solution:  
a. Let 푎 =   , since     sin푛 + cos푛 ≤ 2 is both 

positive and negative. 
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| | ≤   and ∑  converges. Since it is a p – 
series with p =3. Thus , 
∑ = ∑ | | Converges, by 
comparison test. 
Therefore	 ∑∞ 	 is absolutely convergent. 

b. Let 푎 =  ( )
√

 

∑ |푎 | = ∑ ( )
√

= ∑
√

	is diverges 

absolutely. But  

∑ 푎 	 = ∑ ( )
√

.  

푙푒푡	푏 =
√

,       푏 =
√

,						⟹ 푏 > 푏  and, 

	lim
→

푏 = 	lim
→

1
√푛

= 0 

             Then by alternating series test,		∑ ( )
√

. Converges. 

 
 
 
 
 
 
 
 
 
 
 
 

Chapter Two 
2. Power Series 

2.1  Definition of Power series. 
 Definition: A power series about x = 0 is a series of the form, 
 ∑ 푐 푥  =푐 + 푐 푥 + 푐 푥 + 푐 푥 + ⋯+ 푐 푥 …, and 
A power series about x = a is a series of the form,  

∑ 푐 (푥 − 푎)  =	푐 + 푐 (푥 − 푎) + 푐 (푥 − 푎) +
푐 (푥 − 푎) + ⋯+ 푐 (푥 − 푎) … in which the center a and the 
coefficients 푐 , 푐 , 푐 , 푐 … 푐 , …	are constants. 

Example: consider a geometric series, 
  ∑ 푥 = 1 + 푥 + 푥 + 	푥 + ⋯+ 	푥 + 	… with first term 1 
and ratio x. it converges to   for |푥| < 1.  
We express this fact by writing. 

= 1 + 푥 + 푥 + 	 푥 + ⋯+ 	 푥 + 	…,   -1	< 푥 < 1. it is also 
called a power series with all the coefficients equal to 1 of the first 
form. 
Example: consider the power series of the second form. 
1 - (푥 − 2) + (푥 − 2) − … +(− ) (푥 − 2) + ⋯, 0< 푥 < 4. 

With a= 2, 푐 = 1,	푐 = −1/2 , 푐 = 1/4, … 푐 = (− ) . this is a 

geometric series with the first term 1 and ratio r = −( ) the series 

converges for −( )	  < 1 or 0	< 푥 < 4. Then the sum is, 

= =  . Therefore, 

=  1 - (푥 − 2) + (푥 − 2) − … +(− ) (푥 − 2) + ⋯,           
              0	< 푥 < 4. 
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Theorem 2.1. The convergence theorem for power series. 
If the power series, 
푓(푥) = ∑ 푐 푥  =푐 + 푐 푥 + 푐 푥 + ⋯ converges at 
 x = a ≠ 0, then it converges  absolutely for all x with |푥| < |푐|. 
If the series diverges at x = d then it diverges for all x 
with	|푥| > |푑| 

 
2.2. Radius of Convergence and Interval of Convergence. 
The convergence of the series. 
∑ 푐 (푥 − 푎)  is described by one of the following three cases 

 The series converge absolutely for every x ( R = ∞) 
 There is a positive number R such that the series diverges 

for x with |푥 − 푎| > 푅 but converge absolutely for x with 
|푥 − 푎| < 푅. The series may or may not converge at either 
of the end points x = a – R and x = a+R 

  The series converge at x = a and diverge all the rest 
 ( R = 0) 

Where, the number R in each case is called the radius of 
convergence of the series. For convenience, if the first case holds 
we agree to call the radius of convergence is R= ∞, if the second 
case holds R =	푥 − 푎, and the last case holds R = 0. 
If |푥 − 푎| < 푅. Then the series converges on the intervals 
 (a-R, a+R), [a-R, a+R], [a-R, a+R) or (a-R, a+R] depends on the 
series converges at a-R or  a+R and these intervals are called 
intervals of convergence.  When R=0 the interval of convergence 
degenerates to the single point x = 0, and if R= ∞, it is the entire  
real line (−∞,∞). 
Using the Ratio Test to Find the Radius of Convergence. 
When lim → 	푒푥푖푠푡푠, the radius of convergence can be 
found using the ratio test. 

