
Numerical Method(Math-2073/53)
Lecture note: Chapter-I

”Mathematics is the most beautiful and most powerful creation of
the human spirit.”

Stefan Banach

Numerical Method(Math-2073/53)
Lecture note: Chapter-I

”Mathematics is the most beautiful and most powerful creation of
the human spirit.”

Stefan Banach

Dejen Ketema
Department of Mathematics
dejen.ketema@amu.edu.et

March, 2019

Contents

1 Computing and Error Analysis 3
1.1 Mathematical Modeling . 3
1.2 Scientific Computing . 4

1.2.1 Number System . 6
1.2.2 Finite Precision . 6

1.3 Numerical Error . 10
1.3.1 Accuracy and Precision . 10
1.3.2 Measurement of Errors . 11
1.3.3 Sources of Numerical Error . 12
1.3.4 Algorithms and Convergence . 21

1

Introduction

Definition 0.1:

Numerical analysis is the study of algorithms that use numerical approximation.
It used for solving mathematical problems that cannot be solved or are difficult
to solve analytically. An analytical solution is an exact answer in the form of a
mathematical expression in terms of the variables associated with the problem that
is being solved. A numerical solution is an approximate numerical value (a number)
for the solution. Although numerical solutions are an approximation, they can be
very accurate. In many numerical methods, the calculations are executed in an
iterative manner until a desired accuracy is achieved.

Numerical analysis concerns the development of algorithms for solving all kinds of prob-
lems of continuous mathematics; it is a wide-ranging discipline having close connections
with computer science, mathematics, engineering, and the sciences.

Why we study numerical?
Since the mid 20th century, the growth in power and availability of digital computers
has led to an increasing use of realistic mathematical models in science and engineering,
and numerical analysis of increasing sophistication is needed to solve these more detailed
models of the world. The formal academic area of numerical analysis ranges from quite
theoretical mathematical studies to computer science issues.

The discipline combines numerical analysis, symbolic mathematical computations,
computer graphics, and other areas of computer science to make it easier to set up,
solve, and interpret complicated mathematical models of the real world.

The main goal of numerical analysis is to develop efficient algorithms for computing pre-
cise numerical values of mathematical quantities, including functions, integrals, solutions
of algebraic equations, solutions of differential equations (both ordinary and partial),
solutions of minimization problems, and so on. The objects of interest typically (but
not exclusively) arise in applications, which seek not only their qualitative properties,
but also quantitative numerical data. The goal of this book is to introduce some of the
most important and basic numerical algorithms that are used in practical computations.
Beyond merely learning the basic techniques, it is crucial that an informed practitioner
develop a thorough understanding of how the algorithms are constructed, why they work,
and what their limitations are.

2

Chapter 1

Computing and Error Analysis

1.1 Mathematical Modeling
Definition 1.1:

Modeling is the art of describing in symbolic language a real life system so that approxi-
mately correct predictions can be made regarding the behavior or evolution of the system
under varied circumstances of interest.

Mathematics is the language of engineering. Through observation, we develop hypotheses about
the behaviour of the world around us. Typical mathematical modelling techniques for Engi-
neering include computer-aided design, finite element modelling and analysis, computational
fluid dynamics.

Mathematical modeling aims to describe the different aspects of the real world, their interac-
tion, and their dynamics through mathematics. It constitutes the third pillar of science and
engineering, achieving the fulfillment of the two more traditional disciplines, which are theo-
retical analysis and experimentation. Nowadays, mathematical modeling has a key role also in
fields such as the environment and industry, while its potential contribution in many other areas
is becoming more and more evident. One of the reasons for this growing success is definitely
due to the impetuous progress of scientific computation; this discipline allows the translation
of a mathematical model-which can be explicitly solved only occasionally-into algorithms that
can be treated and solved by ever more powerful computers.

Definition 1.2

A mathematical model is a description of a system using mathematical concepts and
language. The process of developing a mathematical model is termed mathematical
modeling.

3

1.2. SCIENTIFIC COMPUTING AMU

Real world data Formulation Mathematical model

Analysis

Mathematical result
Interpretation

Predictions/ exaplanations

Test

Figure 1.1: Modeling Process

Example 1.1: Mathematical modeling

How to measure the volume(V) of water in a lake Tana? Is it possible to measure
instrumental experiment?

Solution: To answer this real life problem in short and economical way, we must to use
mathematical model. Simple we measure average length(L), width(W) and depth(D).
We obtain the average volume of the lake by using the model

V = L×W ×D.

1.2 Scientific Computing
Scientific computing is a discipline concerned with the development and study of numerical
algorithms for solving mathematical problems that arise in various disciplines in science and
engineering.

