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Chapter 2:orthogonalty

2.1.Inner product

Definition An inner product on real or complex vector spaces V is afunction that
associates areal or complex number < u,v > with each pair vector in V in such that
thr following axiom s are satisfied for all u v and w in V and for all scalr k in field K

1. SUVS=<V, U e e ve et e et e e e e e LSYIIMEtY axiom

2. <Uu+v,w>=<uUwW > +< U,W .t e ve cr e e .00 additives axioms
3. <ku,v>=k<uUv i .. ... .. OMOgenity axiom

4, <u,u>2=20and =0iff u=0.......cc ces ses ser o o POSItVILY @xiOms

2.2Inner product spaces:

Defintion :A real or complex vector space V with an inner product is called an inner
product space

Examples: Eucleadean inner product on R" define u,vin R" by

<u,v >= uy vy + Uyv, + - u, v, satisfy the axioms of inner productin R" such that

Solution:
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Normof u =+u.u and d(u,v) = norm(u —v) = \/(u —v).(u—v)
If norm is one the v is called unit vector

Examples: if u,vin R? verify < u,v >= 3u, v, + 2u,v,satisfy the four inner product
axioms

Solution:

Examples. If Vis vector spaces of matrices over real number veryfy that

< A,B >= trace(BtA)
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Inner products generated by matices

The euclidean inner product and weighet euclidean inear product are special cases
of inner product on R™

Called Matrix inner products define .if u.v is Euclidean inner product on R" then
<u,v>= Au.Av ,Aisinvertable matrix

Note. If uand v are in column form then u.v = v? u = (Av)TAu = vTAT Au the
weighted Euclidean inner product<u, v >= wlu, v; + w2u,v, + - wnu,v, is
generated by matrix

)
A=l 0 0 Jw; .. 0 |
\s v v v~

Examples: let < u,v >= 3u,v; + 2u,v, the wl =3 and w2 =2

=5 )

Examples An inner product on M,,,,, if u and v are an nxn matrices then < u,v >=
trac(u” v)

Exercise .Take 3by3 matrices and check by your own
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Examples :standard inner producton P,

Ifp(x) =ag+ a;x+ ax? + -+ a,x*and q(x) = by + byx + byx? + -+ + b,x" are
polynomial in P,, define the inner product on this space

<p,q>=aghy+ab; +a,b,+ -+ a,b,

normof p = \/<p,p >=/aeay + a;a; + aza, + -+ ana,
p(x) = 3x2% + 2x + 4 and q(x) = 2 + 4x + 2x? compute

a) <p,q>
b) normof pand q
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Examples :Evaulation inner producton P,,

If p(x) =ay+a;x+ax*+ -+ a,x"and q(x) = by + by;x + b,x? + -« + b,x" are
polynomial in P, and if x;, x4, x,, ... x,, are distinct real numbers then

<P, g >=p(x0)a(xo) + P(x1)q(x1) + p(x2)q(xz) + -+ + p(xn )q(x, ) viewed as dot
prudct in R" satisfies the axioms of inner product

normof p = \/< p,p>= \/p(xo)p(xo) + P(x)p(xy) + p(x)p(axz) + -+ plxy )p(xy )
Examples; working with evaluation inner product

Let P, have evaluation inner product at the pointx, = =2, x; = 0,x, = 2,

p(x) = 3x% + 2x + 4 and q(x) = 2 + 4x + 2x? compute

c) <p,q> d) normof pand q
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Examples : An inner product on collection of continues function on CJ[a,b]

Let f(x) = f and g(x) = g be thwo continoues function on [a,b] define by

<f,g>= f; f(x)g(x)dx verify the four inner product axioms

Orthogonality

Two vector u and V in inner product spaces are called orthogonalif < U,V >=10

Examples : euclidean inner product spaces in R? and R® where the operation is dot
product

Take your own particular examples
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2.3.0rthogonal and ortho normal sets

Definition : Aset of two or more vectors in areal inner product spaces is said to be
orthogonal if for all pairs of distinct vectors in the set are orthogonal

An orthogonal set in which every vectors has norm one is said to be orthonormal
Examples .an orthogonal set in R3

letu = (0,1,0),v = (1,01) ,w = (1,0, —1) and assume that R3 has the euclidean inner
product so each vector are orthogonal to each other . show

