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Chapter 1

Solution of Nonlinear Equations

In this chapter we shall discuss one of the oldest approximation problems which consists of
finding the roots of an equation. It is also one of the most commonly occurring problems in
applied mathematics. The root-finding problem consists of the following: given a continuous
function f , find the values of x that satisfy the equation

f(x) = 0. (1.1)

The solutions of this equation are called the zeros of f or the roots of the equation. In general,
Eqn. (1.1) is impossible to solve exactly. Therefore, one must rely on some numerical methods
for an approximate solution. The methods we will discuss in this chapter are iterative and
consist basically of two types: one in which the convergence is guaranteed and the other in
which the convergence depends on the initial guess.

Example 1.1: Floating Sphere

Consider a sphere of solid material floating in water. Archimedes’ principle states that
the buoyancy force is equal to the weight of the replaced liquid. Let Vs = (4

3)πr3 be the
volume of the sphere, and let Vw be the volume of water it displaces when it is partially
submerged. In static equilibrium, the weight of the sphere is balanced by the buoyancy
force

ρsgVs = ρwgVw

where ρs is the density of the sphere material, g is the acceleration due to gravity, ρw, is
the density of water. The volume Vh of water displaced when a sphere is submerged to a
depth h is (see Figure 1.1)

Vh = π

3h
2(3r − h).

Applying Archimedes’ principle produces the following equation in term of h

h3 − 3rh2 + 4ρr3 = 0.

Given values of r and the specific gravity of the sphere material ρ = ρs

ρw
, the solutions h

of the above equation can be obtained by one of the iterative methods described in this
chapter.
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Figure 1.1: Sphere

Example 1.2: Area of a Segment

A segment of circle is the region enclosed by an arc and its chord (see Figure 1.2 ). If r
is the radius of the circle and θ the angle subtended at the center of the circle, then it
can be shown that the area A of the segment is

A = 1
2r

2(θ − sin θ)

where θ is in radian. Given A and r one can determine the value of θ by finding the zeros
of f(x) = 1

2r
2(θ − sin θ)− A.

Figure 1.2: Area of a segment.

Definition 1.1: A Zero of function f(x)

We now consider one of the most basic problems of numerical approximation, namely the
root-finding problem. This process involves finding a root, or solution, of an equation of
the form f(x) = 0 for a given function f . A root of this equation is also called a zero of
the function f .

The process of solving an equation numerically is different from the procedure used to find an
analytical solution. An analytical solution is obtained by deriving an expression that has an
exact numerical value. A numerical solution is obtained in a process that starts by finding
an approximate solution and is followed by a numerical procedure in which a better (more
accurate) solution is determined. Since numerical solutions are not exact, some criterion has
to be applied in order to determine whether an estimated solution is accurate enough. Several
measures can be used to estimate the accuracy of an approximate solution. The decision as to
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which measure to use depends on the application and has to be made by the person solving
the equation.

The methods used for solving equations numerically can be divided into two groups: bracket-
ing methods and open methods.

Stopping Criteria
Many ways to decide when to stop:
Let c∗ be the true (exact) solution such that f(c∗) = 0, and let mk be a numerically approxi-
mated solution such that f(mk) = ε (where ε is a small number). Tolerance in the solution A
tolerance is the maximum amount by which the true solution can deviate from an approximate
numerical solution.

When do we stop?

Let mk is approximate solution of f(x) at kth iteration.
We can

1. keep going until successive iterates are close:

|mk −mk−1| < ε

2. close in relative terms
|mk −mk−1|
|mk|

< ε

3. the function value is small enough

|f(mk)| < ε

No choice is perfect. In general, where no additional information about f is known, the
second criterion is the preferred one (since it comes the closest to testing the relative
error).

Rate of Convergence
Suppose an algorithm generates a sequence of approximations, cn, which approaches a limit,
c∗, or

lim
n→∞

cn = c∗

How quickly does cn → c∗?
Definition 1.2: Rate of Convergence

If a sequence c1, c2, · · · , cn converges to a value c∗ and if there exist real numbers λ > 0
and α ≥ 1 such that

lim
n→∞

|cn+1 − c∗|
|cn − c∗|α

= λ

then we say that α is the rate of convergence of the sequence.

c© Dejen K. 2019 4



1.1. BISECTION METHOD AMU

1.1 Bisection Method

1.1.1 Idea
Theorem 1.1: The intermediate value theorem

The intermediate value theorem states that if a continuous function, f, with an interval,
[a, b], as its domain, takes values f(a) and f(b) at each end of the interval, then it also
takes any value between f(a) and f(b) at some point within the interval.

The theorem of existence of roots for continuous function (or Bolzano’s theorem) states.
Theorem 1.2: Bolzano’s theorem

If a continuous function has values of opposite sign inside an interval, then it has a root in
that interval. Let f : [a, b]→ R be a continuous function such that f(a) · f(b) < 0.Then
there exist at least one point x in the open interval (a, b) such that f(x) = 0.