Typically, the starting point is a given mathematical model which has been formulated in an
attempt to explain and understand an observed phenomenon in biology, chemistry, physics,
economics, or any engineering or scientific discipline. We will concentrate on those mathemat-
ical models which are continuous (or piece-wise continuous) and are difficult or impossible to
solve analytically: this is usually the case in practice. Relevant application areas within com-
puter science include graphics, vision and motion analysis, image and signal processing, search
engines and data mining, machine learning, hybrid and embedded systems, and more.

c© Dejen K. 2019 4

1.2. SCIENTIFIC COMPUTING AMU

In order to solve such a model approximately on a computer, the (continuous, or piece-wise
continuous) problem is approximated by a discrete one. Continuous functions are approximated
by finite arrays of values. Algorithms are then sought which approximately solve the mathe-
matical problem efficiently, accurately and reliably. While scientific computing focuses on the
design and the implementation of such algorithms, numerical analysis may be viewed as the
theory behind them.

The next step after devising suitable algorithms is their implementation. This leads to questions
involving programming languages, data structures, computing architectures and their exploita-
tion (by suitable algorithms), etc. The big picture is depicted in Figure 1.2.

The set of requirements that good scientific computing algorithms must satisfy, which seems
elementary and obvious, may actually pose rather difficult and complex practical challenges.
The main purpose of these book is to equip you with basic methods and analysis tools for
handling such challenges as they may arise in future endeavors. In terms of computing tools,
we will be using Matlab.

Obsereve
phenomenon

Mathematical
model

Discretization Solution
algorithm

AccuracyEfficiency Robustness

Implementation

Data structuresProgramming
enviroment

Computing
architecture

Figure 1.2: Scientific computing

c© Dejen K. 2019 5

1.2. SCIENTIFIC COMPUTING AMU

1.2.1 Number System
A numeral system (or system of numeration) is a writing system for expressing numbers; that
is, a mathematical notation for representing numbers of a given set, using digits or other sym-
bols in a consistent manner.

The way in which numbers are stored and manipulated when arithmetic operations are per-
formed on microcomputers is different from the way we, humans, do our arithmetic. We use the
so-called decimal number system, while in microcomputers, internal calculations are done in
the binary system. In this section we consider methods for representing numbers on computers.

Decimal (Base 10) Number System
Decimal number system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, called digits. It uses
positional notation. That is, the least-significant digit (right-most digit) is of the order of 100

(units or ones), the second right-most digit is of the order of 101 (tens), the third right-most
digit is of the order of 102 (hundreds), and so on. For example,

735 = 7× 102 + 3× 101 + 5× 100

Binary (Base 2) Number System
Binary number system has two symbols: 0 and 1, called bits. It is also a positional notation,
for example,

(10110)2 = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 0× 20

1.2.2 Finite Precision
Computers use a finite number of bits (0’s and 1’s) to represent numbers. For instance, an
8-bit unsigned integer (a.k.a a ”char”) is stored:

As we have seen, various errors may arise in the process of calculating an approximate solution
for a mathematical model. Here we concentrate on one error type, roundoff errors. Such errors
arise due to the intrinsic limitation of the finite precision representation of numbers (except for
a restricted set of integers) in computers.

• In single precision floating point arithmetic, the sign is 1 bit, the exponent is 7 bits,and
the mantissa is 24 bits. The resulting nonzero numbers lie in the range

2−127 ≈ 10−38 ≤ |x| ≤ 2127 ≈ 1038,

and allow one to accurately represent numbers with approximately 7 significant decimal
digits of real numbers lying in this range.

• In double precision floating point arithmetic, the sign is 1 bit, the exponent is 10
bits, and the mantissa is 53 bits, leading to floating point representations for a total of
1.84× 1019 different numbers which, apart from 0. The resulting nonzero numbers lie in
the range

2−1023 ≈ 10−308 ≤ |x| ≤ 21023 ≈ 10308.

c© Dejen K. 2019 6

1.2. SCIENTIFIC COMPUTING AMU

Floating-point is a method for representing real numbers on a computer. Floating-point arith-
metic is a very important subject and a rudimentary understanding of it is a pre-requisite for
any modern numerical analysis course. A floating-point number (or real number) can represent
a very large (1.23×1088) or a very small (1.23×10−88) value. It could also represent very large
negative number (−1.23 × 1088) and very small negative number (−1.23 × 10−88), as well as
zero, as illustrated:

Si
gn Exponent Mantissa

0 (+)(-)

Underflow OverflowOverflow

∼ −1.8× 10308 ∼ 1.8× 10308∼ −2.2× 10−308∼ 2.2× 10−308

Figure 1.3: Range of numbers that can be represented in double precision.