Examples :constructing an orthonormal set
Lets = {u = (0,1,0),v = (1,01) ,w = (1,0,—1)} then norm(u) = V1 ,norm(w) =2 =

norm(v) then unit vector s = {(0,1,0), \/% (1,0 1)’\/_15 (1,0,—1)} are orthogonal to each
other
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Theorem If S = {v,,v,, ...v,} is an orthogonal set of nonzero vectors in an inner
product spaces then S is lineary independent

Proof:assume that k v, + kv, + -+ kv, =0... ... ... (D

We want show k4, k,, ..., k, = 0 for each v; € S it follow that from equation (1)

< kyv; + kyvy + -+ kpv,, v; >=<0,v; >= 0 from the axiom of inner product spaces
< kv, v; > +< kv, v >+ A< kv, v > =0
ki <v,v; >4k, <vpv >+t ky <vy,vis> =0

ki<17j,17i>:0ifi:ptj
ki<17j,17i>:pt0ifi:j

From orthogonalty of S it follow that {
= k; <v;,v; > =0impliesk; =0fori=12,..n
Examples :standard orthonormal basis in in R™ with euclidean inner product

e; =(1,00..,0),e, =(0,10..,0) .. e, = (0,0,0 ...,1)

Examples : ortho normal basis

The set s = {(0'1'0)'% (1,01),% (1,0,—1)} are orhonormal then linearly independent

sets and s is basis for R? by the above theorem

Coordinates relatives to orthonormal bases
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We express u € R" as linear combination of basis vector § = {v,,v,, ... v, } thar
means

u= kyvy +kyv, + -+ k,v, vector equation
so coordinate vector realatives to sis (u)s = (kq, k3, ..., k)

theorem: If S = {v;, v,, ..., } is an orthogonal basis for inner product spaces
<u,v;> <U,vy,> <u,v3>
1 2 3 1.73 + +

Qo) 2 Woat)® 2 all)’

V and if u is any vector in V then u =

<u,vp>
(wall)’
prooof: since S = {v,v,, ... v, } is basis for V, every vector in uin V can
expreesed inthe formofu = kyv; + kv, + -+ kv,

so <uv; >=< kv + kv, + -+ kv, v; >

==< kv + kv, + -+ kv, v >

2
= ky < v,V > +ky < vy v >+t ky < v v > =k < vy > = k(| vil|)

Un

<uv; > <u,v; >

kl = = 7
v (|nl]

theorem : If S = {v;, v,, ... v, }is an orthonormal basis for an inner produc

<u,v, > <u,vy>
v +

(Ilval])” (Ilv2l])”

spaces V and u is any vector in V then u = Uy +——=v3 +

(Iivsll)

<u,vp>

(“”n”)z
(||vi||) =1 ,fori=12,..,n
Prooof: from the above theorem normality of each vector k; = <u,v; >
Examples : find coordinate vector relatives to the orthonormal basis

_ 03 (2ot ' - 3 o
s={(0,1, 0),( 5,0, 5),(5,0, 5)} set s is an orthonormal basis for R° with

v, and

Euclidean
express the vector u = (1,1,1) € R3 as L.C of vector in S and find
coordinate vector (u)g
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examples : An orthogonal and orthonormal basis
a) Show that the vector w; = (0,2,0) W, = (3,0,3) and w; = (—4,0,4) form
orthogonal Basis for R® with respect to Euclidean inner product
b) Expess vector u = (1,2,4) as LC of orthonormal basis vector in part (a)

Orthogonal projection

Projection theorem: If W is a finte dimensional subspaces of inner product spaces V,
then every vector uinV can be expressed in exactly one way as

U= w ;+w, where w, is W and w, isinW* and w; = proji; and w, = projproj,,.

<uW>w <uWwt>

Ly and w, = projproj;fvl = “Wiwis

W= PTolw = s
u = projy + (U —projiy) .. e ... (D

Calculating orthogonal projection

Theorem :let W be finite dimensional subspaces of an inner product spaces V
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a) If S = {vy,v,, ...} is an orthogonal basis for W and u is any vector in V then

<wv, > <wuv,>  <uvs> <uv >
—2U1+ 2v2+ 2v3+"'+—2
(1)) (I1v21]) (l1vsl]) (wel])