The Bisection, or Binary-search, method is a bracketing method for finding a numerical
solution of an equation of the form f(x) = 0. Let f(x) be a given function, continuous on an
interval [a, b], such that

f(a)f(b) < 0. (1.2)
Using the Intermediate Value Theorem, it follows that there exists at least one zero of f in
(a, b). To simplify our discussion, we assume that f has exactly one root c. Such a function is
shown in Figure 1.3. The bisection method is based on halving the interval [a, b] to determine

Figure 1.3: The bisection method and the first two approximations to its zero c.

a smaller and smaller interval within which c must lie. The procedure is carried out by first
defining the midpoint of a, b], c = (a + b)/2 and then computing the product f(c)f(b). If the
product is negative, then the root is in the interval [c, b]. If the product is positive, then the
root is in the interval [a, c]. Thus, a new interval containing c is obtained. The process of
halving the new interval continues until the root is located as accurately as desired, that is

|an − bn| < ε (1.3)

where an and bn are the endpoints of the nth interval [an, bn] and ε is a specified tolerance value.
Some other stopping criteria that one can use, other than (1.3), are given by

|an − bn|
|an|

< ε (1.4)
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or
|f(an)| < ε. (1.5)

1.1.2 Iteration tasks
The input for the method is a continuous function f , an interval [a0, b0], and the function values
f(a0) and f(b0). The function values are of opposite sign (there is at least one zero crossing
within the interval).

Figure 1.4: Bisection Method

Algorithm 1.1: The bisection method procedure is:

1. Choose a starting interval [a0, b0] such that f(a0)f(b0) < 0.

2. Compute f(m0) where m0 = (a0 + b0)/2 is the midpoint.

3. Determine the next subinterval [a1, b1] :

(a) If f(a0)f(m0) < 0, then let [a1, b1] be the next interval with a1 = a0 and
b1 = m0.

(b) If f(b0)f(m0) < 0 , then let [a1, b1] be the next interval with a1 = m0 and
b1 = b0.

4. Repeat (2) and (3) until the interval [aN , bN ] reaches some predetermined length.

5. Constructs a sequence of intervals containing the root c:

(a0, b0) ⊃ (a1, b1) ⊃ · · · ⊃ (aN−1, bN−1) ⊃ (aN , bN) 3 c

6. After k steps

|bk − ak| =
1
2 |bk−1 − ak−1| =

(1
2

)k
|b0 − a0|

7. At step k, the midpoint mk = ak+bk

2 is an estimate for the root c with

mk − dk ≤ c ≤ mk + dk, dk =
(1

2

)k+1
|b0 − a0|

.

A solution of the equation f(x) = 0 in the interval [a, b] is guaranteed by the Intermediate
Value Theorem provided f(x) is continuous on [a, b] and f(a)f(b) < 0. In other words, the
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1.1. BISECTION METHOD AMU

function changes sign over the interval and therefore must equal 0 at some point in the interval
[a, b].

1.1.3 Absolute Error
The bisection method does not (in general) produce an exact solution of an equation f(x) = 0.
However, we can give an estimate of the absolute error in the approxiation.

Theorem 1.3: L

t f(x) be a continuous function on [a, b] such that f(a)f(b) < 0. After N iterations of
the biection method, let xN be the midpoint in the N th subinterval [aN , bN ]

xN = aN + bN
2

There exists an exact solution xtrue of the equation f(x) = 0 in the subinterval [aN , bN ]
and the absolute error is

| xtrue − xN | ≤
b− a
2N+1

Note that we can rearrange the error bound to see the minimum number of iterations required
to guarantee absolute error less than a prescribed ε :

b− a
2N+1 < ε

b− a
ε

< 2N+1

ln
(
b− a
ε

)
< (N + 1) ln(2)

ln
(
b−a
ε

)
ln(2) − 1 < N

The convergence of bisection method is slow. At each step we gain one binary digit in accuracy.
Since 10−1 ≈ 2−3.3, it takes on average 3.3 iterations to gain one decimal digit of accuracy.
Note: The rate of convergence is completely independent of the function f .
We are only using the sign of f at the endpoints of the interval(s) to make decisions on how
to update. By making more effective use of the values of f we can attain significantly faster
convergence.
Form the sequence of midpoints with cn = mn, then from the worst case scenario

|cn − c∗| ≤
(1

2

)n+1
|b0 − a0| or |cn+1 − c∗|

|cn − c∗|
≈ 1

2
It follows that for Bisection Method α = 1 , so the rate of convergence is linear

1.1.4 Implementation
Write a function called bisection which takes 4 input parameters f, a, b and N and returns
the approximation of a solution of f(x) given by N iterations of the bisection method. If
f(an)f(bn) ≥ 0 at any point in the iteration (caused either by a bad initial interval or rounding
error in computations), then print ”Bisection method fails.” and return None.
Python: Bisection