Binary Representation

The Binary Floating Point Arithmetic Standard 754-1985 (IEEE — The Institute for Electrical
and Electronics Engineers) standard specified the following layout for a 64-bit real number:

sc10c9 · · · c1c0m51m50 · · ·m1m0

where

Symbol Bits Description
s 1 The sign bit 0=positive, 1=negative
c 11 The characteristic (exponent)
m 52 The mantissa

r = (−1)s2c−1023(1 +m); c =
10∑
k=0

ck2k, m =
51∑
k=0

mk

252−k

Example 1.2

The number 3.0

010000000000100

r1 = (−1)0 · 2210−1023 · (1 + 1/2) = 1 · 21 · 3/2 = 3.0

c© Dejen K. 2019 7

1.2. SCIENTIFIC COMPUTING AMU

Example 1.3

The Smallest Positive Real Number

001

r2 = (−1)0 · 20−1023 ·
(
1 + 2−52

)
=
(
1 + 2−52

)
· 2−1023 · 1 ≈ 10−308

Example 1.4

The Largest Positive Real Number

01111111111011

r3 = (−1)0 · 21023 ·
(
1 + 2−52

)
=
(

1 + 1
2 + 1

22 + 1
23 + · · ·+ 1

251 + 1
252

)
= 21024 ·

(
2− 1

252

)
≈ 10308

Special Numbers
Note that the IEEE standard does NOT allow zero!

• There are some special signals in IEEE − 754− 1985:

• All zeros for c and m produce zero

• c having 11 bits all 1 gives either NaN (Not a Number) ∞

There are gaps in the floating-point representation!
Given the representation

001

for the value 2−1023

252 .

The next larger floating-point value is

00010

i.e. the value 2−1023

251 .

The difference between these two values is 2−1023

252 = 2−1075, so any number in the interval(
2−1023

252 ,
2−1023

251

)
is not representable!. The gap is not bad however, the size of the gap

depends on the value itself.
Consider r = 3:0

010000000000100

and the next value

01000000000010001

c© Dejen K. 2019 8

1.2. SCIENTIFIC COMPUTING AMU

The difference is 2
252 = 4.4 · 10−16

At the other extreme, the difference between

011111111110111

and the previous value

011111111110110

is 21023

252 = 2971 ≈ 1.99 · 10292. That’s a ”fairly significant” gap!!!

It makes more sense to factor the exponent out of the discussion and talk about the relative
gap:

Exponent Gap Relative Gap (Gap/Exponent)
2−1023 2−1075 2−52

21 2−51 2−52

21023 2971 2−52

Any difference between numbers smaller than the local gap is not representable, e.g. any
number in the interval [

3.0, 3.0 + 1
251

]
is represented by the value 3.0. The MatLab command eps (for epsilon tolerance) gives
double precision, which is

2−52 ≈ 2.2204× 1016

Since (most) humans find it hard to think in binary representation, from now on we will for
simplicity and without loss of generality. assume that floating point numbers are represented
in the normalized floating point form as

k-digit decimal machine numbers

±0.d1.d2 · · · dk−1dk.10n

where
1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, i ≥ 2 n ∈ Z

Any real number can be written in the form

r = ±0.d1d2 · · · d∞10n

given infinite patience and storage space. We can obtain the floating-point representation fl(r)
in two ways:
• Truncating (chopping) just keep the first k digits (In MatLab use floor(r)) or is to

simply chop off the digits dk+1, dk+2,···. This produces the floating-point form

fl(r) = 0.dld2 · · · dk × 10n.

• Rounding adds 5× 10n−(k+1) to r and then chops the result to obtain a number of the
form

fl(r) = 0.σlσ2 · · ·σk × 10n.
For rounding, when dk+1 ≥ 5 then add 1 to dk to obtain fl(r); that is, we round up.
When when dk+1 ≤ 5 we simply chop off all but the first k digits; that is, round down.
If we round down, then σi = di, for each i = 1, 2, · · · , k. However, if we round up, the
digits (and even the exponent) might change.

c© Dejen K. 2019 9

1.3. NUMERICAL ERROR AMU

In both cases, the error introduced is called the roundoff error.

Example 1.5

Determine the five-digit (a) chopping and (b) rounding values of the irrational number
π.
Solution:The number π has an infinite decimal expansion of the form π = 3.14159265 · · ·
Written in normalized decimal form, we have

π = 0.314159265 · · · × 101.

(a) The floating-point form of π using five-digit chopping is

flt,5(π) = 0.31415.101 = 3.1415.

(b) The sixth digit of the decimal expansion of π is a 9, so the floating-point form of π
using five-digit rounding is

flr,5(π) = (0.31415 + 0.00001)× 101 = 0.31416× 101 = 3.1416.

1.3 Numerical Error
In numerical computation error consideration is the main concern of the field. According to
this we need to study the sources of errors. When a computational procedure is involved in
solving a scientific-mathematical problem, errors often will be involved in the process.
When using numerical methods or algorithms and computing with finite precision, errors of
approximation or rounding and truncation are introduced. It is important to have a notion of
their nature and their order. A newly developed method is worthless without an error analysis.
Neither does it make sense to use methods which introduce errors with magnitudes larger than
the effects to be measured or simulated. On the other hand, using a method with very high
accuracy might be computationally too expensive to justify the gain in accuracy.