U —
projy = Ur

b) If § ={v,,v,,..1,}is orthonormal basis for w and u is any vector in V then
o <uv> <u,v, > +<um§> N +<ww>
rojiy = ————v Vo2 g b — v
projw 1 1 12 2 1 3 12 r

proof :u = w, + w, and where w, is W and w, is in W+

: projy, = w; can be expressed interms of basis vector for W as

" < wy, vy > < wy, v, > < wy,v3 > < wy, v, >
projy = wq = >— V1 + TVt ——— v+t ——————— 1,
(llvl]) (IIv-l]) (Itvs1]) (lte:l])
Since w, is orthoigonal to W it follow that < w,, v; >, =< w,, v, >= - =< w,, v, >=0
So p'rO]VV — W1 — <W1+W2,1271> vl + <W1+W2,1272> vz + <W1+W2,1273>v3 + . + <W1+W2,1;r> '[]r
(Iv41]) (Iv21]) (Iws1]) (Ierll)
, <u,v > <u,v, > <u,vg > <u,v >
projy = wy = > + sV t—— V3t t————— v
(It l]) (llv-l]) (Itval]) (llerl])
Proof of (b) in this case norm(v;) =1 fori=12,..7
" <u,v > <u,v, > <u,v; > <u,v, >
projy = w; = 1 vy + 12 vy + 1 U3+ +T Uy

Examples :calculting projection :let R3have the inner product and let W be the
subspaces spanned by orthonormal basis S = {(0,1,0), (— %, 0, g) , (g, 0,— g)} if
u=(1,1,2) find proj;;, = wq

And w, = u — projyy
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2.4.Gram -schmidt orthogonalization process

Theorem :every non zero finite dimensional inner product has an orthonormal
basis

Proof:let W be non zero finte dimensional subspaces of an innerproduct spaces
.supposes that

S = {uy,uy, ..., u, } is any bss for W.T.S that W has an orthogonal basis
{{vl,vz, V3, ...vr}}

Stepl:iv; =4

<u2,171>

(Ilval])®

Step2:construct v,orthogonal to v; sov, =u, — projvﬁ,‘f =u, — 12

Step3: construct v;orthogonal to v; and v,:we compute component of
<u3,171>

(llval])®

u3 orthogonalto space spanned by v, and v, v; = u; — proj‘f,‘; =u; —{ v+

<u3,'l72 >

(lIv21])?

vy}

Step4: to determine v ,that is orthogonal to v;, v , and vs;we compute the component
of u , orthogonal to the spaces w; spanned by v,v ,,v;

<Ugy, V1> <Ugy, V2>

W) 71 ()’

<Uy, V3>
v
(lwsl)* >

— iUs
Uy = Uy — PTOJy, = Uy — vy +

Continuing this way for r —step
'uT'
vy = U, — proj, where w,_; = span{vy, vy, ..., Vr_1}

< U, v, > < U, v, > < Uy, Vg > < Uy Vp_q >

— vy + v, + V3t —————
(wdD)® 7 ()’ (wsl)® (1ve_al])’

r—l}

v = Uy

Vi

[1v:|

To construct orthonormal basis {q;, 5, ---, -} iS q; = fori=1,2...r
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Examples: using gram -schmdit process tranform the basis vectors

a) s =1{(1,1,1),(0,1,1),(0,0,1} to orthogonal basis{v,, v,, v3}

Example.calculate the set of orthonormal polynomial w.r.t inner product define by

<f.g>= [ Feog@ax

s = {1,x,x?,..x"} to orthogonal and orthonormal basis{v;, v,, V3, ... U, }
s = {1,x,x?,..x"} to orthogonal and orthonormal basis{v;, v,, V3, ... U, }
Solution: set ing X;(x) = x’ for j = 0,1,2, ..., our othogonal
set {1;},j = 0,1,2, ...and setorthonormal set by{g;},j = 0,1,2, ...

PYo(0) = X,(0) = 1, for j = 0

1
o) = V< 1,1 >= U 1dx = /1/2

_ Yo (x) _
Po() = oy = V12

1 (0) = X, (0)—< X, (1), 9o () > 9o(x) = x —/1/2 f J1/Zxdx = x

1 ()| = /< x,x >= f 1x2dx =/2/3
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#1(x) = ||$ig;n =3/
Po(x) = Xp(x) =< X3 (x), 0o (x) > @o(x)—< X(x), 01 (x) > @1(x)

— 25?2 I A/2—< 52 |2 3y =yx2_1
x<x,J; 1/2<x,J;x>\/;xx 3

1 1 1 1 1 28
||1/)z(x)ll=j<x2—§,x2—§>=jf (? = P? —Pdx = |72 =
-1
_2 77
_§ /
_ P 5/73 , 1
0= erT 1 @F T2

Continiung this procese we obtaion

s 2, 3
03 =l 1 O/ g0 =

In genneral

Qn(x) = ”3"83” = /2n2+1 P,(x) where P,(x) is legendre polynomial

What is legender polynomial ?