c© Dejen K. 2019 7



1.1. BISECTION METHOD AMU

def bisection(f,a,b,N):
if f(a)*f(b) >= 0:

print("Bisection method fails.")
return None

a_n = a
b_n = b
for n in range(1,N+1):

m_n = (a_n + b_n)/2
f_m_n = f(m_n)
if f(a_n)*f_m_n < 0:

a_n = a_n
b_n = m_n

elif f(b_n)*f_m_n < 0:
a_n = m_n
b_n = b_n

elif f_m_n == 0:
print("Found exact solution.")
return m_n

else:
print("Bisection method fails.")
return None

return (a_n + b_n)/2

MATLAB Bisection.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c=bisection(f,a,b,tol)
while 1

c=(a+b)/2;
if c-a<tol, break; end
if f(a)*f(c)>0

a=c;
else

b=c;
end

end

c© Dejen K. 2019 8



1.1. BISECTION METHOD AMU

Example 1.3: Golden Ratio

Let’s use our function with input parameters f(x) = x2 − x − 1 and N = 25 iterations
on [1, 2] to approximate the golden ratio

φ = 1 +
√

5
2

The golden ratio is a root of the quadratic polynomial x2 − x− 1 = 0.

f = lambda x: x**2 - x - 1
approx_phi = bisection(f,1,2,25)
print(approx_phi)
1.618033990263939

The absolute error is guaranteed to be less than (2− 1)/(226) which is

error_bound = 2**(-26)
print(error_bound)
1.4901161193847656e-08

Let’s verify the absolute error is then than this error bound:

abs( (1 + 5**0.5)/2 - approx_phi) < error_bound
True

Example 1.4

The bisection method applied to

f(x) =
(
x

2

)2
− sin(x) = 0

with (a0, b0) = (1.5, 2.0), and (f(a0), f(b0)) = (−0.4350, 0.0907) gives:
Solution

k ak bk mk f(mk)
0 1.5000 2.0000 1.7500 -0.2184
1 1.7500 2.0000 1.8750 -0.0752
2 1.8750 2.0000 1.9375 0.0050
3 1.8750 1.9375 1.9062 -0.0358
4 1.9062 1.9375 1.9219 -0.0156
5 1.9219 1.9375 1.9297 -0.0054
6 1.9297 1.9375 1.9336 -0.0002
7 1.9336 1.9375 1.9355 0.0024
8 1.9336 1.9355 1.9346 0.0011
9 1.9336 1.9346 1.9341 0.0004

c© Dejen K. 2019 9



1.1. BISECTION METHOD AMU

Example 1.5

Finding the root of a polynomial. Suppose that the bisection method is used to find a
root of the polynomial

f(x) = x3 − x− 2.

Solution

First, two numbers a and b have to be found such that f(a) and f(b) have opposite
signs. For the above function, a = 1 and b = 2 satisfy this criterion, as

f(1) = (1)3 − (1)− 2 = −2

and
f(2) = (2)3 − (2)− 2 = 4.

Because the function is continuous, there must be a root within the interval [1, 2].

In the first iteration, the end points of the interval which brackets the root are
a1 = 1 and b1 = 2 , so the midpoint is

c1 = 2 + 1
2 = 1.5

The function value at the midpoint is f(c1) = (1.5)3−(1.5)−2 = −0.125 . Because
f(c1) is negative, a = 1 is replaced with a = 1.5 for the next iteration to ensure
that f(a) and f(b) have opposite signs. As this continues, the interval between a
and b will become increasingly smaller, converging on the root of the function. See
this happen in the table below.

Iteration an bn cn f(cn)
1 1 2 1.5 -0.125
2 1.5 2 1.75 1.6093750
3 1.5 1.75 1.625 0.6660156
4 1.5 1.625 1.5625 0.2521973
5 1.5 1.5625 1.5312500 0.0591125
6 1.5 1.5312500 1.5156250 -0.0340538
7 1.5156250 1.5312500 1.5234375 0.0122504
8 1.5156250 1.5234375 1.5195313 -0.0109712
9 1.5195313 1.5234375 1.5214844 0.0006222
10 1.5195313 1.5214844 1.5205078 -0.0051789
11 1.5205078 1.5214844 1.5209961 -0.0022794
12 1.5209961 1.5214844 1.5212402 -0.0008289
13 1.5212402 1.5214844 1.5213623 -0.0001034
14 1.5213623 1.5214844 1.5214233 0.0002594
15 1.5213623 1.5214233 1.5213928 0.0000780

After 13 iterations, it becomes apparent that there is a convergence to about 1.521:
a root for the polynomial.

c© Dejen K. 2019 10



1.2. FALSE POSITION (REGULA FALSI) METHOD AMU

Advantage and disadvantage

• The method is guaranteed to converge

• The error bound decreases by half with each iteration

• The bisection method converges very slowly

• The bisection method cannot detect multiple roots

Exercise 1.1

Find an approximation of
√

3 correct to within 10−4 by using the bisection method on
f(x) = x2 − 3 starting on [1, 2].