1.3.1 Accuracy and Precision
Measurements and calculations can be characterized with regard to their accuracy and precision.
Accuracy refers to how closely a value agrees with the true value. Precision refers to how closely
values agree with each other. The following figures illustrate the difference between accuracy
and precision. In the first figure, the given values (black dots) are more accurate; whereas in
the second figure, the given values are more precise. The term error represents the imprecision
and inaccuracy of a numerical computation.

c© Dejen K. 2019 10

1.3. NUMERICAL ERROR AMU

Precision increase

A
cc

ur
ac

y
in

cr
ea

se
a) b)

c) d)

t
t

t
t

t
ttt

t t t ttt
t t t t

t
t

t t ttt tt t
t tt tt ttt tt
ttt

ttttt
tt

t
t

ttt
tttt

t tttttttttt tt

a) accurate and imprecise

b) accurate and precise

c) inaccurate and imprecise

d) inaccurate and precise
The most fundamental feature of numerical computing is the inevitable presence of error. The
result of any interesting computation (and of many uninteresting ones) will be only approximate,
and our general quest is to ensure that the resulting error be tolerably small.

1.3.2 Measurement of Errors
In Example above we have recorded measured values of absolute error. In fact, there are in
general two basic types of measured error: Given a quantity x and its approximation xa,

1. Absolute Error
Definition 1.3

Absolute Error is the magnitude of the difference between the true value x and the
approximate value xa. Which is defined as

εabs = ‖x− xa‖ .

While the actual error is x− xa.

2. Relative Error
Definition 1.4

The relative error is defined as the ratio of the absolute error to the size of x.

εrel = ‖x− xa‖
‖x‖

.

which assumes x 6= 0; otherwise relative error is not defined.

c© Dejen K. 2019 11

1.3. NUMERICAL ERROR AMU

The relative error is generally a better measure of accuracy than the absolute error be-
cause it takes into consideration the size of the number being approximated.

Look at it this way: if your measurement has an error of ±1 inch, this seems to be a huge
error when you try to measure something which is 3 in. long. However, when measuring
distances on the order of miles, this error is mostly negligible.

Example 1.6

Determine the actual, absolute, and relative errors when approximating x by xa when

(a) x = 0.3000× 101 and xa = 0.3100× 101;

(b) x = 0.3000× 10−3 and xa = 0.3100× l0−3;

(c) x = 0.3000× 104 and xa = 0.3100× 104.

Definition 1.5

The number xa is said to approximate x to t significant digits (or figures) if t is the largest
nonnegative integer for which

|x− xa|
|x|

≤ 5× 10−t

Example 1.7

Assume Minilik measures a distance 9.99 meter out of 10 meter and Taytu measures 1
centimeter distance out of two centimeter.

1. Find absolute error of Minilik and Taytu

2. Find relative error of Minilik and Taytu

3. Find percentage error of Minilik and Taytu

4. Who one is made highest error

1.3.3 Sources of Numerical Error
Numerical solutions can be very accurate but in general are not exact. Two kinds of errors
are introduced when numerical methods are used for solving a problem. However other errors
are occurs that may limit the accuracy of a numerical calculation. For example Inherent error:

Inherent error is that quantity which is already present in the statement of the problem
before its solution. This error arises either due to the straight assumptions in the mathemat-
ical forms of the problem or due to the physical measurements of the parameters of problem.
Inherent error cannot be completely eliminated but can be minimized by selecting better data
or by employing high precision computer computations.

These may be approximation errors in the mathematical model. It is important to realize,
then, that often approximation errors of the type stated above are deliberately made: The
assumption is that simplification of the problem is worthwhile even if it generates an error

c© Dejen K. 2019 12

1.3. NUMERICAL ERROR AMU

in the model. Note, however, that we are still talking about the mathematical model itself;
approximation errors related to the numerical solution of the problem are to be discussed below.

Another typical source of error is error in the input data. This may arise, for instance, from
physical measurements, which are never infinitely accurate. Thus, it may occur that after
careful numerical solution of a given problem, the resulting solution would not quite match
observations on the phenomenon being examined.

At the level of numerical algorithms, which is the focus of our interest here, there is really
nothing we can do about such errors. However, they should be taken into consideration, for
instance when determining the accuracy (tolerance with respect to the next two types of error
mentioned below) to which the numerical problem should be solved.

1. Approximation errors
Such errors occur when the numerical methods used for solving a mathematical problem
use an approximate mathematical procedure. There are two types of approximation
errors.

(a) Truncation/Discretization Errors: arise from discretizations of continuous pro-
cesses, such as interpolation, differentiation and integration.

Theorem 1.1: Taylor’s Series Theorem:

Assume that f(x) has k+ 1 derivatives in an interval containing the points x0
and x0 + h. Then

f(x0 + h) = f(x0) + hf ′(x0) + h2

2 f
′′(x0) + · · ·+ hk

k! f
k(x0)

+ hk+1]

(k + 1)!f
k+1f(ξ)

where ξ is some point between x0 and x0 + h.

(b) Convergence errors: arise in iterative methods. For instance, nonlinear problems
must generally be solved approximately by an iterative process. Such a process would
converge to the exact solution in the limit (after infinitely many iterations), but we
cut it of course after a finite (hopefully small!) number of iterations.
Iterative methods often arise already in linear algebra, where an iterative process is
terminated after a finite number of iterations before the exact solution is reached.