Examples: find the radius and intervals of convergence of the 
series. 

a. ∑       b.  ∑ ( ) ( )
( )

    c.  ∑ 푛! (2푥 − 1)    
Solution; 

a. 푎 =  , ratio test is applicable only to series of positive 
terms, and since x can be either positive or negative , so we 
must consider in absolute value. 

lim
→

푎
푎 = lim

→

푥
2(푛 + 1) + 1

푥
2푛 + 1

	

= lim
→

푥
2푛 + 3 .

2푛 + 1
푥 	 

                                    =  lim
→

|푥| = |푥|. 
          The series converges absolutely when |푥| < 1 and diverges     
           when |푥| > 1. Therefore the radius of convergence is R = 1. 
           If x = 1 ∑  = 1+1/3+1/5+… 

           푎 = 	푙푒푡	푏 = 	  

            lim → = lim → ÷ = lim → =  

           lim →  is divergent harmonic series, then by limit  

           Comparison test ∑  is diverges. 

          If x = -1, ∑ ( )  this series is an alternating series, and   

           decrease monotonically to 0 thus the series converges. 
         Therefore the complete interval of convergence of the original  
          series is −1 ≤ 푥 < 1.  

b. Consider the limit 
lim → = lim →

( ) ( )
( )

∗ ( )
( ) ( )
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       =	lim → ( ) |푥 − 2| = | |. Thus by the ratio test the               
series converges absolutely 
  If | | < 1,⟹ |푥 − 2| < 3 and diverge 
  If	|푥 − 2| > 3. Now we test the value (x-2) = ±3  
   If (x-2) =3    ∑ ( )

( )
∑ ( )

( )
 this series is converges 

absolutely, since it is p – series with p=2. 
   If (x-2) = -3  ∑ ( ) ( )

( )
=∑ ( ) ( )

( )
 

                                                  =  ∑
( )

. is a convergence  
          P series with p = 2. 
         Therefore the complete interval of convergence is defined as 
         |푥 − 2| ≤ 3,⟹	−3 ≤ 푥 − 2 ≤ 3 
                             ⟹	−1 ≤ 푥 ≤ 5 Thus the interval of     
         Convergence is [−1,5] 

c. Let 푎 = 푛! (2푥 − 1)  
lim →  = lim →

( )!( )
!( )

 
                                   = lim → (푛 + 1)|(2푥 − 1)| 
                                   = ∞ 
          Now for all x	≠  the series diverges, so R=0 and interval of  

          Convergence is a single point { } 

d. If 푎 = 	
. . ….( )

 then 

lim → = lim →
( )
. . ….( )

. . . ….( )  

                        =|푥| lim → = 0 for all x. 
The series converges ⟹ 푅 = ∞, and interval of 
convergence =(−∞,∞) 

 
 
 

2.3. Arithmetic Operations on Convergent Power Series. 
If A(x) = ∑ 푎 푥  and  B(x) = ∑ 푏 푥  converge absolutely 
for |푥| < 푅, and 
 푐 = 푎 푏 + 푎 푏 + ⋯+ 푎 푏 + 푎 푏 = ∑ 푎 푏 , then 
A(x) = ∑ 푐 푥  converges absolutely to A(x)B(x) for |푥| < 푅 

(∑ 푎 푥 )(	∑ 푏 푥 ) = ∑ 푐 푥 .  
Similarly,  
(∑ 푎 푥 ) ± (	∑ 푏 푥 ) = ∑ (푎 ± 푏 )푥 . Converges to 
A(x) ± B(x) for |푥| < 푅 

Note  If  ∑ 푎 푥  converges absolutely for |푥| < 푅, then    
∑ 푎 (푓(푥))  

