# Math 2073 -Solution of Nonlinear Equations Lecture-5 

## Dejen Ketema

Department of Mathematics<br>Arba Minch University<br>https://elearning.amu.edu.et/course/view.php?id=279

## Fall 2019

- Newton's method is one of the most widely used of all iterative techniques for solving equations.
- To use the method we begin with an initial guess $x_{0}$, sufficiently close to the root $x_{*}$.
- The next approximation $x_{1}$ is given by the point at which the tangent line to $f$ at $f\left(x_{0}, f\left(x_{0}\right)\right)$ crosses the $x$-axis.
- It is clear that the value $x_{1}$ is much closer to $x_{*}$ than the original guess $x_{0}$.
- If $x_{n+1}$ denotes the value obtained by the succeeding iterations, that is the $x$-intercept of the tangent line to $f$ at $\left(x_{n}, f\left(x_{n}\right)\right)$, then a formula relating $x_{n}$ and $x_{n+1}$, known as Newton's method, is given by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n \geq 0 \tag{1}
\end{equation*}
$$

## GRAPHICAL APPROACH



Figure: Newton's method.

- If $f \in C^{2}[a, b]$, and we know $x_{1} \in[a, b]$ be an approximation to $x_{*}$ such that $f^{\prime}\left(x_{1}\right) \neq 0$ and $\left|x_{1}-x_{*}\right|$ is "small."
- Consider the first Taylor polynomial for $f(x)$ expanded about $p_{1}$ and evaluated at $x=x_{*}$ :

$$
\begin{equation*}
0=f\left(x_{*}\right)=f\left(x_{1}\right)+\left(x_{1}-x_{*}\right) f^{\prime}(x)+\frac{\left(x_{1}-x_{*}\right)^{2}}{2!} f^{\prime \prime}\left(\xi\left(x_{1}\right)\right) \tag{2}
\end{equation*}
$$

- where $\xi\left(x_{1}\right) \in\left[x_{1}, x_{*}\right]$
- Newton's method is derived by assuming that $\left|x_{1}-x_{*}\right|$ is small, which means that $\left|x_{1}-x_{*}\right|^{2} \ll\left|x_{1}-x_{*}\right|$, hence we make the approximation:

$$
0=f\left(x_{1}\right)+\left(x_{1}-x_{*}\right) f^{\prime}(x)
$$

- Now solve for $x_{*}$

$$
x_{*}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

## Newton Method

Given a scalar differentiable function in one variable, $f(x)$ :
(1) Start from an initial guess $x_{0}$.
(2) For $n=0,1,2, \cdots$, set

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)},
$$

until $x_{n+1}$ satisfies termination criteria.

## Convergence

## THEOREM

Let $f(x) \in C^{2}[a, b]$. If $x_{*} \in[a, b]$ such that $f\left(x_{*}\right)=0$ and $f^{\prime}\left(x_{*}\right) \neq 0$, then there exists a $\sigma>0$ such that Newton's method generates a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converging to $x_{*}$ for any initial approximation $x_{1} \in\left[x_{*}-\sigma, x_{*}+\sigma\right]$.

## EXAMPLE

## Example

Using Newton's method, solve $f(x)=x^{6}-x-1$.
Solution: Here

$$
f(x)=x^{6}-x-1, f^{\prime}(x)=6 x^{5}-1
$$

and the iteration

$$
x_{n+1}=x_{n}-\frac{x_{n}^{6}-x_{n}-1}{6 x_{n}^{5}-1}, \neq 0
$$

| n | $x_{n+1}$ | $\left\|x_{n+1}-x_{n}\right\|$ |
| :---: | :---: | :---: |
| 1 | 1.14357584 | 0.05642416 |
| 2 | 1.13490946 | 0.00866638 |
| 3 | 1.13472422 | 0.00018524 |
| 4 | 1.13472414 | 0.00000008 |

## Secant Method

- Newton's method is an extremely powerful technique, but it has a major weakness; the need to know the value of the derivative of $f$ at each approximation.
- Frequently, $f^{\prime}(x)$ is far more difficult and needs more arithmetic operations to calculate than $f(x)$.
- The secant method is a variant of Newton's method, where $f^{\prime}\left(x_{n}\right)$ is replaced by its finite difference approximation based on the evaluated function values at $x_{n}$ and at the previous iterate $x_{n-1}$.
- Assuming convergence, observe that near the root

$$
f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}
$$

- Substitution of this approximation into the formula for Newton's method yields the Secant method,

$$
x_{n+1}=\frac{f\left(x_{n}\right)\left(x_{n}-x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, n=0,1,2,3, \cdots
$$



Figure: The first two iterations of the secant method.