2.5 Theorem : cauchy —schwarz in equality

Angle and orthogonallity in inner product

v.u

. . n —_—
Recall : angle 0 between u and vin R", cosf = 2D ().abs ) and

abs(cosf) <1
Implies taking absolute both sides abs < u, v >< norm(u)norm(v)

Theorem : cauchy —schwarz in equality

If u and v are vector in real inner product spaces , then abs < u,v > <
norm(u)norm(v)
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Theorem : if u,v and w are vector in real inner product spaces V and if k is any
scalar then

a) norm(v +w) < norm(v) + norm(w) triangle in equalty

b) d(u,v) < d(u,w) + d(v,w), where d is distance by d(u, v) = abs(u — v)
proof:
2.6 The Dual spaces

Let V= avector spaces over field K and let V* = L(V, K) = the set of all linear maps
from Vto K, I* is vectors spaces over K

Definition: the vector spaces V*is called the dual spaces of V. an element of V" are
called linear fuctional on V.

Notation.Let peV* or @eL(V,K) we will use the notation <¢,v > = ¢(v)

<1+ @V >=<@,v> +< @,V >
<P,V + Vv, >=< @, v>+< @, v>
<Ap,v>=A< @, v >

<PAv>=A<@,v>
Defition 2: {v*, ,v*, ,v";,...v",} is called the dual basis of {v,, v,, V3, ..., U}
Let V= an inner product spaces to each v € I/ we can associate linear function
L, € V* given by

00D

L,(w) =<v,w > forallwinV
Note. L,(Ww +w) =< w; + Wy, v > =< w,v > +<w,,v>=1L, (wy) + L,(Wwy)
L,(Aw) =< AW, V>=A<W,V>=AL,<w>
Theorem:Let V= a finite dimensional inner product spaces. Let
{v1,v5,03,..., vy} be basisfor V then {L,, ,L,,, Ly, ..., L, }is basis of V*

Proof:let
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Examples of dual spaces:

1. m;:R™ - R be projection of ith component define by m;(a;,a,,as,...,a,) =
a; . then m; is linear so it linear funtional on R" . for every y,,y, €
IR and u,v € R"
Solution:

2. LetV = M,,,, matrices over K (field) T:V — K defined by T(A)= trace(A)
where A € M,,,.,,
T is linear so it is Linear functional on V

3. ¢:R™ - Rby ¢p(xq,x5,...%,) = ayx1 + ayx, + ++- ayx, is linear functional on R"

Theorem:dual basis. Suppose {v,, v,, V3, ... v, } is basis for VV* be linear functional

Tifie
defined by ¢;(v;) = &;; = {0 Z:i ¢j. then {@,, ¢,, @3, ..., } is basis for I'*

Proof:
Example or exercise :dual basis
1. Consider basis of R%: {v1 = (2,1),v2 = (3,1)}Define ¢,(x,y) = ax + by and
@,(x,y) = cx + dy find dual basis by the above theorem

2. Let ¢;:R? > Rand¢,: R?> — R be linear functional define by ¢,(x,y) = x + 2y

¢2(x,y) =3x —y find ¢, + ¢, ;and 3¢, + 5¢,
3. Given basis for R® {v1 = (1,—1,3),v2 = (0,1,—1), (0,3, —2) }find dual basis

{p1, 02,03 }
4. Let V be a vector spaces of polynomial over R of deegree< 2 let ¢, p,and ¢;

be linear functional on V defined by

o (F©) = j f(©dt
0

@2(f@®) = f'(1) and @3(f(©)) = (1) here f(t) = a + bt + ct? € V find basis

{f(©)1, f(t)2, f(t)3} of V which is dual to {¢y, ¢,, 93}

2.7 Ad joint of linear operators

Definition: let V = ¢ finite dimensional inner product spaces. Let T= a linear
operator on V then there exist a unique liear operator T* on V such that