Converges absolutely for any continuous function f on |푓(푥)| < 푅 
Example; since = ∑ 푥  converges absolutely for |푥| < 1 

Then = ∑ (3푥 )  converges absolutely for |3푥 | < 1,or 
|푥| < 1/3 
2.4. Differentiation and integration of power series 
let ∑ 푎 (푥 − 푎)  have nonzero radius of convergence R and for 
푎 − 푅 < 푥 < 푎 + 푅, we write,   

푓(푥) = ∑ 푎 (푥 − 푎) .  Then, 
1. f is continuous on the interval (a-R, a+R).   
2. f is differentiable on the interval (a-R, a+R) and 

푓 (푥) = ∑ (푎 (푥 − 푎) ) = ∑ 푛푎 (푥 − 푎) . 
푡ℎ푒	푠푒푟푖푒푠	표푛	푡ℎ푒	푟푖푔ℎ푡	푎푙푠표	ℎ푎푠	푟푎푑푖푢푠푒	표푓	푐표푛푣푒푟푔푒푛푐푒	푅 

3.  f integrable over any interval [푎,푏]contained in (a-R, a+R), 

∫ 푓(푥)푑푥 = ∑ ∫ 푎 (푥 − 푎) 푑푥. 
푓푢푟푡ℎ푒푟푚표푟푒, 푓	ℎ푎푠	푎푛	푎푛푡푖푑푒푟푒푣푎푡푖푣푒푠	푖푛	(푎−R, a+R) 
given by, 
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∫ 푓(푥)푑푥 = ∑ ∫푎 푥 푑푥 = ∑ + 퐶.  
푡ℎ푒	푠푒푟푖푒푠	표푛	푡ℎ푒	푟푖푔ℎ푡	푎푙푠표	ℎ푎푠	푟푎푑푖푢푠	표푓	푐표푛푣푒푟푔푒푛푐푒	푅. 

Example; let  푓(푥) =  , then find series for 푓 (푥) 

Solution; 푓(푥) = = 1 + 푥 + 푥 + 푥 + ⋯+ 푥 + ⋯ 
                         = ∑ 푥                   |푥| < 1 
Differentiate f term by term gives, 

푓 (푥) = 1 + 2푥 + 3푥 + 4푥 + ⋯+ 푛푥 + ⋯ 
                         = ∑ 푛푥      |푥| < 1. 
Example; find a power series for ln (1+푥 ). 
Solution; let f(x) = = 1 + 푥 + 푥 + 푥 + ⋯+ 푥 + ⋯     
|푥| < 1,  then 

1
1 + 푥 = 1 − 푥 + 푥 −⋯+ 푥 − ⋯ 

 
2푥

1 + 푥 = 2푥 − 2푥 + 2푥 − ⋯+ 푥 − ⋯ 

                                  = ∑ 2(−1) 푥  ,  
Integrating both sides with respect to x gives, 

∫ 푑푥 = ∫∑ 2(−1) 푥 	dx. 

            =	∑ 2(−1) ∫ 푥 푑푥 

                                      =	∑ 2(−1) . 

                                     = ∑ (−1) 	  

Since     ln (1+푥 ) =	∫ 푑푥 

ln (1+푥 ) = ∑ (−1) 	  is convergence on (-1, 1) 

more over converge  at the two end points, so it is converge on the 
interval	[−1,1]. 
Example; identify the function. 

f(x) = ∑ (−1) 	  =푥 − 푥 + 푥 −⋯+ −⋯  
for [−1,1]. 
Solution; differentiating f term by term, we get  
푓 (푥) = 1 − 푥 + 푥 −⋯+ 푥 − ⋯ for |푥| < 1 
 The series is geometric with first term 1 and common ratio −푥 . 
Thus; 

푓 (푥) =
1

1− (−푥 ) =
1

1 + 푥  

Integrating both sides, gives 

푓 (푥)푑푥 =
1

1 + 푥 푑푥 

푓(푥) = 푡푎푛 푥 + 퐶 
 
2.5. Taylor and Maclaurin Series 
If a function f(x) has derivatives of all orders on the interval I, it 
can be represented as a power series on I about a is called the 
Taylor Series. (If a = 0 it is called the Maclaurin Series). If f(x) is 
represented by a power series centered at a; then 