Given a scalar differentiable function in one variable, $f(x)$ :
(1) Start from two initial guesses $x_{0}$ and $x_{1}$.
(2) For $k=1,2, \cdots$, set

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)\left(x_{n}-x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

until $x_{n+1}$ satisfies termination criteria.

## ExAMPLE

Find a root of the equation $x^{6}-x-1=0$
We apply the method of secant method with $x_{1}=1$ and $x_{2}=1.5$.

$$
x_{n+1}=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

The calculations based on the secant method are shown in the following Table

| Iteration | $a$ | $b$ | $f(a)$ | $f(b)$ | $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 1.000000000 | 2.000000000 | -1.000000000 | 61.000000000 | 1.016129032 |
| 2. | 2.000000000 | 1.016129032 | 61.00000000 | -0.915367713 | 1.030674754 |
| 3. | 1.016129032 | 1.030674754 | -0.915367713 | -0.831921414 | 1.175688944 |
| 4. | 1.030674754 | 1.175688944 | -0.831921414 | 0.465227164 | 1.123679065 |
| 5. | 1.175688944 | 1.123679065 | 0.465227164 | -0.110632879 | 1.133671081 |
| 6. | 1.123679065 | 1.133671081 | -0.110632879 | -0.010805918 | 1.134752681 |
| 7. | 1.133671081 | 1.134752681 | -0.010805918 | 0.000293664 | 1.134724065 |
| 8. | 1.134752681 | 1.134724065 | 0.000293664 | -0.000000748 | 1.134724138 |
| 9. | 1.134724065 | 1.134724138 | -0.000000748 | -0.000000000 | 1.134724138 |
| 10. | 1.134724138 | 1.134724138 | -0.000000000 | -0.000000000 | 1.134724138 |

(Recall that the true root is $\alpha=1.134724138$.)

## ADVANTAGES AND DISADVANTAGES:

(1) The error decreases slowly at first but then rapidly after a few iterations.
(2) The secant method is slower than Newton's method but faster than the bisection method.
(3) Each iteration of Newton's method requires two function evaluations, while the secant method requires only one
(1) The secant method does not require differentiation.
(1) The Bisection method
(1) Very stable Algorithm - Good technique to find starting point for Newton's method
(2) Costs only one function evaluation, so rapid iterations
© Linear convergence, so slow (3.3 iterations/digit)
(2) The Secant method
(1) Hard to find starting points (Unknown basin of attraction)
(2) Costs only two function evaluations, so rapid iterations
© Superlinear convergence, $\alpha \approx 1.62$, which is pretty fast
(3) The Newton's method
(1) Hard to find starting points (Unknown basin of attraction)
(2) Finding and evaluating derivative requires more machine work at each iteration
(3 Quadratic convergence is very fast- doubling the digits at each iteration.

## Example

Summary Find the roots of

$$
x^{3}+4 x^{2}-10 \quad x \in[1.5,2]
$$

| n | Bisection | Secant | Newton |
| :---: | :---: | :---: | :---: |
| 1 | 1.25 | 1.33898305084745 | 1.45454545454545 |
| 2 | 1.375 | 1.36356284991687 | 1.36890040106951 |
| 3 | 1.3125 | 1.36525168742565 | 1.36523660020211 |
| 4 | 1.34375 | 1.36522999568865 | 1.36523001343536 |
| 5 | 1.359375 | 1.36523001341391 | 1.36523001341409 |
| 6 | 1.3671875 | 1.36523001341409 |  |
| 7 | 1.36328125 |  |  |
| 8 | 1.365234375 |  |  |
| 9 | 1.3642578125 |  |  |
| 10 | 1.36474609375 |  |  |
| 11 | 1.364990234375 |  |  |