2. Roundoff errors
Numbers are represented on a computer by a finite number of bits. Consequently, real
numbers that have a mantissa longer than the number of bits that are available for
representing them have to be shortened. This requirement applies to irrational numbers
that have to be represented in a finite form in any system, to finite numbers that are too
long, and to finite numbers in decimal form that cannot be represented exactly in binary
form. A number can be shortened either by chopping off, or discarding, the extra digits
or by rounding. In chopping, the digits in the mantissa beyond the length that can be
stored are simply left out. In rounding, the last digit that is stored is rounded. Which
affects both data representation and computer arithmetic.

Discretization and convergence errors may be assessed by analysis of the method used, and we
will see a lot of that. Unlike roundoff errors, they have a relatively smooth structure which may

c© Dejen K. 2019 13

1.3. NUMERICAL ERROR AMU

occasionally be exploited. Our basic assumption will be that approximation errors dominate
roundoff errors in magnitude in our actual calculations. This can often be achieved, at least in
double precision.

Example 1.8

Consider the two nearly equal numbers p = 9890.9 and q = 9887.l . Use decimal floating
point representation (scientific notation) with three significant digits in the mantissa to
calculate the difference between the two numbers, (p − q) . Do the calculation first by
using chopping and then by using rounding.

Solution: In decimal floating point representation, the two numbers are:

p = 9.8909× 103 and q = 9.8871× 103

If only three significant digits are allowed in the mantissa, the numbers have to be short-
ened. If chopping is used, the numbers become:

p = 9.890× 103 and q = 9.887× 103

Using these values in the subtraction gives:

p− q = 9.890× 103 − 9.887× 103 = 0.003× 1063 = 3

If rounding is used, the numbers become:

p = 9.891× 103 and q = 9.887× 103(q is the same as before)

Using these values in the subtraction gives:

p− q = 9.891× 103 − 9.887× 103 = 0.004× 103 = 4

The true (exact) difference between the numbers is 3.8. These results show that, in the
present problem, rounding gives a value closer to the true answer.

Example 1.9

In this lengthy example we see how discretization errors and roundof errors both arise in
a simple setting.
Consider the problem of approximating the derivative f ′(x0) of a given smooth function
f(x) at the point x = x0. For instance, let f(x) = sin(x) be defined on the real line
−∞ < x <∞, and set x0 = 1.2. Thus, f(x0) = sin(1.2) ≈ 0.932 · · ·

Further, we consider a situation where f(x) may be evaluated at any point x near x0, but f ′(x0)
may not be directly available, or is computationally prohibitively expensive to evaluate. Thus,
we seek ways to approximate f ′(x0) by evaluating f at arguments x near x0.

A simple minded algorithm may be constructed using Taylor’s series. For some small, positive
value h that we will choose in a moment, write

f(x0 + h) = f(x0) + hf ′(x0) + h2

2 f
′′(x0) + h3

3! f
′′′(x0) + · · · . (1.1)

c© Dejen K. 2019 14

1.3. NUMERICAL ERROR AMU

Then,

f ′(x0) = f(x0 + h)− f(x0)
h

−
(
h2

2 f
′′(x0) + h3

3! f
′′′(x0) + · · ·

)
. (1.2)

Our algorithm for approximating f ′(x0) is to calculate

f(x0 + h)− f(x0)
h

(1.3)

The obtained approximation has the discretization error∣∣∣∣∣f ′(x0)− f(x0 + h)− f(x0)
h

∣∣∣∣∣ =
∣∣∣∣∣
(
h

2f
′′(x0) + h3

3! f
′′′(x0) + · · ·

)∣∣∣∣∣ . (1.4)

Geometrically, we approximate the slope of the tangent at the point x0 by the slope of the
chord through neighboring points of f . In Figure 1.4, the tangent is in blue and the chord is in
red. If we know f ′′(x0), and it is nonzero, then for h small we can estimate the discretization

Figure 1.4: A simple instance of numerical differentiation: the tangent f ′(x0) is approximated
by the chord (f(x0 + h)− f(x0))/h.

error by ∣∣∣∣∣f ′(x0)− f(x0 + h)− f(x0)
h

∣∣∣∣∣ ≈
∣∣∣∣∣h2f ′′(x0)

∣∣∣∣∣ . (1.5)

Even without knowing f ′′(x) we expect that, provided f ′′(x + 0) 6= 0, the discretization error
will decrease proportionally to h as h is decreased.
For our particular instance f(x) = sin(x), we have the exact value

f ′(x0) = cos(1.2) = 0.362357754476674 · · · .

Carrying out the above algorithm we obtain for h = 0.1 the approximation

f ′(x0) ≈ (sin(1.3)− sin(1.2))/0.1 = 0.31519 · · · .

The absolute error (which is the magnitude of the difference between the exact derivative value
and the calculated one) thus equals approximately 0.047.