푓(푥) =
푓( )(푎)
푛! (푥 − 푎)  

This can be written out the long way as, 

∑
( )( )

!
(푥 − 푎) = 	푓(푎) + 푓 (푎)(푥 − 푎) + + ( )

!
(푥 − 푎)  

+
푓 (푎)

3! (푥 − 푎) …. 
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Where the coefficient of the nth term is,  푎 =
( )( )

!
, and 

푝 (푥) = 푓(푎) + 푓 (푎)(푥 − 푎) + ( )
!

(푥 − 푎) + ( )
!

(푥 − 푎) +

⋯+
( )( )

!
(푥 − 푎) = ∑

( )( )
!

(푥 − 푎)   
 The function 푝 (푥)	generated by f at x = a is called Taylor 
polynomials of order n 
Example; Find the power series and Taylor polynomials  
푝 (푥)	,푝 (푥)	푎푛푑	푝 (푥)	 for  

a. f(x) = 푒  centered at x = 0: 
Solution:   푓(푥) = 푒       	⟹ 푓(0) = 1 
                 푓 (푥) = 푒        ⟹푓 (0) = 1 
                 푓 (푥) = 푒       ⟹ 푓 (0) = 1 
                   :                           : 
                푓( )(푥) = 푒     ⟹푓( )(0) = 1. So  

푓(푥) = 푒 = 푓(0) + 푓 (0)(푥 − 0) +
푓 (0)

2! (푥 − 0) + ⋯ 

                         =   1 + 1(푥) +
!
(푥) +

!
(푥) …  

                         =   1 + 푥 +
!
푥 +

!
푥 … = ∑

!
 

푝 (푥) = 1 + 1(푥) +
!
(푥) +

!
(푥) + ⋯+

!
. 

푝 (푥) = 1 + 푥 + 푥 + 푥 , 

                      										푝 (푥) = 1 + 푥 + 푥 + 푥 + 푥  

             													푝 (푥) =	 1 + 푥 + 푥 + 푥 + 푥 + 푥  
A special limit 

lim → !
= 0, since 푒 = ∑

!
 is a convergence series 

 
 

b. f(x) = ln x centered at x = 1: 
Solution: 	푓(푥) = 푙푛푥	     ⟹ 푓(1) = 0. 
                푓 (푥) =           ⟹ 푓′(1) = 1 

                푓 (푥) =        ⟹ 푓(1) = −1 

                푓 (푥) =        ⟹ 푓(1) = 2 
                     :                               : 

              푓( )(푥) = ( ) ( )!    ⟹푓( )(1) = (−1) (푛 − 1)!. 
so the Taylor Series 

푓(푥) = ln 푥 = 푓(1) + 푓 (1)(푥 − 1) +
푓 (1)

2! (푥 − 1) + ⋯ 

푓(푥) = ln푥 = 0 + (푥 − 1) −
1
2 (푥 − 1) +

1
3 (푥 − 1) −⋯ 

            ln 푥 = ∑ ( ) (푥 − 1)  

푝 (푥) = (푥 − 1)−
1
2 (푥 − 1) +

1
3 (푥 − 1) −⋯

+
(−1)

푛
(푥 − 1)  

        푝 (푥) = (푥 − 1) − (푥 − 1) . 

									푝 (푥) = (푥 − 1)−
1
2 (푥 − 1) +

1
3 (푥 − 1)  

	푝 (푥) = (푥 − 1) −
1
2 (푥 − 1) +

1
3 (푥 − 1) +

1
4 (푥 − 1)  

Taylor formula with remainder  
 If a function f(x) have derivatives up through the (n+1)st order in 
an open interval I centered at x = a. then for each x in I there is a 
number c between a and x such that, 

Aminat
Sticky Note
+ 1/3(x-1)^3

Aminat
Sticky Note
-1/4(x-1)^4
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푓(푥) = 푓(푎) + 푓 (푎)(푥 − 푎) +
푓 (푎)

2! (푥 − 푎) + ⋯

+
푓( )(푎)
푛! (푥 − 푎) + 푅 (푥) 

Where  푅 (푥) =
( )( )
( )!