Exercise 1.2

You are working for ’DOWN THE TOILET COMPANY’ that makes floats for ABC
commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm. You
are asked to find the depth to which the ball is submerged when floating in water. The
equation that gives the depth x to which the ball is submerged under water is given by

x3 − 0.165x2 + 3.993× 10−10

Use the bisection method of finding roots of equations to find the depth x to which the
ball is submerged under water. Conduct three iterations to estimate the root of the above
equation. Find the absolute relative approximate error at the end of each iteration, and
the number of significant digits at least correct at the end of each iteration.

1.2 False position (Regula Falsi) Method
The false position method retains the main features of the Bisection method, that the root is
trapped in a sequence of intervals of decreasing size. This method uses the point where the
secant lines intersect the x-axis. The secant line over the interval [a, b] is the chord between
(a, f(a)) and(b, f(b)). The two right angles in the figure are similar, which mean that

b− c
f(b) = c− a

f(a)

This implies that
Formula

c = af(b)− bf(a)
f(b)− f(a) = b− f(b) (b− a)

f(b)− f(a) (1.6)

then we can compute f(c) and repeat the process with the interval [a, c], if f(a)× f(c) < 0
or to the interval [c, b], if and only if f(c)× f(b) < 0.

c© Dejen K. 2019 11



1.2. FALSE POSITION (REGULA FALSI) METHOD AMU

Figure 1.5: Root finding using Regula-Falsi method

Algorithm 1.2: Regula-Falsi Method: Given a continuous function f(x)

1. Choose the first interval by finding points a and b such that a solution exists between
them and (a < b). This means that f(a) and f(b) have different signs such that
f(a)f(b) < 0. The points can be determined by looking at a plot of f(x) versus x.

2. Calculate the first estimate of the numerical solution c by using Eq. (1.6).

3. Determine whether the actual solution is between a and c or between c and b. This
is done by checking the sign of the product f(a)× f(c):

(a) If f(a)× f(c) < 0, the solution is between a and c?.
(b) If f(a)× f(c) > 0, the solution is between c and b.

4. Select the subinterval that contains the solution (a to c, or c to b) as the new interval
[a, b] , and go back to step 2.

Steps 2 through 4 are repeated until a specified tolerance or error bound is attained.

c© Dejen K. 2019 12
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Example 1.6

Using the False Position method, find a root of the function f(x) = ex − 3x2 to an
accuracy of 5 digits. The root is known to lie between 0.5 and 1.0.

Solution

We apply the method of False Position with a = 0.5 and b = 1.0

y − f(x0) = f(x1)− f(x0)
x1 − x0

(x− x0).

The calculations based on the method of False Position are shown in the following
Table
Iteration a b f(a) f(b) x f(x)

1 0.5 1 0.89872 -0.28172 0.88067 0.08577
2 0.88067 1 0.08577 -0.28172 0.90852 0.00441
3 0.90852 1 0.00441 -0.28172 0.90993 0.00022
4 0.90993 1 0.00022 -0.28172 0.91000 0.00001
5 0.91000 1 0.00001 -0.28172 0.91001 0

Although false position often performs better than bisection, there are other cases where it
does not. As in the following example, there are certain cases where bisection yields superior
results.

True percent relative error(|εt|) = |true value− approximate value|
true value × 100%

Approximate percent relative error (|εa|) =
∣∣∣∣∣cnew − cold

cnew

∣∣∣∣∣× 100%.

where cnew is the root for the present iteration and cold is the root from the previous iteration.
When εa becomes less than a prespecified stopping criterion ε, the computation is terminated.

Figure 1.6: Plot of f(x) = x10 − 1, illustrating slow convergence of the false-position method.

c© Dejen K. 2019 13
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Example 1.7: A Case Where Bisection Is Preferable to False Position

Use bisection and false position to locate the root of

f(x) = x10 − 1

between x = 0 and 1.3.
Solution

Using bisection, the results can be summarized as

Iteration a b c εa εt
1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2%. For false
position, a very different outcome is obtained:

Iteration a b c εa εt
1 0 1.3 0.09430 90.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 73.7
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 17.1 59.2

After five iterations, the true error has only been reduced to about 59%. Insight
into these results can be gained by examining a plot of the function. As in Fig.1.6,
the curve violates the premise on which false position was based that is, if f(a) is
much closer to zero than f(b), then the root should be much closer to a than to b.

Exercise 1.3

Solve for a positive root of x3 − 4x+ 1 = 0 by and Regula Falsi method (Hence the root
is 2.7405.)