This approximation of f ′(x0) using h = 0.1 is not very accurate. We therefore apply the same
algorithm using several, smaller and smaller values of h. The resulting errors are as follows:

c© Dejen K. 2019 15

1.3. NUMERICAL ERROR AMU

h Absolute error
0.1 4.716676e−2

0.01 4.666196e−3

0.001 4.660799e−4

1.e−4 4.660256e−5

1.e−7 4.619326e−8

Indeed, the error appears to decrease like h. More specifically (and less importantly), using
our explicit knowledge of f ′′(x) = − sin(x), in this case we have that 1/2f ′′(x0) ≈ −0.466.
The quantity 0.466h is seen to provide a rather accurate estimate for the above tabulated error
values.

The above calculations, and the ones reported below, were carried out using Matlab’s standard
arithmetic. The numbers just recorded might suggest that arbitrary accuracy can be achieved
by our algorithm, provided only that we take h small enough. Indeed, suppose we want∣∣∣∣∣cos(1.2)− sin(1.2 + h)− sin(1.2)

h
< 10−10

∣∣∣∣∣ .
Can’t we just set h ≤ 10−10/0.466 in our algorithm?

Not quite! Let us record results for very small, positive values of h:

h Absolute error
0.1 4.716676e−2

0.01 4.666196e−3

0.001 4.660799e−4

1.e−4 4.660256e−5

1.e−7 4.619326e−8

1.e−9 5.594726e−8

1.e−10 1.669696e−7

1.e−11 7.938531e−6

1.e−13 6.851746e−4

1.e−15 8.173146e−2

1.e−16 3.623578e−1

The solid curve interpolates the computed values of∣∣∣∣∣f ′(x0)− f(x0 + h)− f(x0)
h

∣∣∣∣∣
for f(x) = sin(x), x0 = 1.2. Shown in dash-dot style is a straight line depicting the discretiza-
tion error without roundoff error.

A log-log plot of the error vs h is provided in Figure 1.3.3. We can clearly see that, as h is
decreased, at first (from right to left in the figure) the error decreases along a straight line, but
this trend is altered and eventually reversed.

The reason for the error ”bottoming out” at about h = 10−8 is that the total error consists of
contributions of both discretization and roundoff errors. The discretization error decreases in
an orderly fashion as h decreases, and it dominates the roundoff error when h is relatively large.
But when h gets below the approximate value 10−8 the discretization error becomes very small

c© Dejen K. 2019 16

1.3. NUMERICAL ERROR AMU

Figure 1.5: The combined effect of discretization and roundoff errors.

and roundoff error starts to dominate (i.e., it becomes larger in magnitude). The roundoff error
has a somewhat erratic behaviour, as is evident from the small oscillations that are present in
the graph in a couple of places. Overall, the roundoff error increases as h decreases. This is
one reason why we want it always dominated by the discretization error when approximately
solving problems involving numerical differentiation, such as differential equations for instance.

Example 1.10

Q: What is round off error?
A: A computer can only represent a number approximately. For example, a number like
1/3 may be represented as 0.333333 on a PC. Then the round off error in this case is
1/3−0.333333 = 0.0000003333. Then there are other numbers that cannot be represented
exactly. For example, π and

√
2 are numbers that need to be approximated in computer

calculations.

c© Dejen K. 2019 17

1.3. NUMERICAL ERROR AMU

Example 1.11

Q: What problems can be created by round off errors?
A: Twenty-eight Americans were killed on February 25, 1991. An Iraqi Scud hit the
Army barracks in Dhahran, Saudi Arabia. The patriot defense system had failed to
track and intercept the Scud. What was the cause for this failure?

The Patriot defense system consists of an electronic detection device called the range
gate. It calculates the area in the air space where it should look for a Scud. To find
out where it should aim next, it calculates the velocity of the Scud and the last time
the radar detected the Scud. Time is saved in a register that has 24 bits length. Since
the internal clock of the system is measured for every one-tenth of a second, 1/10 is
expressed in a 24 bit-register as 0.00011001100110011001100. However, this is not an
exact representation. In fact, it would need infinite numbers of bits to represent 1/10
exactly. So, the error in the representation in decimal format is 9.537×10−8. The battery
was on for 100 consecutive hours, hence causing an inaccuracy of = 0.3433s
The shift calculated in the range gate due to 0.3433s was calculated as 687m. For the
Patriot missile defense system, the target is considered out of range if the shift was going
to more than 137m.