(푥 − 푎) ,is called lagrange form of the 

remainder.  And Taylor formula can be written more briefly, 
푓(푥) = 푃 (푥) + 푅 (푥) 

Example; let f(x) = lnx, then find a Taylor’s formula with the 
remainder for arbitrary n about x = 1. 
Solution, from the previous example, 

푓(푥) = 0 + (푥 − 1)−
1
2 (푥 − 1) +

1
3 (푥 − 1) −⋯

+
(−1)

푛
(푥 − 1) −⋯ 

The Taylor formula with the remainder is, 

푓(푥) = (푥 − 1) −
1
2 (푥 − 1) +

1
3 (푥 − 1) −⋯

+
(−1)

푛
(푥 − 1) + 푅 (푥) 

Where  푅 (푥) = ( ) (푥 − 1) and 

푃 (푥) = (푥 − 1) −
1
2 (푥 − 1) +

1
3 (푥 − 1) −⋯

+
(−1)

푛
(푥 − 1)  

Theorem let f have derivatives of all orders in an open interval I 
centered at x = a. then the Taylor series for f about x =a converges 
to f(x) for x in I if and only if, 

lim
→

푅 (푥) = 0 

Where 푅 (푥) is the remainder term in the Taylor formula. 

Example, show that the Taylor series for f(x) = 푒  about x =0 
converges to 푒  for all x. 
Solution, 

푃 (푥) = 1 + 푥 +
1
2!푥 +

1
3!푥 + ⋯+

푥
푛!  

And that 

푅 (푥) =
( )!

푥 , where 0 < 푐 < 푥 

If 0 < 푐 < 푥 then 푒 < 푒  since f(x) = 푒  is an increasing function.   

|푅 (푥)| ≤ 
( )!

푥 . 

By special limit 

lim → ( )!
푥 = 푒 lim

→ ( )!
= 푒 (0) = 0.. 

Thus, for x > 0 
lim
→

푅 (푥) = 0 

If 0 < 푐 < 푥 then 푒 < 푒 = 1. Thus, 

|푅 (푥)| ≤
푒

(푛 + 1)!푥  

By special limit 

lim → ( )!
푥 = 푒 lim

→ ( )!
= 푒 (0) = 0. 

Thus, for all x < 0  
lim
→

푅 (푥) = 0 

Therefore the Taylor series for  푒  about x = 0 converges to 푒  for 
all real number x. 
Taylor series for f about x = 0 (Maclaurin series) 

푓( )(푥)
푛! 푥 = 	푓(0) + 푓 (0)푥 +

푓 (0)
2! 푥 +

푓 (0)
3! 푥 + ⋯ 
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Basic List of Power Series 

 푒 = 1 + 푥 +
!
푥 +

!
푥 + ⋯+

!
+ ⋯      −∞ < 푥 < ∞ 

 ln 푥 = (푥 − 1)− (푥 − 1) + (푥 − 1) −⋯   0 < 푥 ≤ 2 

 	= 1 - (x - 1) +(x	 − 	1) −  (x	 − 	1)  + …	           0 < x < 2 

 = 1 + 푥 + 푥 + 푥 + ⋯+ 푥 + ⋯                   |푥| < 1 

 (1 + 푥) = 1 + 푘푥 + ( )
!

+ ( )( ) …     |푥| < 1 

 sin 푥 = 푥 −
!
푥 +

!
푥 + ⋯+

( )!
−⋯    −∞ < 푥 < ∞ 

 cos푥 = 	1 −
!
푥 +

!
푥 −⋯+

( )!
−⋯    −∞ < 푥 < ∞ 

 
 
 
 