1.3 Fixed point Iteration Method
Fixed-point iteration is a method for solving an equation of the form f(x) = 0. The method is
carried out by rewriting the equation in the form:

x = g(x) (1.7)

Obviously, when x is the solution of f(x) = 0, the left side and the right side of Eq. (1.7) are
equal. This is illustrated graphically by plotting y = x and y = g(x), as shown in Fig.1.7. The
point of intersection of the two plots, called the fixed point, is the solution. The numerical
value of the solution is determined by an iterative process. It starts by taking a value of x near
the fixed point as the first guess for the solution and substituting it in g(x). The value of
g(x) that is obtained is the new (second) estimate for the solution. The second value is then

c© Dejen K. 2019 14



1.3. FIXED POINT ITERATION METHOD AMU

substituted x back in g(x), which then gives the third estimate of the solution. The iteration
formula is thus given by:

Figure 1.7: Fixed-point iteration method.

Definition 1.3

If we can write f(x)=0 in the form x = g(x), then the point x would be a fixed point of
the function g (that is, the input of g is also the output). Then an obvious sequence to
consider is

xn+1 = g(xn) (1.8)

The function g(x) is called the iteration function.

• When the method works, the values of x that are obtained are successive iterations that
progressively converge toward the solution. Two such cases are illustrated graphically
in Fig.1.8. The solution process starts by choosing point x1 on the x-axis and drawing
a vertical line that intersects the curve y = g(x) at point g(x1). Since x2 = g(x1), a
horizontal line is drawn from point (x1, g(x1)) toward the line y = x. The intersection
point gives the location of x2 . From x2 a vertical line is drawn toward the curve y = g(x).
The intersection point is now (x2, g(x2)), and g(x2) is also the value of x3. From point
(x2, g(x2)) a horizontal line is drawn again toward y = x, and the intersection point gives
the location of x3? As the process continues the intersection points converge toward the
fixed point, or the true solution xrs.

Figure 1.8: Convergence of the fixed-point iteration method.
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1.3. FIXED POINT ITERATION METHOD AMU

• It is possible, however, that the iterations will not converge toward the fixed point, but
rather diverge away. This is shown in Fig. 1.9. The figure shows that even though the
starting point is close to the solution, the subsequent points are moving farther away from
the solution.

Figure 1.9: Divergence of the fixed-point iteration method.

• Sometimes, the form f(x) = 0 does not lend itself to deriving an iteration formula of the
form x = g(x) . In such a case, one can always add and subtract x to f(x) to obtain
x+ f(x)− x = 0. The last equation can be rewritten in the form that can be used in the
fixed-point iteration method: x = x+ f(x) = g(x)

1.3.1 Choosing the appropriate iteration function g(x)
For a given equation f(x) = 0, the iteration function is not unique since it is possible to
change the equation into the form x = g(x) in different ways. This means that several iteration
functions g(x) can be written for the same equation. A g(x) that should be used in Eq. (1.8) for
the iteration process is one for which the iterations converge toward the solution. There might
be more than one form that can be used, or it may be that none of the forms are appropriate
so that the fixed-point iteration method cannot be used to solve the equation. In cases where
there are multiple solutions, one iteration function may yield one root, while a different function
yields other roots. Actually, it is possible to determine ahead of time if the iterations converge
or diverge for a specific g(x) .

Theorem 1.4

The fixed-point iteration method converges if, in the neighborhood of the fixed point,
the derivative of g(x) has an absolute value that is smaller than 1 (also called Lipschitz
continuous):

|g′(x)| < 1 (1.9)
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Algorithm 1.3

1. Take an initial approximation x0

2. Find the next (first) approximation x1 by using x1 = g(x0)

3. Follow the above procedure to find the successive approximation

xn+1 = g(xn), n = 1, 2, 3, ·

4. Stop evaluation where relative error less than the prescribed accuracy ε.

Example 1.8

Consider the equation f(x) = x2 − 3x + 1 = 0 (whose true roots are a1 = 0.381966 and
a2 = 2.618034. This can be rearranged as a fixed point problem in many different ways.
Compare the following two algorithms.

• xn+1 = 1
3(x2

n + 1) ≡ g1(xn)

• xn+1 = 3− 1
xn
≡ g2(xn)

1.3.2 Condition for the fixed point iteration scheme
Consider the equation f(x) = 0, which has the root α and can be written as the fixed point
problem g(x) = x. If the following conditions hold

1. g(x) and g′(x) are continuous functions;

2. |g′(α)| < 1 then the fixed point iteration scheme based on the function g will converge to
α.