Figure 1.6: Scud missile taken from internet

Cancellation

0.12345678012345.101

−0.12345678012344.101

=0.10000000000000.10−13

this value has (at most) 1 significant digit!!! If you assume a ”canceled value” has more signif-
icant bits (the computer will happily give you some numbers) Any use of these random digits
is GARBAGE!!!

c© Dejen K. 2019 18

1.3. NUMERICAL ERROR AMU

Example 1.12: 5-digit Arithmetic

Rounding 5-digit arithmetic

(0.96384× 105 + 0.26678× 102)− 0.96410× 105 =
(0.96384× 105 + 0.00027× 105)− 0.96410× 105 =

0.96411× 105 − 0.96410× 105 = 0.10000× 101

Truncating 5-digit arithmetic

(0.96384× 105 + 0.26678× 102)− 0.96410× 105 =
(0.96384× 105 + 0.00026× 105)− 0.96410× 105 =

0.96410× 105 − 0.96410× 105 = 0.0000× 100

Rearrangement changes the result:

(0.96384× 105 − 0.96410× 105) + 0.26678× 102 =
−0.26000× 102 + 0.26678× 102 = 0.67800× 100

Numerically, order of computation matters! (This is a HARD problem)

Example 1.13

Consider the recursive relation

xn+1 = 1− (n+ 1)xn with x0 = 1− 1/e

This sequence can be shown to converge to 0.
Subtractive cancellation produces an error, which is approximately equal to the ma-
chine precision times n!.

The recursive relation is

xn+1 = 1− (n+ 1)xn with x0 = 1− 1/e

with
x0 = 1− 1/e = 1− 1

2! + 1
3! −

1
4! + · · ·

From the recursive relation

x1 = 1− x0 = 1
2! −

1
3! + 1

4! − · · ·

x2 = 1− 2x1 = 1
3 −

2
4! + 2

5! − · · ·

x3 = x− 3x2 = 3!
4! −

3!
5! + 3!

6! − · · ·
...

xn = x− nxn−1 = n!
(n+ 1)! −

n!
(n+ 2)! + n!

(n+ 3)! − · · ·

This shows that
xn = 1

(n+ 1) −
1

(n+ 1)(n+ 2) + · · · → 0 as n→∞

c© Dejen K. 2019 19

1.3. NUMERICAL ERROR AMU

n xn n! n xn n!
0 0.63212056 1 11 0.07735223 3.99e+007
1 0.36787944 1 12 0.07177325 4.79e+008
2 0.26424112 2 13 0.06694778 6.23e+009
3 0.20727665 6 14 0.06273108 8.72e+010
4 0.17089341 24 15 0.05903379 1.31e+012
5 0.14553294 120 16 0.05545930 2.09e+013
6 0.12680236 720 17 0.05719187 3.56e+014
7 0.11238350 5.04e+003 18 -0.02945367 6.4e+015
8 0.10093197 4.03e+004 19 1.55961974 1.22e+017
9 0.09161229 3.63e+005 20 -30.19239489 2.43e+018
10 0.08387707 3.63e+006

Example 1.14: Subtraction Error

Consider the MatLab computation near x = 1 of

y = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

compared to y = (x− 1)7. The program graphs x ∈ [0.988; 1.012] with the two forms of
function:

y = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 = (x− 1)7

Figure 1.7: Rounding error graph

c© Dejen K. 2019 20

1.3. NUMERICAL ERROR AMU

1.3.4 Algorithms and Convergence
Since we must live with errors in our numerical computations, the next natural question is
regarding appraisal of a given computed solution:

Definition 1.6: Algorithms

An algorithm is a procedure that describes, in an unambiguous manner, a finite sequence
of steps to be performed in a specific order.

In this book, the objective of an algorithm is to implement a procedure to solve a problem or
approximate a solution to a problem.

Definition 1.7: Stability

An algorithm is said to be stable if small changes in the input, generates small changes
in the output.

In view of the fact that the problem and the numerical algorithm both yield errors, can we
trust the numerical solution of a nearby problem (or the same problem with slightly different
data) to differ by only a little from our computed solution? A negative answer could make our
computed solution meaningless!.

This question can be complicated to answer in general, and it leads to notions such as problem
sensitivity and algorithm stability. If the problem is too sensitive, or ill-conditioned, meaning
that even a small perturbation in the data produces a large difference in the result, then
no algorithm may be found for that problem which would meet our requirement of solution
robustness. See Figure 1.8. Some modification in the problem definition may be called for in
such cases.
For instance, the problem of numerical differentiation is turns out to be ill-conditioned when

x
x̄

y

ȳ

f

f

Figure 1.8: Ill-Condition

extreme accuracy (translating to very small values of h) is required. The job of a stable
algorithm for a given problem is to yield a numerical solution which is the exact solution of an
only slightly perturbed problem.

x
x̄

ȳ
f

Figure 1.9: Well-Condition

c© Dejen K. 2019 21

1.3. NUMERICAL ERROR AMU

See Figure 1.9. Thus, if the algorithm is stable and the problem is well-conditioned (i.e., not
ill-conditioned) then the computed result y is close to the exact y.

In general, it is impossible to prevent linear accumulation of roundoff errors during a calculation,
and this is acceptable if the linear rate is moderate (i.e., the constant c0 below is not very large).
But we must prevent exponential growth! Explicitly, if En measures the relative error at the
nth operation of an algorithm, then

• If En ' CnE0 (for a constant C, which is independent of n), then the growth is linear.

• If En ' CnE0, C > 1, then the growth is exponential in this case the error will dominate
very fast(undesirable scenario).