<Tw),w>=<v,T*(w)> forallu,w € V. T* is called ad joint of T
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Theorem: let V = a finite dimensional inner product spaces. Let T,S= a linear
operator on V.let 1 € K[field] then

. (T+S)=T"+S"
i @AT)"x =AT"
iii. (ToS)* =S*oT*
iv. (T)'=T
Proof:
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Example: Let T: R®> — R? be defined by T(v) = (x + 2y,3x — 4z,y) clearly T is
linear operator on R3.find T*(x,y, z)

solution:

T(1,0,0) = (1,3,0),T(0,1,0) = (2,0,1) and T(0,0,1) = (0, —4,0)

1 2 0] 1 3 0
hence A=[T]=|3 0 —4|andA*=[T*]=A4T=(2 0 1]
0 —4 0

01 0]
1 3 0]
T"(x,y,z)=[2 0 1 ly = (x + 3y, 2x + z,—4y)
0 —4 o0llz

Examples 2;let T: R — R" by T(v) = Avand T* (w) = Bw A and B are matrix
,v,w € V = R™" Define inner product

<TW),w>= (Av)w = vATw and < v, T*(w) > = v(Bw). If what T* is ad joint Linear
operatoronV

Solution: clearly T is linear operator on V. T" is ad joint Linear operator on V by
definition if

<TW),w>= Av)w =vATw =< v, T*(w) > = v(Bw).

= B =A"
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2.8 Self-ad joint linear operators

Definition: let V = a finite dimensional inner product spaces. A linear operator T
on V is called self-ad joint linear operator if T* =T

Note: If V is Euclidean spaces and T is a self-ad joint linear operator on V then T is
called symmetric

Theorem:let IV = a finite dimensional inner product spaces. A linear operator T on
V is self-ad joint linear operator on V then

i. Each eigen values of T is real

ii. Eigen vector of T associated with distance Eigen values are orthogonal
Proof:
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Example: Self-ad joint linear operators:
letT:R™ — R" by T(v) = Av ,A are matrix ,v,w € V = R".Define inner product

<TWV),w>=(Av)w = vATw and < v, T*(w) > = v(Aw) and T* is self adjoint then A
is symmetric matrix

Solution: < T(V),w > = (Av)w = vATw =< v, T*(w) > = v(4Aw) by definition.
(Av)w = vATw = v(Aw) = A = A! hence A is symmetric matrix

2.9 Isometric

Definition: let IV = a finite dimensional inner product spaces and T is linear
operator on V. the following are equivalent:

i. T=T71
ii. T preserves inner productsli.e<T(v),T(w) > =<v,w >
iii. T preserveslength .i.e.||T(v)| = ||lv||Vv eV
Tis called an isometric if it satisfies any of the three equivalent
conditions

Theorem:letV = a finite dimensional inner product spaces and T is linear operator
onV.let f = {vy,v,,v3, ... vy} be orthonormal basis of Vlet A = (a;j)nxn = [T)p be the

matrix of T w.r.t § then (a;;) =< v, v; >

Proof:
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Theorem: let V = a finite dimensional inner product spaces and T is linear operator
onV.let A = (a;j)nxn = [T)p be the matrix of T w.r.t orthonormal basis then T is

isomeric iff A* = A1

Proof:

Examples: rotation in R? and R3

[ X
1. LetLetT:R?> — R? be defined by T(v) = Av = (fg;?g iﬁfﬁg) (y

then clearly T is linear operator and isometry. Show?

).6 € [0,27]
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2. Rotation matrix in R3,

i. Ry(®)=|0 COSa sina

0 -—-sina cosa

1 0 0 ]

cosp 0 -—sinf
ii. Ry(ﬁ)z[ 0 1 0 ]
sinf 0 cosp

cosy -siny 0
siny COSy 0O
0 0 1

iii. R, (y)=

define T(v) = (Rx(a))v,
T(v) = (Ry(B))v and T(v) = (R,(¥))v is linear operator and isometric?.
Show
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2.10 Normal operators

Definition: let V = a finite dimensional inner product spaces and T is linear
operator on V.

T is called normal operator if TT* = T*T

Theorem: let V = a finite dimensional inner product spaces and T is normal linear
operator on V then for any A € K,T — Al is normal operator

Proof:

Examples of normal operator.

