MATH 2073 -SOLUTION OF NONLINEAR EQUATIONS LECTURE-5

Dejen Ketema

Department of Mathematics
Arba Minch University
https://elearning.amu.edu.et/course/view.php?id=279

Fall 2019

NEWTON METHOD

- Newton's method is one of the most widely used of all iterative techniques for solving equations.
- To use the method we begin with an initial guess x_0 , sufficiently close to the root x_* .
- The next approximation x_1 is given by the point at which the tangent line to f at $f(x_0, f(x_0))$ crosses the x-axis.
- It is clear that the value x_1 is much closer to x_* than the original guess x_0 .
- If x_{n+1} denotes the value obtained by the succeeding iterations, that is the x-intercept of the tangent line to f at $(x_n, f(x_n))$, then a formula relating x_n and x_{n+1} , known as Newton's method, is given by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n \ge 0$$

GRAPHICAL APPROACH

FIGURE: Newton's method.

DERIVATION OF NM

- If $f \in C^2[a, b]$, and we know $x_1 \in [a, b]$ be an approximation to x_* such that $f'(x_1) \neq 0$ and $|x_1 x_*|$ is "small."
- Consider the first Taylor polynomial for f(x) expanded about p_1 and evaluated at $x = x_*$:

$$0 = f(x_*) = f(x_1) + (x_1 - x_*)f'(x) + \frac{(x_1 - x_*)^2}{2!}f''(\xi(x_1))$$
 (2)

- where $\xi(x_1) \in [x_1, x_*]$
- Newton's method is derived by assuming that $|x_1-x_*|$ is small, which means that $|x_1-x_*|^2 \ll |x_1-x_*|$, hence we make the approximation:

$$0 = f(x_1) + (x_1 - x_*)f'(x)$$

Now solve for x_{*}

$$x_* = x_1 - \frac{f(x_1)}{f'(x_1)}$$

ALGORITHM

NEWTON METHOD

Given a scalar differentiable function in one variable, f(x):

- Start from an initial guess x_0 .
- ② For $n = 0, 1, 2, \dots$, set

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

until x_{n+1} satisfies termination criteria.

Convergence

THEOREM

Let $f(x) \in C^2[a,b]$. If $x_* \in [a,b]$ such that $f(x_*) = 0$ and $f'(x_*) \neq 0$, then there exists a $\sigma > 0$ such that Newton's method generates a sequence $\{x_n\}_{n=1}^{\infty}$ converging to x_* for any initial approximation $x_1 \in [x_* - \sigma, x_* + \sigma]$.

EXAMPLE

EXAMPLE

Using Newton's method, solve $f(x) = x^6 - x - 1$.

Solution: Here

$$f(x) = x^6 - x - 1, f'(x) = 6x^5 - 1$$

and the iteration

$$x_{n+1} = x_n - \frac{x_n^6 - x_n - 1}{6x_n^5 - 1}, \neq 0$$

n	x_{n+1}	$ x_{n+1}-x_n $
1	1.14357584	0.05642416
2	1.13490946	0.00866638
3	1.13472422	0.00018524
4	1.13472414	0.00000008

Secant Method

INTRODUCTION

- Newton's method is an extremely powerful technique, but it has a major weakness; the need to know the value of the derivative of f at each approximation.
- Frequently, f'(x) is far more difficult and needs more arithmetic operations to calculate than f(x).
- The secant method is a variant of Newton's method, where $f'(x_n)$ is replaced by its finite difference approximation based on the evaluated function values at x_n and at the previous iterate x_{n-1} .
- Assuming convergence, observe that near the root

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

 Substitution of this approximation into the formula for Newton's method yields the Secant method,

$$x_{n+1} = \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}, \ n = 0, 1, 2, 3, \cdots$$

GRAPHICAL APPROACH

FIGURE: The first two iterations of the secant method.

ALGORITHM

Given a scalar differentiable function in one variable, f(x):

- Start from two initial guesses x_0 and x_1 .
- **2** For $k = 1, 2, \dots$, set

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

until x_{n+1} satisfies termination criteria.

EXAMPLE

EXAMPLE

Find a root of the equation $x^6 - x - 1 = 0$ We apply the method of secant method with $x_1 = 1$ and $x_2 = 1.5$.

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}.$$

The calculations based on the secant method are shown in the following Table

SOLUTION

Iteration	а	Ь	f(a)	f(b)	X	
1.	1.000000000	2.000000000	-1.000000000	61.000000000	1.016129032	
2.	2.000000000	1.016129032	61.000000000	-0.915367713	1.030674754	
3.	1.016129032	1.030674754	-0.915367713	-0.831921414	1.175688944	
4.	1.030674754	1.175688944	-0.831921414	0.465227164	1.123679065	
5.	1.175688944	1.123679065	0.465227164	-0.110632879	1.133671081	
6.	1.123679065	1.133671081	-0.110632879	-0.010805918	1.134752681	
7.	1.133671081	1.134752681	-0.010805918	0.000293664	1.134724065	
8.	1.134752681	1.134724065	0.000293664	-0.000000748	1.134724138	
9.	1.134724065	1.134724138	-0.000000748	-0.000000000	1.134724138	
10.	1.134724138	1.134724138	-0.000000000	-0.000000000	1.134724138	
(D. II.I., II., 1., 1.124704120.)						

(Recall that the true root is $\alpha = 1.134724138$.)

ADVANTAGES AND DISADVANTAGES:

Advantages and disadvantages:

- The error decreases slowly at first but then rapidly after a few iterations.
- The secant method is slower than Newton's method but faster than the bisection method.
- Seach iteration of Newton's method requires two function evaluations, while the secant method requires only one
- The secant method does not require differentiation.

ROOT FINDING METHODS SUMMARY

- The Bisection method
 - Very stable Algorithm Good technique to find starting point for Newton's method
 - Osts only one function evaluation, so rapid iterations
 - 3 Linear convergence, so slow (3.3 iterations/digit)
- The Secant method
 - Hard to find starting points (Unknown basin of attraction)
 - Ocsts only two function evaluations, so rapid iterations
 - **3** Superlinear convergence, $\alpha \approx 1.62$, which is pretty fast
- The Newton's method
 - Hard to find starting points (Unknown basin of attraction)
 - Finding and evaluating derivative requires more machine work at each iteration
 - Quadratic convergence is very fast- doubling the digits at each iteration.

EXAMPLE

EXAMPLE

Summary Find the roots of

$$x^3 + 4x^2 - 10 \ x \in [1.5, 2]$$

		_	
n	Bisection	Secant	Newton
1	1.25	1.33898305084745	1.45454545454545
2	1.375	1.36356284991687	1.36890040106951
3	1.3125	1.36525168742565	1.36523660020211
4	1.34375	1.36522999568865	1.36523001343536
5	1.359375	1.36523001341391	1.36523001341409
6	1.3671875	1.36523001341409	
7	1.36328125		
8	1.365234375		
9	1.3642578125		
10	1.36474609375		
11	1.364990234375		