• Linear error growth is usually unavoidable, and in the case where C and E0 are small the
results are generally acceptable. Stable algorithm.

• Exponential error growth is unacceptable. Regardless of the size of E0 the error grows
rapidly. Unstable algorithm.

• One property of chaos in a dynamical system is the exponential growth of any error in
initial conditions leading to unpredictable behavior

An assessment of the usefulness of an algorithm may be based on a number of criteria:

♣ Accuracy:
How good is the algorithm at approximating the underlying quantity.

♣ Efficiency
How much time does it take the algorithm to obtain a reasonable approximation.

This depends on speed of execution in terms of CPU time and storage space require-
ments. Details of an algorithm implementation within a given computer language and an
underlying hardware configuration may play an important role in yielding an observed
code efficiency. Often, though, a machine-independent estimate of the number of floating
point operations (flops) required gives an idea of the algorithm’s efficiency.

♣ Robustness
Often, the major effort in writing numerical software, such as the routines available in
Matlab for function approximation and integration, is spent not on implementing the
essence of an algorithm to carry out the given task but on ensuring that it would work
under all weather conditions. Thus, the routine should either yield the correct result to
within an acceptable error tolerance level, or it should fail gracefully (i.e., terminate with
a warning) if it does not succeed to guarantee a ”correct result”.

There are intrinsic numerical properties that account for the robustness and reliability of
an algorithm. Chief among these is the rate of accumulation of errors.

c© Dejen K. 2019 22

1.3. NUMERICAL ERROR AMU

Example 1.15

The recursive equation

pn = 10
3 pn−1 − pn−2 , n = 2, 3, · · · ,∞

has the exact solution
pn = c1

(1
3

)n
+ c23n

for any constants c1 and c2. (Determined by starting values.) In particular, if p0 = 1
and p1 = 1

3 , we get c1 = 1 and c2 = 0, so pn =
(

1
3

)n
for all n. What happens with some

rounding error, as we don’t know 1
3 exactly?

Consider what happens in 5-digit rounding arithmetic, where the initial starting condi-
tions are rounded.

p∗0 = 1.0000, p∗1 = 0.33333

which modifies the constants (by solving the general solution for c1 and c2 with the p∗0
and p∗1)

c∗1 = 1.0000, c∗2 = −0.12500.105

The generated sequence is

p∗n = 1.0000(0.33333)n − 0.12500.105(3.0000)n︸ ︷︷ ︸
Exponential Growth

p∗n quickly becomes a very poor approximation to pn due to the exponential growth of
the initial roundoff error.

Reducing the Effects of Roundoff Error

• The effects of roundoff error can be reduced by using higher-order-digit arithmetic
such as the double or multiple-precision arithmetic available on most computers.

• Disadvantages in using double precision arithmetic are that it takes more com-
putation time, and the growth of the roundoff error is not eliminated but only
postponed.

• Sometimes, but not always, it is possible to reduce the growth of the roundoff error
by restructuring the calculations.

Rate of Convergence

In numerical analysis, the speed at which a convergent sequence approaches its limit is called
the rate of convergence.

c© Dejen K. 2019 23

1.3. NUMERICAL ERROR AMU

Definition 1.8

Suppose the sequence β = {βn}∞n=0 converges to zero, and α = {αn}∞n=0 converges to a
number α. If there exists K > 0 : |αn − α| < Kβn, for n large enough, then we say that
{αn}∞n=0 converges to α with a Rate of Convergence O(βn) (”Big Oh of βn”). We write

αn = α +O(βn)

Note: The sequence β = {βn}∞n=0 is usually chosen to be

βn = 1
np

for some positive value of p.
Example 1.16

If
αn = α + 1√

n

then for any ε > 0
|αn − α| =

1√
n
≤ 1 + ε︸ ︷︷ ︸

K

1√
n︸︷︷︸

βn

Hence, αn = α +O(1√
n

)

Definition 1.9: Rate of Convergence

Suppose
lim
h→0

G(h) = 0, and lim
h→0

F (h) = L

If there exists K > 0:
|F (h)− L| ≤ K|G(h)|

for all h < H (for some H > 0), then

F (h) = L+O(G(h))

we say that F (h) converges to L with a Rate of Convergence O(G(h)).

Usually G(h) = hp, p > 0.

c© Dejen K. 2019 24

1.3. NUMERICAL ERROR AMU

Example 1.17

Consider the function α(h) (as h→0)

α(h) = sin(h)− h

The Maclaurin series expansion for sin(x) is:

sin(h) ∼ h− h3

6 + o(h5)

Hence
|α(h)| = |h

3

6 + o(h5)|

It follows that
limα(h)h→0 = 0 +O(h3)

Note:
O(h5) +O(h3) = O(h3), since h5 << h3, as h→ 0

c© Dejen K. 2019 25

	Computing and Error Analysis
	Mathematical Modeling
	Scientific Computing
	Number System
	Finite Precision

	Numerical Error
	Accuracy and Precision
	Measurement of Errors
	Sources of Numerical Error
	Algorithms and Convergence