3. Alternatively, if |g′(α)| > 1 then the iteration will not converge to α.

4. Note that when |g′(α)| = 1 no conclusion can be reached.
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Example 1.9

For the previous example, we have

g1(x) = 1
3(x2 + 1)⇒ g′1(x) = 2x

3

Evaluating the derivative at the two roots (or fixed points): |g′1(α1)| = 0.254 · · · < 1 and
|g′1(α2)| = 1.745 · · · > 1 so the first algorithm converges to α1 = 0.3819 · · · but not to
α2 = 2.618 · · · . The second algorithm is given by

g2(x) = 3− 1
x
⇒ g′2(x) = 1

x2

which gives
|g′2(α1)| = 6.92 · · · > 1 and |g′2(α2)| = 0.13 · · · < 1

so the second algorithm converges to α2 = 2.61 · · · but not to α1 = 0.38 · · · .

n xn xn+1 f(xn) xn − xn−1
1. 0.500000000 0.416666666 -0.076388888 -0.083333333
2. 0.416666666 0.391203703 -0.020570773 -0.025462963
3. 0.391203703 0.384346779 -0.005317891 -0.006856924
4. 0.384346779 0.382574148 -0.001359467 -0.001772630
5. 0.382574148 0.382120993 -0.000346526 -0.000453155
6. 0.382120993 0.382005484 -0.000088263 -0.000115508
7. 0.382005484 0.381976063 -0.000022477 -0.000029421
8. 0.381976063 0.381968571 -0.000005723 -0.000007492
9. 0.381968571 0.381966663 -0.000001457 -0.000001907
10. 0.381966663 0.381966177 -0.000000371 -0.000000485

For the second root we use g2(x) and the result is

n xn xn+1 f(xn) xn − xn−1
1. 2.750000000 2.636363636 0.041322314 -0.113636363
2. 2.636363636 2.620689655 0.005945303 -0.015673981
3. 2.620689655 2.618421052 0.000865651 -0.002268602
4. 2.618421052 2.618090452 0.000126259 -0.000330600
5. 2.618090452 2.618042226 0.000018420 -0.000048225
6. 2.618042226 2.618035190 0.000002687 -0.000007035
7. 2.618035190 2.618034164 0.000000392 -0.000001026
8. 2.618034164 2.618034014 0.000000057 -0.000000149
9. 2.618034014 2.618033992 0.000000008 -0.000000021
10. 2.618033992 2.618033989 0.000000001 -0.000000003
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Exercise 1.4

Consider the nonlinear equation

f(x) = x3 − 2x2 − 3 = 0

which has a root a between 2 and 3. (The true value is α = 2.485583998.)

1. Rewrite the equation f(x) = 0 as the fixed-point problem g1(x) = x where

g1(x) = 2 + 3
x2

and, using the convergence criterion, show that the iteration algorithm associated
with this problem converges to the root α.

2. Create two other fixed-point iteration schemes, g2(x) and g3(x).

3. Perform ten iterations with six exact digits for each of the schemes g1(x), g2(x)
and g3(x) and compare the approximations. (Use the same starting point for all
algorithms.)

1.4 Newton-Raphson method
Newton’s method is one of the most widely used of all iterative techniques for solving equations.
Rather than using a secant line, the method uses a tangent line to the curve. Figure 1.10 gives
a graphical interpretation of the method. To use the method we begin with an initial guess
x0, sufficiently close to the root x∗. The next approximation x1 is given by the point at which
the tangent line to f at f(x0, f(x0)) crosses the x-axis. It is clear that the value x1 is much
closer to x∗ than the original guess x0. If xn+1 denotes the value obtained by the succeeding
iterations, that is the x-intercept of the tangent line to f at (xn, f(xn)), then a formula relating
xn and xn+1, known as Newton’s method, is given by

xn+1 = xn −
f(xn)
f ′(xn) , n ≥ 0 (1.10)

If f ∈ C2[a, b], and we know x1 ∈ [a, b] be an approximation to x∗ such that f ′(x1) 6= 0
and |x1 − x∗| is ”small.” Consider the first Taylor polynomial for f(x) expanded about p1 and
evaluated at x = x∗:

0 = f(x∗) = f(x1) + (x1 − x∗)f ′(x) + (x1 − x∗)2

2! f ′′(ξ(x1)) (1.11)

where ξ(x1) ∈ [x1, x∗]

Newton’s method is derived by assuming that |x1 − x∗| is small, which means that |x1 − x∗|2 �
|x1 − x∗| , hence we make the approximation:

0 = f(x1) + (x1 − x∗)f ′(x)

Now solve for x∗
x∗ = x1 −

f(x1)
f ′(x1)
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Figure 1.10: Newton’s method.

Algorithm 1.4: Newton Method

Given a scalar differentiable function in one variable, f(x):

1. Start from an initial guess x0.

2. For n = 0, 1, 2, · · · , set
xn+1 = xn −

f(xn)
f ′(xn) ,

until xn+1 satisfies termination criteria.

1.4.1 Finding a Starting Point for Newton’s Method
Recall our initial argument that when |x1 − x∗| is small, then |x1 − x∗|2 � |x1 − x∗|, and we
can neglect the second order term in the Taylor expansion. In order for Newton’s method to
converge we need a and we can neglect the second order term in the Taylor expansion. In order
for Newton’s method to converge we need a good starting point!

Theorem 1.5

Let f(x) ∈ C2[a, b]. If x∗ ∈ [a, b] such that f(x∗) = 0 and f ′(x∗) 6= 0, then there exists a
σ > 0 such that Newton’s method generates a sequence {xn}n=1∞ converging to x∗ for
any initial approximation x1 ∈ [x∗ − σ, x∗ + σ].