X

1. LetLetT:R? — R? be defined by T(v) = Av = ( cost Sm9) (y

—sin@ cosH )'0 € [0.27]
and 6 is fixed then TT* = T*T .show?
Exercise. Are the following are normal operator ?
Rotation matrix in R3,
1 0 0
i)Ry(a) =10 COSa sina]

0 -—-sina cosa

cosp 0 -—sinp
ii)R,(B) =[ 0 1 0 ]
sinB 0 cosp

cosy -—-siny 0
siny COSy O
0 0 1

RZ(Y) =

define T(v) = (Rx(a))v,
T(v) = (Ry,(B))v and T(v) = (R,()v. veR®
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Definition: let V be avector spaces over a afield K.T=a.l.o.onV, W=
subspaces of V we say that w is T in variant if for each . w € W the vector
Tw)ycw

Theorem: let V= an inner product spaces .T= a.l.o. on V. W= a T invariant
subspaces of V then W+ is T* invariant

Proof:let. w € Wand. v € WhthenT(w) S W
<w,T*(W) =<TW),v>=0=>wLlT(w) =T(w)e Wt

Hence W+ is T* invariant.
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Worksheet# 2
1. Compute inner product of the following vectors

_(3 -2 _ (-1 3 . . .
a) u= ( 4 8 ),v = ( 1 1) use Euclidean inner product on square matrix

b) p=3—-x+2x3+3x%qg=2+3x—4x*+4x3suchthata=2,b=3,c=4,d =5
c) compte norm of p and q using standard and evaluation inner prduct on p,

2. Use inner product defined by < f,g > = [ 01 f(x)g(x)dx . Compute inner product
for the following function

a) f(x) = cos(2mx),and g(x) = sin(2mx);
b) f(x) =3 —x + 2x3 + 3x%and g(x) = 2 + 3x — 4x? + 4x3

3. find a basis for orthogonal complement of the subspace of R" spanned by the
vectors

a) A=(2,13);b=(-1,—-42);c = (4,-5,13)
b) A =(02,1),b = (4,0,-3);c = (6,—1,4)

0 A=(3,0,1,-2);b=(-1,-2,-2,1);c = (4,2,3,-3)

d) A=(1,4569);b=(3,-214-1),c = (-1,0,—1,-2,~1);d = (2,3,57,8)

4. let the vector space p; have inner product < p,q > = f_11 p(x)q(x)dx apply grams

Schmidt process to transform the standard basis{1, x, x?, x3}for p; into orthogonal
basis

5. Verify that the vectorsa = (1,—-1,2,—-1);b = (-2,2,3,2);c=(1,2,0,—-1);d =
(1,0,0,1) form an orthogonal basis forR* with Euclidean inner product. Then
express each of the following vectors as linear combination of a, b, c&, d and find
coordinate vectors for each vector’s

i (1,-135) viii.  (2,0,—3,6)
i (3426) ix. (=5-421)
. (24,63) x. (731,-3)
iv. (2233) xi.  (2,0,—3,6)
v. (=2,-345) xii.  (=5,-4,2,1)
vii  (1,3,4,5) xii.  (7,3,1,—3)
vii.  (0,3,—2,—3) xiv.  (2,0,—-3,6)
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xv. (=5,—-4,2,1) xvi.  (7,3,1,-3)

6. from the Q5. If w is subspace spanned by the vectors of a, b, c&, d find projection
of each vector on w

7. Find the orthogonal projection of u on subspace of R*spanned by a,b and c

a) U=(1,-131);a=(1211),b=(0,1,10),c = (2,1,21)
b) u= (_2101214); a= (1111310)1b = (_2) _11 _le)lc = (_31 _1F1F3

8 Let ¢:R? > R and¢,: R* — R be linear functional define by ¢,(x,y) = x + 2y

$2(x,y) =3x —y find ¢p1 + P, ;and 3¢ + 5¢;

9 Given basis for R3 {v1 = (1,—1,3),v2 = (0,1, —1), (0,3, —2) }ind dual basis
{01, 02,903}

10Let V be a vector spaces of polynomial over R of deegree< 2 let ¢4, p,and @3 be
linear functional on V defined by

o (F©) = j f(©dt
0

@2(f@®) = f'(1) and @3(f()) = (1) here f(t) = a + bt + ct? € V find basis
{f ()1, f()2, f(t)3} of Vwhich is dual to {¢1, ¢,, 3}
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