The theorem is interesting, but quite useless for practical purposes. In practice: Pick a starting
value x1, iterate a few steps. Either the iterates converge quickly to the root, or it will be clear
that convergence is unlikely.

1.4.2 Implementation
Let’s write a function called newton which takes 5 input parameters f,Df, x0, epsilon and
maxiter and returns an approximation of a solution of f(x) = 0 by Newton’s method. The
function may terminate in 3 ways:
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1. If abs(f(xn)) < epsilon, the algorithm has found an approximate solution and returns
xn.

2. If f ′(xn) == 0, the algorithm stops and returns None.

3. If the number of iterations exceed maxiter, the algorithm stops and returns None.

def newton(f,Df,x0,epsilon,max_iter):
’’’Approximate solution of f(x)=0 by Newton’s method.

Parameters
----------
f : function

Function for which we are searching for a solution f(x)=0.
Df : function

Derivative of f(x).
x0 : number

Initial guess for a solution f(x)=0.
epsilon : number

Stopping criteria is abs(f(x)) < epsilon.
max_iter : integer

Maximum number of iterations of Newton’s method.

Returns
-------
xn : number

Implement Newton’s method: compute the linear approximation
of f(x) at xn and find x intercept by the formula

x = xn - f(xn)/Df(xn)
Continue until abs(f(xn)) < epsilon and return xn.
If Df(xn) == 0, return None. If the number of iterations
exceeds max_iter, then return None.

xn = x0
for n in range(0,max_iter):

fxn = f(xn)
if abs(fxn) < epsilon:

print(’Found solution after’,n,’iterations.’)
return xn

Dfxn = Df(xn)
if Dfxn == 0:

print(’Zero derivative. No solution found.’)
return None

xn = xn - fxn/Dfxn
print(’Exceeded maximum iterations. No solution found.’)
return None
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Example 1.10: Supergolden Ratio

Let’s test our function on f(x) = x3 − x2 − 1

f = lambda x: x**3 - x**2 - 1
Df = lambda x: 3*x**2 - 2*x
approx = newton(f,Df,1,1e-10,10)
print(approx)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Found solution after 6 iterations.
1.4655712318767877

Example 1.11: Divergent Example

Newton’s method diverges in certain cases. For example, if the tangent line at the root
is vertical as in . Note that bisection and secant methods would converge in this case.

f = lambda x: x**(1/3)
Df = lambda x: (1/3)*x**(-2/3)
approx = newton(f,Df,0.1,1e-2,100)
Exceeded maximum iterations. No solution found.

Example 1.12

Using Newton’s method, solve f(x) = x6 − x− 1.
Solution

Here
f(x) = x6 − x− 1, f ′(x) = 6x5 − 1

and the iteration
xn+1 = xn −

x6
n − xn − 1
6x5

n − 1 , 6= 0

The true root is α = 1.134724138, and x6 = α to nine significant digits.
Newton,s method may converge slowly at first. However, as the iterates come closer
to the root, the speed of convergence increases.
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Exercise 1.5

1. Let p(x) = x3 − x − 1. The only real root of p(x) is called the plastic number
and is given by

3
√

108 + 12
√

69 + 3
√

108− 12
√

69
6

2. Choose x0 = 1 and implement 2 iterations of Newton’s method to approximate the
plastic number.

3. Use the exact value above to compute the absolute error after 2 iterations of New-
ton’s method.

4. Starting with the subinterval [1, 2] , how many iterations of the bisection method
is required to achieve the same accuracy?

1.5 Secant Method
Newton’s method is an extremely powerful technique, but it has a major weakness; the need
to know the value of the derivative of f at each approximation. Frequently, f ′(x) is far more
difficult and needs more arithmetic operations to calculate than f(x).

The secant method is a variant of Newton’s method, where f ′(xn) is replaced by its finite
difference approximation based on the evaluated function values at xn and at the previous
iterate xn−1. Assuming convergence, observe that near the root

f ′(xn) ≈ f(xn)− f(xn−1)
xn − xn−1

Substitution of this approximation into the formula for Newton’s method yields the Secant
method,

xn+1 = f(xn)(xn − xn−1)
f(xn)− f(xn−1) , n = 0, 1, 2, 3, · · ·

Figure 1.11: The first two iterations of the secant method. The red curve shows the function f
and the blue lines are the secants. For this particular case, the secant method will not converge.
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Algorithm 1.5

Given a scalar differentiable function in one variable, f(x) :

1. Start from two initial guesses x0 and x1.

2. For k = 1, 2, · · · , set
xn+1 = xn −

f(xn)(xn − xn−1)
f(xn)− f(xn−1)

until xn+1 satisfies termination criteria.

1.5.1 Derivation of the method
Because the bisection and the false position methods converge at a very slow speed, our next
approach is an attempt to produce a method that is faster. One such method is the secant
method. Similar to the false position method, it is based on approximating the function by a
straight line connecting two points on the graph of the function f , but we do not require f to
have opposite signs at the initial points. Figure 1.11 illustrates the method.

In this method, the first point, x2, of the iteration is taken to be the point of intersection of
the x-axis and the secant line connecting two starting points (x0, f(x0)) and (x1, f(x1)). The
next point, x3, is generated by the intersection of the new secant line, joining (x1, f(x1)) and
(x2, f(x2)) with the x-axis. The new point, x3, together with x2, is used to generate the next
point, x4, and so on. A formula for xn+1 is obtained by setting x = xn+1 and y = 0 in the
equation of the secant line from (xn−1, f(xn−1)) to (xn, f(xn)).

x2 = x1 − f(x1) x1 − x0

f(x1)− f(x0)

x3 = x2 − f(x2) x2 − x1

f(x2)− f(x1)
...

xn = xn−1 − f(xn−1) xn−1 − xn−2

f(xn−1)− f(xn−2)

1.5.2 Convergence
The iterates xn of the secant method converge to a root of f , if the initial values x0 and x1 are
sufficiently close to the root. The order of convergence is α where

α = 1 +
√

5
2 ≈ 1.618

is the golden ratio. In particular, the convergence is superlinear, but not quite quadratic.

This result only holds under some technical conditions, namely that f be twice continuously
differentiable and the root in question be simple (i.e., with multiplicity 1).

If the initial values are not close enough to the root, then there is no guarantee that the secant
method converges. There is no general definition of ”close enough”, but the criterion has to do
with how ”wiggly” the function is on the interval [ x0, x1 ]. For example, if f is differentiable
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on that interval and there is a point where f ′ = 0 on the interval, then the algorithm may not
converge.

Example 1.13

Find a root of the equation
x6 − x− 1 = 0

Solution

We apply the method of secant method with x1 = 1 and x2 = 1.5.

xn+1 = xn−1f(xn)− xnf(xn−1)
f(xn)− f(xn−1) .

The calculations based on the secant method are shown in the following Table
Iteration a b f(a) f(b) x f(x)

1. 1.000000000 2.000000000 -1.000000000 61.000000000 1.016129032 -0.915367713
2. 2.000000000 1.016129032 61.000000000 -0.915367713 1.030674754 -0.831921414
3. 1.016129032 1.030674754 -0.915367713 -0.831921414 1.175688944 0.465227164
4. 1.030674754 1.175688944 -0.831921414 0.465227164 1.123679065 -0.110632879
5. 1.175688944 1.123679065 0.465227164 -0.110632879 1.133671081 -0.010805918
6. 1.123679065 1.133671081 -0.110632879 -0.010805918 1.134752681 0.000293664
7. 1.133671081 1.134752681 -0.010805918 0.000293664 1.134724065 -0.000000748
8. 1.134752681 1.134724065 0.000293664 -0.000000748 1.134724138 -0.000000000
9. 1.134724065 1.134724138 -0.000000748 -0.000000000 1.134724138 -0.000000000
10. 1.134724138 1.134724138 -0.000000000 -0.000000000 1.134724138 -0.000000000

(Recall that the true root is α = 1.134724138.)

Note: We can use a similar argument as in Newton’s method to show that

α− xn−1 ≈ xn − xn−1

so that we have a measure of the absolute error at each step.
Advantages and disadvantages:

1. The error decreases slowly at first but then rapidly after a few iterations.

2. The secant method is slower than Newton’s method but faster than the bisection method.

3. Each iteration of Newton’s method requires two function evaluations, while the secant
method requires only one

4. The secant method does not require differentiation.

1.6 Root Finding Methods Summary
1. The Bisection method

(a) Very stable Algorithm - Good technique to
nd starting point for Newton’s method

(b) Costs only one function evaluation, so rapid iterations
(c) Linear convergence, so slow (3.3 iterations/digit)

2. The Secant method
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(a) Hard to find starting points (Unknown basin of attraction)
(b) Costs only two function evaluations, so rapid iterations
(c) Superlinear convergence,α ≈ 1.62, which is pretty fast

3. The Newton’s method

(a) Hard to find starting points (Unknown basin of attraction)
(b) Finding and evaluating derivative requires more machine work at each iteration
(c) Quadratic convergence is very fast- doubling the digits at each iteration.

Example 1.14: Summary

Find the roots of
x3 + 4x2 − 10 x ∈ [1.5, 2]

n Bisection Secant Newton
1 1.25 1.33898305084745 1.45454545454545
2 1.375 1.36356284991687 1.36890040106951
3 1.3125 1.36525168742565 1.36523660020211
4 1.34375 1.36522999568865 1.36523001343536
5 1.359375 1.36523001341391 1.36523001341409
6 1.3671875 1.36523001341409
7 1.36328125
8 1.365234375
9 1.3642578125
10 1.36474609375
11 1.364990234375
12 1.3651123046875
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